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Abstract— In this article, a broadcast channel in the 

degraded state with two legitimate receivers in the attendance of 

an eavesdropper has been studied, where, the sender demands 

to forward two independent confidential messages that ought to 

be kept as secret as feasible of the eavesdropper to the legitimate 

receivers. In the studied system, it has been supposed that the 

non-causal channel state information has been considered at the 

transmitter side and every one of receivers has the message 

forwarded via source demanded via the further one. The model 

studied in this paper is further generalized into the formerly 

considered broadcast channel with confidential messages and 

considering side information in the receiver. It has been 

supplied an outer bound by considering confidentially 

conditions for proposed system.   

Keywords— Broadcast channel, Capacity outer bound, 

Secrecy capacity, Side information. 

I. INTRODUCTION  

Broadcast channel (BC) was firstly reported in [1]. 

Determining the capacity region of discrete memoryless BC 

(DM-BC) in general case is up to this time an irresolvable 

question, with the exception of few special cases in which one 

channel is superior to the other channel, including degraded, 

more capable, less noisy, deterministic and semi-

deterministic channels. In general 2-receiver BC, the best-

known capacity inner bound has been derived in [2]. It has 

been established an achievable rate region in [3] via 

superposition coding technique for 2-receiver BC that is 

degraded; in [4] it is demonstrated that this rate region is 

optimal.  

Channels with considering side information (SI) was 

deliberated by Shannon for the first time. The capacity region 

for case of channel when SI is known at the transmitter 

causally has been derived in [5]. This scheme for the non-

causally case was investigated in [6]. Cover and Chiang 

generalized the consequences from [6] to channels that SI is 

known at the transmitter and receiver side non-causally in [8]. 

The Gaussian versions of [5] was studied in [8]. BC with SI 

received considerable attention recently in different 

scenarios. Several works have been done upon this set of 

channels. BC with SI was firstly introduced in [9]. Steinberg 

and Shamai in [10] considered public BC in presence of SI 

non-causally available at the sender side, where Marton’s 

achievability scheme has been extended to state-dependent 

channels. Later, SI known at  

In [11], secure communication as an important issue was 

surveyed by Shannon. In [12] the degraded wiretap channel 

was studied. Wyner’s outcome was extended to the public BC 

in the presence of confidential messages and also the secrecy 

capacity for this activity has been established in [12]. Liu in 

[13] studied the BC with 2-receivers that private messages are 

to be kept invisible of the inadvertent receiver. In [14], a BC 

with an external eavesdropper and two private messages was 

investigated. The authors in [15] studied BC cases with a 

common and a private message that common message has 

been conveyed to the whole of the receivers and the private 

message has been preserved of some of the receivers. The 

availability of message SI at the legitimate receivers is 

according to a case that each one of receiver knows the 

message forwarded via source demanded by the other one. It 

has been demonstrated to aid in modifying the secrecy rate 

region.  

Despite that many work have been done on the secrecy 

capacity of BCs in presence of SI. The secrecy capacity for 

special cases of BCs when the CSI is available at sender and 

message side information (MSI) in destinations is still 

unknown. We focus on the secrecy capacity region of the BC 

with considering SI non-causally available at sender side and 

MSI at destinations. The availability of MSI has been 

demonstrated to aid in rectifying the secrecy rate region in 

our channels. This paper accurately focuses on a special case 

of an important problem to determine the secrecy capacity in 

communication. It is grounded on important work by 

Shannon, Cover, and Wyner, and it is an advancement over 

the most recent work cited in the aforementioned. The work 

may have broader application to cognitive radio.  

This article has been established as follows: In Section II, 

the channel model has been characterized. Then, in Section 

III, an outer bound over the secrecy capacity region for 

presented scheme was devoted. Finally, the conclusion of 

paper was demonstrated in Section IV. 

II. SYSTEM MODEL  

We explain the our scheme and also some basic definitions 

necessary for the continuation of the study in this section. 

A. Channel model  

    The system model for the 2-receiver BC with non-causal 

CSIT and receiver SI in the attendance of one eavesdropper 

has been illustrated in below figure. 
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Fig. 1. The BC with 2-user and with 2-legitimate receivers and one 

eavesdropper in degraded version with considering SI.  

 

Let 𝒳 be the input set and 𝒴1  and 𝒴2  be the output sets 

related to the legal receivers and finally 𝒵 be the output set 

of eavesdropper; 𝒮  be finite set that denotes CSI in the 

transmitter. Discrete random variables (RVs) have been 

signified with uppercase letters and their realizations have 

been signified with lowercase letters. We assume that 𝑋𝑖
𝑛 is 

the sequence of RV throughout. A DM-BC that considered 

degraded with 2-legal receivers, in attendance one 

eavesdropper and by expressions are determined via 

(𝒳, 𝒮, 𝑃(𝒴1, 𝒴2, 𝒵|𝒳, 𝒮), 𝒴1, 𝒴2, 𝒵)  which state 𝑆𝑖 ∈ 𝒮  are 

acquired i.i.d correspondent to 𝑝(𝑠), and 𝑃(𝒴1, 𝒴2, 𝒵|𝒳, 𝒮) 

are the channel transition probabilities. I 𝑌1  is a strong 

receiver than 𝑌2 . Messages are also denoted by random 

variables 𝑀1 and 𝑀2. Consider the definitions below, used in 

the following sections in this paper. 

B. Definitions 

Definition 1: An (𝑛, 2𝑛𝑅1 , 2𝑛𝑅2 , 𝜖) code for DM 2-receiver 

BC with considering SI non-causally available at the sender 

side and MSI at receivers side contains 2-message sets; 

ℳ1: = {1, … , 2𝑛𝑅1}  and ℳ2: = {1, … , 2𝑛𝑅2} , contains from 

three maps: An encoder at the transmitter and a decoder at 

each legitimate receivers 1 and 2 consists of the following 

map: 

 

                            𝑒𝑛𝑐. ∶ ℳ1 × ℳ2 × 𝑆 → 𝒳𝑛 ,                         (1) 

                         𝑑𝑒𝑐. (𝑦1): 𝒴1
𝑛 × ℳ2 → ℳ̂1,                            (2) 

                         𝑑𝑒𝑐. (𝑦2): 𝒴2
𝑛 × ℳ1 → ℳ̂2                             (3) 

 

such that the 𝑃𝐸𝑟𝑟𝑜𝑟(𝑎𝑣𝑔) has been distinguished as below: 

 

           𝑃𝐸𝑟𝑟𝑜𝑟
(𝑛)

≜ 𝑃{(ℳ̂1, ℳ̂2) ≠ (ℳ1, ℳ2)} ≤ 𝜖.                (4) 

 

where estimated messages are determined with ℳ̂1 and ℳ̂2 

respectively at legitimate receivers 1 and 2. 

    Definition 2: When we have an integer 𝑛0 for any 𝜇 > 0 

such that for all 𝑛 ≥ 𝑛0  there exists an 

(𝑛, 2𝑛(𝑅1−𝜇), 2𝑛(𝑅2−𝜇), 𝜖)  code; then, the rate pair (𝑅1, 𝑅2) 

has been said achievable.  

    Definition 3: The capacity region has been distinguished 

as the set in the union from all 𝜖-achievable rate (𝑅1, 𝑅2). 

    The ignorance of eavesdropper concerning the secret 

message 𝑚1and 𝑚2has been considered via the significance 

from ambiguity. Hitherward, the secrecy level of secret 

messages ℳ1 and ℳ2 have been demonstrated in conditions 

of equivocation rates which are defined according to below: 

                                   𝑅𝑒1 =
1

𝑛
𝐻(ℳ1|𝑍𝑛),                                (5) 

                                  𝑅𝑒2 =
1

𝑛
𝐻(ℳ2|𝑍𝑛),                                (6) 

                                𝑅𝑒12 =
1

𝑛
𝐻(ℳ1, ℳ2|𝑍𝑛).                        (7) 

 

    Definition 4:  A secrecy rate pair (𝑅1, 𝑅2) ∈ 𝑅+
2  has been 

considered achievable for the BC alongside receiver SI 

whether for each 𝛿 > 0 exist a 𝑛(𝛿) ∈ 𝑁 and a sequence of 

(𝑛, 𝑀1
(𝑛)

, 𝑀2
(𝑛)

)-code such that for all 𝑛 ≥ 𝑛(𝛿) we have  

                                       𝑅1 ≤ 𝛿 + 𝑅𝑒1,                                     (8) 

                                        𝑅2 ≤ 𝛿 + 𝑅𝑒2,                                     (9) 

and further 

                              𝑅1 + 𝑅2 ≤ 𝛿 + 𝑅𝑒12                                  (10) 

 

while 𝑃𝐸𝑟𝑟𝑜𝑟
(𝑛)

→ 0 as 𝑛 → ∞. The conditions (8), (9) and (10) 

assurance perfect secrecy to every message that is individual.  

III. CAPACITY RESULTS 

Now, an outer bound has been presented over the secrecy 

capacity region for introduced channel scheme defined in 

previous section. 

   Theorem 1. An outer bound on the secrecy capacity region 

for a discrete memoryless 2-receiver BC with CSIT non-

causally and MSI is specified via the whole (𝑅1, 𝑅2) ∈ 𝑅+
2  

that satisfy below conditions 

 

            𝑅1 ≤ 𝐼(𝑉; 𝑌1) − max {𝐼(𝑉, 𝑆), 𝐼(𝑉, 𝑍)}                  (11) 

           𝑅2 ≤ 𝐼(𝑉; 𝑌2) − max {𝐼(𝑉, 𝑆), 𝐼(𝑉, 𝑍)}                  (12) 

   𝑅1 + 𝑅2 ≤ 𝑚𝑖𝑛 {𝐼(𝑉; 𝑌1|𝑈) + 𝐼(𝑉; 𝑌2|𝑈) − 𝐼(𝑉; 𝑍|𝑈)       
                               , 𝐼(𝑉; 𝑌1) + 𝐼(𝑉; 𝑌2) − 𝐼(𝑉; 𝑍)}.           (13) 
 

for RVs 𝑈 − 𝑉𝑋 − 𝑌1, 𝑌2 − 𝑍. 

   Proof. An interpretation from Fano’s imparity for the BC 

with MSI in the receivers is necessary to gather the desired 

outer bound on the secrecy capacity region. Fano’s lemma 

mentioned is specified via 𝐻(ℳ1|ℳ2, 𝑌1
𝑛) ≤ 𝑛𝜖1

(𝑛)
 and 

𝐻(ℳ2|ℳ1, 𝑌2
𝑛) ≤ 𝑛𝜖2

(𝑛)
 with 𝜖1

(𝑛)
, 𝜖2

(𝑛)
→ 0  as 𝑛 → ∞ . 

Authorized us to specify the auxiliary RVs as follows 

 

                       𝑈𝑖 ≜ (𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖−1
𝑛 , 𝑆𝑖+1

𝑛 ),                         (14) 

                    𝑉𝑖 ≜ (𝑀1, 𝑀2, 𝑈𝑖)                                             (15) 

 

which satisfy the following Markov chain condition 𝑈𝑖 −
𝑉𝑖𝑋𝑖 − 𝑌1𝑖 , 𝑌2𝑖 − 𝑍𝑖 . Let 𝑚1  and 𝑚2  be independent RVs 

showing our messages. 𝑅1 can be bounded as follows: 

 

𝑛𝑅1 ≤ 𝐻(𝑀1|𝑍𝑛) + 𝑛𝛿                                                          (16) 

         ≤ 𝐻(𝑀1) + 𝑛𝛿 = 𝐻(𝑀1|𝑀2) + 𝑛𝛿                           (17) 

         = 𝐻(𝑀1|𝑌1
𝑛 , 𝑀2) + 𝐼(𝑀1; 𝑌1

𝑛|𝑀2) + 𝑛𝛿                  (18) 

  ≤ ∑ 𝐼(𝑀1; 𝑌1,𝑖|𝑀2, 𝑌1
𝑖−1)

𝑛

𝑖=1

+ 𝑛𝜖1
(𝑛)

+ 𝑛𝛿                      (19) 

 ≤ ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖−1
𝑛

𝑛

𝑖=1

; 𝑌1,𝑖) + 𝑛(𝜖1
(𝑛)

+ 𝛿)(20) 

 = ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖−1
𝑛

𝑛

𝑖=1

, 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖) −                   
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∑ 𝐼(𝑆𝑖+1
𝑛 ; 𝑌1,𝑖|𝑀1, 𝑀2, 𝑌1

𝑖−1, 𝑌2
𝑖−1, 𝑍𝑖−1

𝑛 ) + 𝑛(𝜖1
(𝑛)

+ 𝛿)

𝑛

𝑖=1

(21) 

= ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖−1
𝑛

𝑛

𝑖=1

, 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖) −                   

∑ 𝐼(𝑌1
𝑖−1; 𝑆𝑖|𝑀1, 𝑀2, 𝑆𝑖+1

𝑛 , 𝑌2
𝑖−1, 𝑍𝑖−1

𝑛 ) + 𝑛(𝜖1
(𝑛)

+ 𝛿)(22)

𝑛

𝑖=1

 

= ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖−1
𝑛

𝑛

𝑖=1

, 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖) −                    

∑ 𝐼(𝑀1, 𝑀2, 𝑆𝑖+1
𝑛 , 𝑌1

𝑖−1, 𝑌2
𝑖−1, 𝑍𝑖−1

𝑛 ; 𝑆𝑖) + 𝑛(𝜖1
(𝑛)

+ 𝛿)

𝑛

𝑖=1

(23) 

        = ∑ 𝐼(𝑉𝑖; 𝑌1,𝑖)

𝑛

𝑖=1

− ∑ 𝐼(𝑉𝑖; 𝑆𝑖)

𝑛

𝑖=1

+ 𝑛(𝜖1
(𝑛)

+ 𝛿)         (24) 

 

where (16) in this proof follows from inequalities  (5) and (8). 

(19) is due to Fano’s imparity and (22) comprehend of sum 

Csiszar lemma. Finally, it has been consequence that equality 

(24) come from definition of the auxiliary RVs according to 

(15). Therefore, from inequality (6) and perfect secrecy 

condition (9), 𝑅2 can be bounded as follows:  

𝑛𝑅2 ≤ ∑ 𝐼(𝑉𝑖; 𝑌2,𝑖)

𝑛

𝑖=1

− ∑ 𝐼(𝑉𝑖; 𝑆𝑖)

𝑛

𝑖=1

+ 𝑛(𝜖2
(𝑛)

+ 𝛿).       (25) 

Also we have 

 

𝑛𝑅1 ≤ 𝐻(𝑀1|𝑍𝑛) + 𝑛𝛿                                                          (26) 

         ≤ 𝐻(𝑀1) + 𝑛𝛿 = 𝐻(𝑀1|𝑀2) + 𝑛𝛿                           (27) 

         = 𝐻(𝑀1|𝑌1
𝑛 , 𝑀2) + 𝐼(𝑀1; 𝑌1

𝑛|𝑀2) + 𝑛𝛿                 (28) 

         ≤ ∑ 𝐼(𝑀1; 𝑌1,𝑖|𝑀2, 𝑌1
𝑖−1)

𝑛

𝑖=1

+ 𝑛𝜖1
(𝑛)

+ 𝑛𝛿                  (29) 

   ≤ ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑆𝑖+1
𝑛

𝑛

𝑖=1

; 𝑌1,𝑖) + 𝑛(𝜖1
(𝑛)

+ 𝛿) (30) 

   = ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖−1
𝑛

𝑛

𝑖=1

, 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖) −                   

∑ 𝐼(𝑍𝑖−1
𝑛 ; 𝑌1,𝑖|𝑀1, 𝑀2, 𝑌1

𝑖−1, 𝑌2
𝑖−1, 𝑆𝑖+1

𝑛 ) + 𝑛(𝜖1
(𝑛)

+ 𝛿)

𝑛

𝑖=1

(31) 

= ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖−1
𝑛

𝑛

𝑖=1

, 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖) −                    

∑ 𝐼(𝑌1
𝑖−1; 𝑍𝑖|𝑀1, 𝑀2, 𝑆𝑖+1

𝑛 , 𝑌2
𝑖−1, 𝑍𝑖−1

𝑛 ) + 𝑛(𝜖1
(𝑛)

+ 𝛿)(32)

𝑛

𝑖=1

 

= ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖−1
𝑛

𝑛

𝑖=1

, 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖) −                   

∑ 𝐼(𝑀1, 𝑀2, , 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖−1
𝑛 𝑆𝑖+1

𝑛 ; 𝑍𝑖) + 𝑛(𝜖1
(𝑛)

+ 𝛿)

𝑛

𝑖=1

  (33) 

        = ∑ 𝐼(𝑉𝑖; 𝑌1,𝑖)

𝑛

𝑖=1

− ∑ 𝐼(𝑉𝑖; 𝑍𝑖)

𝑛

𝑖=1

+ 𝑛(𝜖1
(𝑛)

+ 𝛿)         (34) 

 

the inequality (26) in this proof follows from inequalities (5) 

and (8); and (29) is due to Fano’s imparity. (32) Comprehend 

of sum Csiszar lemma. Finally, the equality (34) has been 

concluded by definition of the auxiliary RVs according to 

(15). Therefore, from (6) and perfect secrecy condition (9), 

𝑅2 can be bounded as follows:  

𝑛𝑅2 ≤ ∑ 𝐼(𝑉𝑖; 𝑌2,𝑖)

𝑛

𝑖=1

− ∑ 𝐼(𝑉𝑖; 𝑍𝑖)

𝑛

𝑖=1

+ 𝑛(𝜖2
(𝑛)

+ 𝛿).       (35) 

We use the fact that 𝑚1 and 𝑚2 are independent messages to 

established the upper bound over 𝑅1 + 𝑅2. So, this bound can 

be bounded as follows: 

𝑛(𝑅1 + 𝑅2) ≤ 𝐻(𝑀1, 𝑀2|𝑍𝑛) + 𝑛𝛿                                    (36) 

  = 𝐻(𝑀1, 𝑀2|𝑍𝑛) − 𝐻(𝑀1|𝑌1
𝑛 , 𝑀2) + 𝐻(𝑀1|𝑌1

𝑛 , 𝑀2)   

            −𝐻(𝑀2|𝑌2
𝑛 , 𝑀1) + 𝐻(𝑀2|𝑌2

𝑛 , 𝑀1) + 𝑛𝛿              (37) 

  ≤ 𝐻(𝑀1, 𝑀2|𝑍𝑛) − 𝐻(𝑀1|𝑌1
𝑛 , 𝑀2)                                    

            −𝐻(𝑀2|𝑌2
𝑛 , 𝑀1) + 𝑛(𝜖1

(𝑛)
+ 𝜖2

(𝑛)
+ 𝛿)                   (38) 

      = 𝐻(𝑀1|𝑀2) + 𝐻(𝑀2|𝑀1) − 𝐻(𝑀1, 𝑀2)                             

    +𝐻(𝑀1, 𝑀2|𝑍𝑛) − 𝐻(𝑀1|𝑌1
𝑛 , 𝑀2)                                

             −𝐻(𝑀2|𝑌2
𝑛 , 𝑀1) + 𝑛(𝜖1

(𝑛)
+ 𝜖2

(𝑛)
+ 𝛿)                 (39) 

       = 𝐼(𝑀1; 𝑌1
𝑛|𝑀2) + 𝐼(𝑀2; 𝑌2

𝑛|𝑀1)                                        

             −𝐼(𝑀1, 𝑀2; 𝑍𝑛) + 𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)                (40) 

≤ 𝐼(𝑀1, 𝑀2; 𝑌1
𝑛) + 𝐼(𝑀1, 𝑀2; 𝑌2

𝑛)                                   

            −𝐼(𝑀1, 𝑀2; 𝑍𝑛) + 𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)              (41) 

  = ∑ 𝐼(𝑀1, 𝑀2; 𝑌1,𝑖|𝑌1
𝑖−1)

𝑛

𝑖=1

+ ∑ 𝐼(𝑀1, 𝑀2; 𝑌2,𝑖|𝑌2
𝑖−1) 

𝑛

𝑖=1

 

     − ∑ 𝐼(𝑀1, 𝑀2; 𝑍1,𝑖|𝑍𝑖+1
𝑛 )

𝑛

𝑖=1

+ 𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)   (42) 

= ∑ 𝐼(𝑀1, 𝑀2, 𝑌2
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖|𝑌1

𝑖−1)

𝑛

𝑖=1

                   

− ∑ 𝐼(𝑌2
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖|𝑀1, 𝑀2, 𝑌1

𝑖−1)              

𝑛

𝑖=1

 

+ ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌2,𝑖|𝑌2

𝑖−1)              

𝑛

𝑖=1

 

− ∑ 𝐼(𝑌1
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌2,𝑖|𝑀1, 𝑀2, 𝑌2

𝑖−1)              

𝑛

𝑖=1

 

− ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑆𝑖+1
𝑛 ; 𝑍𝑖|𝑍𝑖+1

𝑛 )                

𝑛

𝑖=1

 

+ ∑ 𝐼(𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑆𝑖+1
𝑛 ; 𝑍𝑖|𝑀1, 𝑀2, 𝑍𝑖+1

𝑛 )                

𝑛

𝑖=1

 

          +𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)                                                     (43) 

= ∑ 𝐼(𝑀1, 𝑀2; 𝑌1,𝑖|𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖+1
𝑛 , 𝑆𝑖+1

𝑛 )

𝑛

𝑖=1
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+ ∑ 𝐼(𝑌2
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖|𝑌1

𝑖−1)

𝑛

𝑖=1

                            

− ∑ 𝐼(𝑌2
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖|𝑀1, 𝑀2, 𝑌1

𝑖−1)

𝑛

𝑖=1

             

+ ∑ 𝐼(𝑀1, 𝑀2; 𝑌2,𝑖|𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖+1
𝑛 , 𝑆𝑖+1

𝑛 )

𝑛

𝑖=1

             

        + ∑ 𝐼(𝑌1
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌2,𝑖|𝑌2

𝑖−1)                                   

𝑛

𝑖=1

 

        − ∑ 𝐼(𝑌1
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌2,𝑖|𝑀1, 𝑀2, 𝑌2

𝑖−1)                     

𝑛

𝑖=1

 

        − ∑ 𝐼(𝑀1, 𝑀2; 𝑍𝑖|𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑆𝑖+1
𝑛 , 𝑍𝑖+1

𝑛 )                       

𝑛

𝑖=1

 

    − ∑ 𝐼(𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑆𝑖+1
𝑛 ; 𝑍𝑖|𝑍𝑖+1

𝑛 )                                  

𝑛

𝑖=1

 

     + ∑ 𝐼(𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑆𝑖+1
𝑛 ; 𝑍𝑖|𝑀1, 𝑀2, 𝑍𝑖+1

𝑛 )                    

𝑛

𝑖=1

 

            +𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)                                                   (44) 

     = ∑ 𝐼(𝑀1, 𝑀2; 𝑌1,𝑖|𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖+1
𝑛 , 𝑆𝑖+1

𝑛 )

𝑛

𝑖=1

                         

      + ∑ 𝐼(𝑀1, 𝑀2; 𝑌2,𝑖|𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖+1
𝑛 , 𝑆𝑖+1

𝑛 )                   

𝑛

𝑖=1

 

     − ∑ 𝐼(𝑀1, 𝑀2; 𝑍𝑖|𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑆𝑖+1
𝑛 , 𝑍𝑖+1

𝑛 )                    

𝑛

𝑖=1

 

            +𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)                                             (45) 

≤ ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖+1
𝑛 , 𝑆𝑖+1

𝑛 ; 𝑌1,𝑖|𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖+1
𝑛 , 𝑆𝑖+1

𝑛 )

𝑛

𝑖=1

 

+ ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖+1
𝑛 , 𝑆𝑖+1

𝑛 ; 𝑌2,𝑖|𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖+1
𝑛 , 𝑆𝑖+1

𝑛 )

𝑛

𝑖=1

 

− ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑍𝑖+1
𝑛 , 𝑆𝑖+1

𝑛 ; 𝑍𝑖|𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑆𝑖+1
𝑛 , 𝑍𝑖+1

𝑛 )

𝑛

𝑖=1

 

           +𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)                                               (46) 

= ∑ 𝐼(𝑉𝑖; 𝑌1,𝑖|𝑈𝑖)

𝑛

𝑖=1

+ ∑ 𝐼(𝑉𝑖; 𝑌2,𝑖|𝑈𝑖)

𝑛

𝑖=1

− ∑ 𝐼(𝑉𝑖; 𝑍𝑖|𝑈𝑖)

𝑛

𝑖=1

      

           +𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)                                              (47) 

 

where (36) in this proof follows from inequalities  (7) and 

(10); and (38) is because of Fano’s imparity. In (45) we use a 

interpretation of Csiszar Korner’s sum identity modified for 

our scenarios. Finally, we have equality (47) by definition of 

the auxiliary RVs according to equalities (14) and (15). Sum 

rate 𝑅1 + 𝑅2 also can be bounded as follows: 

𝑛(𝑅1 + 𝑅2) ≤ 𝐻(𝑀1, 𝑀2|𝑍𝑛) + 𝑛𝛿                               (48) 

 = 𝐻(𝑀1, 𝑀2|𝑍𝑛) − 𝐻(𝑀1|𝑌1
𝑛 , 𝑀2) + 𝐻(𝑀1|𝑌1

𝑛 , 𝑀2)   

            −𝐻(𝑀2|𝑌2
𝑛 , 𝑀1) + 𝐻(𝑀2|𝑌2

𝑛 , 𝑀1) + 𝑛𝛿            (49) 

  ≤ 𝐻(𝑀1, 𝑀2|𝑍𝑛) − 𝐻(𝑀1|𝑌1
𝑛 , 𝑀2)                                    

            −𝐻(𝑀2|𝑌2
𝑛 , 𝑀1) + 𝑛(𝜖1

(𝑛)
+ 𝜖2

(𝑛)
+ 𝛿) =              (50) 

𝐻(𝑀1|𝑀2) + 𝐻(𝑀2|𝑀1) − 𝐻(𝑀1, 𝑀2) + 𝐻(𝑀1, 𝑀2|𝑍𝑛) −  

𝐻(𝑀1|𝑌1
𝑛 , 𝑀2) − 𝐻(𝑀2|𝑌2

𝑛 , 𝑀1) + 𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)  (51) 

         ≤ 𝐼(𝑀1; 𝑌1
𝑛|𝑀2) + 𝐼(𝑀2; 𝑌2

𝑛|𝑀1)                                  

             −𝐼(𝑀1, 𝑀2; 𝑍𝑛) + 𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)              (52) 

≤ 𝐼(𝑀1, 𝑀2; 𝑌1
𝑛) + 𝐼(𝑀1, 𝑀2; 𝑌2

𝑛)                                   

            −𝐼(𝑀1, 𝑀2; 𝑍𝑛) + 𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)                (53) 

  = ∑ 𝐼(𝑀1, 𝑀2; 𝑌1,𝑖|𝑌1
𝑖−1)

𝑛

𝑖=1

+ ∑ 𝐼(𝑀1, 𝑀2; 𝑌2,𝑖|𝑌2
𝑖−1) 

𝑛

𝑖=1

 

           − ∑ 𝐼(𝑀1, 𝑀2; 𝑍1,𝑖|𝑍𝑖+1
𝑛 )

𝑛

𝑖=1

+ 𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)  (54) 

= ∑ 𝐼(𝑀1, 𝑀2, 𝑌2
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖|𝑌1

𝑖−1)                   

𝑛

𝑖=1

 

− ∑ 𝐼(𝑌2
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌1,𝑖|𝑀1, 𝑀2, 𝑌1

𝑖−1)

𝑛

𝑖=1

                   

+ ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌2,𝑖|𝑌2

𝑖−1)                  

𝑛

𝑖=1

 

− ∑ 𝐼(𝑌1
𝑖−1, 𝑍𝑖+1

𝑛 , 𝑆𝑖+1
𝑛 ; 𝑌2,𝑖|𝑀1, 𝑀2, 𝑌2

𝑖−1)                  

𝑛

𝑖=1

 

− ∑ 𝐼(𝑀1, 𝑀2, 𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑆𝑖+1
𝑛 ; 𝑍𝑖|𝑍𝑖+1

𝑛 )                  

𝑛

𝑖=1

 

+ ∑ 𝐼(𝑌1
𝑖−1, 𝑌2

𝑖−1, 𝑆𝑖+1
𝑛 ; 𝑍𝑖|𝑀1, 𝑀2, 𝑍𝑖+1

𝑛 )                  

𝑛

𝑖=1

 

          +𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)                                                   (55) 

    = ∑ 𝐼(𝑉𝑖 , 𝑌1,𝑖)

𝑛

𝑖=1

+ ∑ 𝐼(𝑉𝑖 , 𝑌2,𝑖)

𝑛

𝑖=1

− ∑ 𝐼(𝑉𝑖 , 𝑍𝑖)                 

𝑛

𝑖=1

 

          +𝑛(𝜖1
(𝑛)

+ 𝜖2
(𝑛)

+ 𝛿)                                                (56) 

 

where (36) in this proof follows from inequalities  (7) and 

(10); and (50) is because of Fano’s imparity. In the end, we 

have equality (56) by definition of the auxiliary RVs 

according to (15).   

    In above inequalities 𝜖1
(𝑛)

, 𝜖2
(𝑛)

 and 𝛿 tend to zero as 𝑛 →
∞. Using the time-sharing scheme, inequalities (24), (25), 

(34), (35), (47) and (56) establishes inequalities in Theorem 

1.                                                                                                       ∎ 

IV. CONCLUSION 

In this study, for the degraded BC with 2-legitimate 

receivers an outer bound in attendance of an eavesdropper has 

been derived. It has been supposed that the non-causal CSI 

has been recognized at sender side and any one of receiver 
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knows the message forwarded via source demanded with 

another one, referential to as MSI at receiver. The scheme 

studied in this article is further universal than the formerly 

considered BC with confidential messages and receiver side 

information because circumstances on the receivers are 

comprehensive and also channel state has been supposed is 

existent at the sender in this paper.  
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