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a b s t r a c t 

The Symbiotic Organisms Search Algorithm (SOS) is used as an algorithm based on the social behavior of 

Symbiotic Organisms in optimization of Non-linear 5 model parameters for flood routing. 

The data used in this article is 4 day observations from 30 November 2008 to 3 December 2008, which is 

located between the Molasani, and Ahwaz station on the Karun River. 

The time series data used included river inflow, storage volume, and river outflow. 

The results of the developed model with the Symbiotic Organisms Search Algorithm (SOS) were compared 

with the other Evolutionary algorithms including Genetic Algorithm (GA, and Harmony Search Algorithm (HS). 

The analysis showed that the best solutions achieved from the objective function by the SOS, GA, and HS 

algorithms were 143052.02, 143252.35, and 142952.45, respectively. The processes of these datasets determined 

that the SOS algorithm was premiere to GA, and HS algorithms on the optimal flood routing river problem. 

• In this article applied the Symbiotic Organisms Search Algorithm for Estimation of nonlinear parameters of the 

Muskingum hydrologic model of the Karun River located in Iran. 
• This method can be useful for managers of water, and wastewater companies, water resource facilities for 

predicting the flood process downstream of the rivers. 
• The present algorithm performs better than the other algorithms in the discussion of the optimization of 

Nonlinear 5 parameters of Muskingum model in flood routing. 
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Specifications table 

Subject Area: Engineering 

More specific subject area: Optimization of problem using Symbiotic Organisms Search Algorithm. 

Name and reference of original 

method: 

Cheng M. Y., and Prayogo D. 2014. Symbiotic Organisms Search: A new metaheuristic 

optimization algorithm. Computers & Structures 139:98-112. 

10.1016/j.compstruc.2014.03.007 . 

Resource availability: – Computer (Intel(R)CoreTMi7-7700 3.60-GHz 32 GB 

– MATLAB software 

– Microsoft Excel Worksheet [3] 

Method details 

Flood or wave motion is an example of an unstable varying flow which be changed some

specifications including its location in a water stream, the flow stage, and flow depth from one

section to another, and from time to time. Flood routing is the sum of the operations by which the

downstream hydrograph is determined by the upstream flow hydrograph. Understanding flood routing 

through mathematical methods helps designing engineer understand the effects of flow on the river, 

and surrounding areas [2] . 

The Muskingum method was first developed by US Army engineers for the Muskingum River Basin

Flood Control Studies in Ohio [3] . 

During the last years, several Meta-Heuristic Algorithms (MAs) including Symbiotic Organisms 

Search (SOS) algorithm [4–6] , Haris Hawks Optimization Algorithm [7] , Grasshopper Optimization 

Algorithm (GOA) [8] , have been applied for solving different optimization problems [9] . 

Recently, in order to optimally estimate the nonlinear parameters of the Muskingum model, 

especially the nonlinear model of the third type, many pro-exploration algorithms have been 

proposed, which include: 

Nord algorithm [10] , bat algorithm [11] , and GOA algorithm [8] . 

Symbiotic Organisms Search (SOS) is one of the metaheuristic algorithms proposed based on 

interactive behavioral simulations (Cheng and Prayogo, 2014). Due to relying on other species to 

survive, creatures rarely isolate themselves. This relationship, which based on trust, is known as 

coexistence. 

In the present study, the application of the SOS, as one of the new metaheuristic methods for

estimating parameters of the nonlinear Muskingum model, has been investigated. To investigate the 

performance of the developed algorithm, the results of its implementation have been compared with 

other metaheuristic methods such as genetic algorithm (GA), and Harmony Search algorithm (HS). The 

coding of the SOS, GA, and HS algorithms was done in the MATLAB software (R2014a). 

Symbiotic Organisms Search (SOS) algorithm 

The Symbiotic Organisms Search Algorithm (SOS) as a nature-inspired optimization paradigm is 

proposed to solve optimization problems by Cheng et al. in 2014 [1] . This algorithm is a population-

based search that is implemented in three main phases. 

The SOS algorithm simulates the Symbiotic interactions between two species, so that a species

searches for the most suitable one. Like other population-based algorithms, the SOS repeatedly creates 

a population of alternatives to find the optimal answer in the overall range of responses. The SOS

algorithm begins with an initial population called the ecosystem. In the initial ecosystem, a group

of creatures (decision variables) are randomly generated in the search space. Each living creature 

as a candidate for the solution that is associated with a particular fit is indicative of the degree of

compliance with the target (the value of the objective function). All of the metaheuristic algorithms

apply an alternate function to solve a problem in each iteration and create a new solution for

subsequent iteration. For example, a standard genetic algorithm uses two integration and mutation 

functions for this purpose. The Harmonic Search algorithm suggests three rules including learning 

memory, step-by-step, and random selection to create a new harmony. Three phases including worker 

bees, observer bees, and honey bee are introduced in the ABC algorithm to find the best source

http://10.1016/j.compstruc.2014.03.007
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Fig. 1. Flowchart of the SOS algorithm (Cheng et al. [1] ). 
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f food. In the SOS, the production of a new solution is governed by the recreation of biological

nteractions between the two existing ecosystems. Three phases of Mutualism, Commensalism and

arasitism are presented, which are similar to the biological interactive model in the real world. 

The identity of each interaction is defined based on the type of interaction. Thus, the two-way

nterest represents the phase of mutualism, the one-sided profit shows the phase of commensalism

nd the disadvantage of one side and the losses of the other represent parasitism. In all phases,

ach entity randomly interacts with another one. This process continues until the end of the process

reaching the maximum number of repetitions). The general trend of the algorithm is as follows: 

Initialization → Repetition → Mutualism → Commensalism → Parasitism → End process after

eaching the maximum number of iterations 

The general trend of the SOS algorithm is shown in Fig. 1 . 

utualism phase 

An example for the mutualism phase is the relationship between flowers and bees, from which

he two sides benefit. Bees fly among flowers, collecting nectar to make honey. This makes the bees
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beneficial. This activity also benefits the flowers because bees distribute pollen during the process, 

which facilitates pollination. The SOS algorithm recreates this trend in the mutualism phase. 

In the SOS, X i is the creature that matches the i th member of the environment (the decision

variable of the problem). The other one, which is X j , is chosen randomly to interact with Xi. Both

creatures take part in a mutual relationship with the purpose of the benefits of two-way survival in

the ecosystem. New solutions for X i , and X j are calculated based on the mutual collaboration between

X i , and X j using equations (1) and (2) : 

X inew 

= X i + rand ( 0 , 1 ) × ( X best − Mutual − V ector × B F 1 ) (1) 

X jnew 

= X j + rand ( 0 , 1 ) × ( X best − Mutual − V ector × B F 2 ) (2) 

Mutual − V ector = 

X i + X j 

2 
(3) 

In the above equations, rand (0, 1) is a vector of random numbers. The role of BF1 and BF2 is as

follows: 

In nature, some interactive relationships may have more profits for one side than on the other.

In other words, the creature A may receive more benefit than creature B. Meanwhile, creature B is

content with its benefits or it does not make significant gains. Here, the benefit factor (BF1, and BF2)

are defined randomly in Eqs. (1) and (2) . These factors represent the level of benefits available for

each creature, whether a creature benefits fully or partly from this relationship. 

Eq. (3) shows the cross vector and the communication characteristic between X i , and X j . A part

of the relationship ( X best -Mutual-Vector × BF1) refers to the mutual effect; the extent to which the

goal of survival will be achieved for both sides through this mutualism and collaboration. Under the

mutualism phase, all creatures are faced with increasing ability and adaptability in the environment. 

Some use the symbiotic relationship with another to increase the survival chance. The goal here is to

get X best because X best has the highest degree of compliance with the global optimum point. Therefore,

X best (global solution) is used to model the highest degree of adaptation as the final point and to

increase the fit of both creatures. Ultimately, the creature will adapt when its new fitness is better

than previous mutualism. 

Phase of commensalism 

Commensalism is the relationship between sticky fish, and shark. The sticky fish sticks to the shark

and eats the remaining food, so it gains benefit. The shark does not benefit from the sticky fish’s

activity, or it gets the least benefit. Similar to the two-way interaction mode, creature X j is randomly

selected from the ecosystem associated with the creature X i . In this situation, creature X i is trying to

get the most out of this relationship, while the X j does not benefit or endure harm in this regard. The

new solution Xi is calculated from (4) according to the commensalism symbiosis between creature X i 

and X j . According to the laws governing the nature, creature Xi only adapts when its new fitness is

better than its fitness before the interaction. 

The part (Xbest- X j ) refers to the benefit of X j to help X i to increase its chances of surviving in the

current ecosystem. 

X inew 

= X i + rand ( −1 , 1 ) ×
(
X best − X j 

)
(4) 

Parasitic phase 

An example of a parasitic phase is the Plasmodium parasite, which is used by the Anopheles

mosquito in human body, and human body plays the role of a host for it. While the parasite grows,

and breeds in the human body, the host may have malaria, and therefore die. 

In the SOS, the creature X i plays the role of Anopheles mosquitoes by creating an artificial parasite

called "parasite vector". The parasite vector is created in the search space with the multiplication

of creature X i , and then changes are made based on a random selection using a random number.
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reature X j is the host and is randomly selected from the ecosystem. The parasite vector attempts

o move X j in the ecosystem. Both creatures ( X i and X j X j ) are evaluated by measuring the degree

f fitness (the amount of their target function). If the parasite vector is more productive, it will kill

reature X j , and seize its position in the ecosystem, but if the fitness of X j is greater, X j will be immune

o the parasite, and the parasite vector will not have the ability to live in that ecosystem, and it will

ave no place in that ecosystem. 

ptimization model formulation 

The improved version of this model is first proposed by Bozorg Hadad et al. (2015), which is called

he Non-linear model of type 5 (NL5) [12] . The procedure of getting the NL5 model is explained below.

The NL5 method was originally offered by Chow (1973) [13] . 

S in = b 

(
I 

a 1 

) m 
n 1 

(5)

S out = b 

(
O 

a 2 

) m 
n 2 

(6)

Where a 1, and n 1 correspond to the depth – flow relation of the river upstream; a 2 and n 2 reveal

he depth – flow specifications of the downstream part. By substitution of S in, and S out , from Eqs. (1) ,

nd (2) in S = [ XS in + (1- X ) S out ] 
β , and simplifying the conclusion of the work of Eq. (3) is produced. 

S = K 

[
X 
(
C 1 I 

α1 
)

+ ( 1 − X ) ( C 2 O 

α2 ) 
]

β ( NL 5 ) (7)

K = b β (8)

α1 = 

m 

n 1 
(9)

α2 = 

m 

n 2 
(10)

C 1 = 

(
1 

a 1 

)α1 

(11)

C 2 = 

(
1 

a 2 

)α2 

(12)

Where I and O are the inflow and outflow rate (m 

3 /s), K is the reserve constant which is larger

han 0. X : The dimensionless weight coefficient indicating the relative effects of the input and output

ow and the value for the river is between 0 and 0.3. 

α1 , α2 and β: The exponential parameters that are zero. C 1 , and C 2 : are fixed parameters that are

ero. 

The Non-Linear of type 5 model has 7 parameters X, K, α1 , α2 , C 1 , C 2 , β . In this sense, one of the

ther Non-linear models is more complex. These parameters are optimized using optimization models.

imulation method of the suggested NL5 model 

This paper utilizes Tung’s (1985) [14] flood routing procedure, also employed by Geem (2006) [15] ,

o Simulate flood routing using the NL5 model. In the NL5 model, the observed inflow, computed

utflow, and computed storage at i th time period are I i , Ôi , and S i , respectively, Where i = 0, 1, 2…, N

enotes the simulation time periods. The steps of the proposed NL5 flood simulation model are as

ollows: 

Step 1: Assume values for the seven hydrologic parameters ( X, K, α1 , α2 , β , C 1 , C 2 ). 

S = K 

[
X( C I α1 ) + (1 − X )( C O 

α2 ) 
]β

i = 0 (13)
0 1 2 0 



6 S. Khalifeh, K. Esmaili and S.R. Khodashenas et al. / MethodsX 7 (2020) 101040 

Table 1 

Values of used algorithms parameters for problem. 

SOS (2014) parameter Max_iteration Dim SearchAgents - - 

Value 10 0 0 7 100 - - 

GA (Base) parameter Max_iteration Number of 

variables 

Number of 

genes 

Mutation rate Crossover rate 

Value 10 0 0 7 100 0.02 0.6 

HS (2002) parameter Max_iteration Number of 

variables 

Population Size HMCR PAR 

Value 10 0 0 7 100 0.2 0.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2: Compute the initial storage S 0 , letting the initial Computed outflow be equal to initial 

Observed inflow ( Ô0 = I 0 ): 

�S i 
�t 

= I i 

{ [ 
1 

C 2 (1 − X ) 

] (
S i 
K 

) 1 
β −

[ 
1 

C 2 (1 − X ) 

] [
X( C 1 I 

α1 ) 
]} 1 

α2 (14) 

Step 3: Compute the time rate of change of the storage volume at time period i (starting with

i = 1): 

S i = S i −1 + �t 

(
�S i −1 

�t 

)
(15) 

Step 4: Compute the storage at time i: 

Step 5: Compute the outflow at time period i: 

� 

O i = 

{ [ 
1 

C 2 (1 − X ) 

] (
S i 
K 

) 1 
β −

[ 
1 

C 2 (1 − X ) 

] [
X( C 1 I i −1 

α1 ) 
]} 1 

α2 (16) 

Notice that I i −1 rather than I i is used in Eq. (16) . 

Step 6: Increment the index i by 1 and repeat Steps (3)–(5) until the simulation has reached time

N. 

Objective function of the Karun River is as follows: 

Min (SSQ ) = 

N ∑ 

t=1 

( O t − O ct ) 
2 (17) 

In this paper, the objective function is considered as minimizing the sum of squares of residuals

(SSQ) between actual, and routed outputs according to Eq. (13) to estimate the optimal values of X,

K, α1 , α2 , β , C 1 and C 2 parameters in the Muskingum model. 

Where O c_t is the volume of flood discharge routed (computational) at time t , and N is the number

of times steps of the flood routing [10 , 11] . 

Case study 

In this paper, the Karun River were investigated as the case study. The Karun River are evaluated to

show the performance of modified NL5 by the SOS algorithm. The Karun River information includes

a time series river outflow, storage volume, and river inflow for 4 days (30 November 2008 to 3

December 2008). 

Fig. 2 shows the location of the Karun River in the geographical map and Fig. 3 displays the time

series hydrological dataset consists of river inflow, river observed outflow, and river outflow routed by

algorithms for the Karun River. 

Table 1 displays the values of used algorithms parameters for the flood routing problem. Table 2

explains the objective value of objective functions and the average CPU run time obtained by

algorithms for the Karun River problem. Fig. 4 shows the scatter of observational and simulated data

in Karun River. 
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Fig. 2. Location of the Karun River in the Ahvaz Province (SouthWestern of Iran). 

Fig. 3. Flood hydrographic diagrams, including inflow hydrographs, observational output hydrographs, and output hydrographs 

routed by meta-heuristic algorithms for a period of 4 days (from 30 November 2008 to 3 December 2008). 
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Table 2 

Analysis of the objective function of the problem with meta-heuristic algorithms for the Karun River. 

Number of runs SOS (2014) HS (2002) GA (Base) 

Optimal value CPU time (s) Optimal value CPU time (s) Optimal value CPU time (s) 

1 143052.02 4.17 142952.45 6.76 143252.35 11.21 

2 145364.14 3.98 153299.27 6.75 143299.23 11.56 

3 159842.01 3.84 162615.52 6.71 182615.36 15.47 

4 193287.34 3.75 145062.25 6.62 144962.45 11.57 

5 149826.79 3.65 154534.12 6.61 164534.12 11.59 

6 184792.45 3.77 173764.19 6.75 143764.18 12.28 

7 144561.33 3.82 173240.36 6.73 163240.56 11.59 

8 161268.71 4.05 203420.61 6.80 143400.62 11.42 

9 151269.30 4.02 186406.44 6.69 286506.84 14.49 

10 149879.91 3.99 157597.37 6.70 147617.36 11.35 

Best 143052.022 142952.45 143252.35 

Worst 193287.34 203420.61 28650684 

Average 158314.4 165289.3 166319.3 

Best CPU time (s) 3.65 6.61 11.21 

Fig. 4. Scatter of observational and simulated data in karun River. 

 

 

 

 

 

 

 

Results and discussion 

The nonlinear Muskingum model parameters estimation using trial, and error is a difficult 

process. Over the past two decades, different methods have been used to estimate these parameters.

Metaheuristic methods have been one of the solutions that have succeeded in estimating these 

parameters. In this study, the search algorithm for symbiotic creatures has been used to estimate

the parameters of the nonlinear Muskingum model. In order to study the performance of the search

algorithm for symbiotic creatures, the results of its implementation have been compared with other 

metaheuristic algorithms such as GA, and HS. For the purpose of estimating the optimal values

of nonlinear Muskingum parameters in flood routing, one case i.e. Karun River were investigated.

In order to evaluate the algorithms, the statistical indices, SSQ, and R2 were used. the statistical

parameters obtained for the Karun River by the SOS algorithm are SSQ (143052.02), and R 

2 (0.9986),
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Table 3 

Friedman rank test for meta-heuristic algorithms in the 

Karun River. 

Algorithm Mean rank Rank Std. Deviation 

SOS (2014) 1.92 1 320.58 

HS (2002) 1.98 2 322.05 

GA (Base) 2.08 3 330.56 
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t
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f

D

 

r

R

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[
[  

[  
hich indicates the proper functioning of the search algorithm for symbiotic creatures in estimating

he values optimum parameters of the nonlinear Muskingum model in flood routing. 

At the end, The Friedman-test results of the 3 algorithms are listed in Table 3 . The results of the

eer algorithms, and their rankings are listed in ascending order (the lower the better). It can be seen

rom Table 3 that SOS offers the best overall performance on the cost functions. 
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