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The effective action of string theory on a spacetime manifold with boundary has both bulk and boundary 
terms. We propose that both bulk and boundary actions, may be found by imposing the effective action 
to be invariant under the gauge transformations and under the string dualities. Using this proposal at the 
leading order of α′, the standard Gibbons-Hawking-York boundary term is reproduced.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

String theory is a quantum theory of gravity with a finite number of massless fields and a tower of infinite number of massive fields 
reflecting the stringy nature of the gravity. This theory on the spacetime manifolds with boundary is conjectured to be dual to a gauge 
theory on the boundary [1]. The string theory is usually explored by studying its effective action which includes the massless fields and 
their higher derivative terms. For the spacetime manifolds with boundary, the effective action has both bulk and boundary terms, i.e.,
Seff + ∂ Seff. At the leading order of the derivative, the bulk action should include the Einstein action and the boundary action should 
include the Gibbons-Hawking-York term [2,3]. These terms and their appropriate higher derivative corrections should be produced by 
specific techniques in string theory.

There are various approaches for calculating the bulk actions e.g., the S-matrix approach [4,5], the sigma-model approach [6,7], the 
Double Field Theory [8,9] and duality approach [10–15]. In the duality approach, the consistency of the effective actions with T- and 
S-duality transformations is imposed to find the higher derivative couplings. In the T-duality approach, in particular, the T-duality [16,17]
is imposed as a constraint on the reduction of the effective action on a circle which we call it Seff . That is, the effective action satisfies 
the following constraint:

Seff(ψ) − Seff(ψ
′) = TD (1)

where ψ represents all massless fields in the base space and ψ ′ represents their transformations under the T-duality transformations 
which are the Buscher rules [18,19] and their higher derivative corrections. On the right-hand side, TD represents some total derivative 
terms in the base space which become zero using the Stokes’s theorem because the base space has no boundary. This approach has been 
used in [20,21] to find the effective action of string theory at orders α′ 0, α′, α′ 2 in the bosonic string theory on the closed manifolds. 
In the superstring theory, there are S-duality as well as T-duality. Imposing S-duality as well as T-duality, one may find couplings in the 
superstring theory [12–14]. In imposing the S-duality constraint, one should first transform the couplings to the Einstein frame and then 
enforcing them to be invariant under the S-duality transformations. In transforming the metric from the string frame to the Einstein frame, 
one finds some total derivative terms that are again ignored for the closed spacetime.

It is desirable to extend the above techniques such that they would calculate the boundary action ∂ Seff as well. In this paper, we are 
going to illustrate that a simple extension in the duality approach [14] enables one to calculate both the bulk and the boundary actions.

When spacetime has boundary, the base space in the reduction of the spacetime on a circle, has also boundary. As a result, the total 
derivative terms on the right-hand side of (1) do not vanish using the Stokes’s theorem. The total derivative terms resulting from the 
T-duality of the bulk action should be cancelled by the T-duality of the boundary action. Calling the reduction of the bulk action on the 
circle Seff and the reduction of the boundary action on the same circle ∂ Seff , then the T-duality constraint on the effective action (1) is 
extended as the following:

Seff(ψ) + ∂ Seff(ψ) = Seff(ψ
′) + ∂ Seff(ψ

′) (2)
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Unlike (1), there are no total derivative terms in the base space. The above relation constrains both bulk and boundary actions.
Similarly the combination of bulk and boundary actions, i.e., Seff + ∂ Seff, should be written in a S-duality invariant form without 

ignoring any total derivative term in the bulk. In other words, using the Stokes’s theorem, the total derivative terms resulting from 
transforming the string frame metric to the Einstein frame metric, produce some boundary terms. They should be combined with the 
boundary action ∂ Seff to be written in a S-duality invariant form. This S-duality also constrains both bulk and boundary actions.

Using appropriate gauge transformations corresponding to the massless fields, one may write the most general couplings in Seff and 
in ∂ Seff, up to Bianchi identities and field redefinitions [22]. The arbitrary parameters in the gauge invariant couplings may be fixed by 
imposing the above duality constraints. We are going to examine this proposal to find the effective action of superstring theory at the 
leading order of derivatives, i.e., S0 + ∂ S0 and for NS-NS fields. In particular, we are going to show that the duality constraints are satisfied 
only when the Gibbons-Hawking-York term [2,3] is included.

We now construct the most general D-dimensional bulk action and (D − 1)-dimensional boundary action at the leading order of α′
which are invariant under the coordinate transformations and under the standard gauge transformation of B-field, i.e., Bμν → Bμν +∂[μλν] . 
Using the fact that in the bulk action the total derivative terms can be transformed to the boundary action by the Stokes’s theorem, one 
finds that in the bulk there are only three terms and in the boundary there are two terms, i.e.,

S0 = − 2

κ2

∫
dD xe−2�

√−G
(

a1 R + a2∇μ�∇μ� + a3 H2
)

. (3)

∂ S0 = − 2

κ2

∫
dD−1 ye−2�

√±g
(
a4Gμν Kμν + a5nμ∇μ�

)
(4)

where the three-form H is field strength of the two-form B , i.e., Hμνζ = ∂μBνζ + ∂ζ Bμν + ∂ν Bζμ . In the second equation, the plus (minus) 
sign in the square root apply for a spacelike (timelike) boundary, Kμν is the extrinsic curvature of the boundary and gαβ is induced 
metric, i.e.,

Kμν = ∇μnν = ∂μnν − �ζ
μνnζ

gαβ = ∂αxμ∂βxν Gμν = ∂xμ

∂ yα

∂xν

∂ yβ
Gμν (5)

where the boundary is specified by the functions xμ = xμ(yα) and nμ is the unit vector orthogonal to the boundary. Up to this point the 
parameters a1, a2, a3, a4, a5, are arbitrary and above actions are valid for any theory which has massless fields metric, B-field and dilaton. 
For string theory, however, these parameters should be fixed to specific numbers. We are going to find them by the T-duality constraint 
(2) and the S-duality constraint.

To impose the T-duality constraint on the bulk action, we have to consider a background with U (1) isometry. It is convenient to use 
the following background for metric, Kalb-Ramond and dilaton fields:

Gμν =
(

ḡab + eϕ ga gb eϕ ga

eϕ gb eϕ

)
, Bμν =

(
b̄ab + 1

2 ba gb − 1
2 bb ga ba

−bb 0

)
, � = φ̄ + ϕ/4 (6)

where ḡab, ̄bab, φ̄ are the metric, the B-field and the dilaton in the base space, and ga, bb are two vectors in this space. Inverse of the 
above D-dimensional metric is

Gμν =
(

ḡab −ga

−gb e−ϕ + gc gc

)
(7)

where ḡab is the inverse of the base metric which raises the index of the vectors. The Buscher rules [18,19] in this parametrization become 
the following linear transformations:

ϕ′ = −ϕ , g′
a = ba , b′

a = ga , ḡ′
ab = ḡab , b̄′

ab = b̄ab , φ̄′ = φ̄ (8)

There are higher derivative corrections to these transformations [23,20] in which we are not interested in this paper.
The proposal (2) at the leading order of α′ can be written as

S0(ψ) − S0(ψ
′) = ∂ S0(ψ

′) − ∂ S0(ψ) (9)

where S0 is the reduction of the bulk action (3) and ∂ S0 is the reduction of the boundary action (4) on the circle. Since the bulk actions 
on the left-hand side are (D − 1)-dimensional and the boundary actions on the right-hand side are (D − 2)-dimensional, one expects the 
left-hand side to be zero up to some boundary terms which should be cancelled by the T-duality transformation of the boundary actions 
on the right-hand side.

Reduction of different scalar terms in S0 is the following (see e.g., [20]):

e−2�
√−G ⇒ e−2φ̄

√−ḡ

R ⇒ R̄ − ∇̄a∇̄aϕ − 1

2
∇̄aϕ∇̄aϕ − 1

4
eϕ V 2 (10)

∇μ�∇μ� ⇒ ∇̄aφ̄∇̄aφ̄ + 1

2
∇̄aφ̄∇̄aϕ + 1

16
∇̄aϕ∇̄aϕ

H2 ⇒ H̄abc H̄abc + 3e−ϕ W 2
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where Vab is field strength of the U (1) gauge field ga , i.e., Vab = ∇̄a gb − ∇̄b ga , and Wμν is field strength of the U (1) gauge field ba , i.e.,
Wab = ∇̄abν − ∇̄bba . The three-form H̄ is defined as H̄abc = H̃abc − ga Wbc − gc Wab − gb Wca where the three-form H̃ is field strength of 
the two-form b̄ab + 1

2 ba gb − 1
2 bb ga in (6). The three-form H̄ is invariant under the Buscher rules (8) and satisfies an anomalous Bianchi 

identity [23].
Using the reductions in (10), one can calculate the reduced action S0(ψ) and its transformation S0(ψ ′) under the Buscher rules (2). 

Their difference then becomes

S0(ψ) − S0(ψ
′) = − 2

κ2

∫
dD−1x

√−ḡe−2φ̄
[
a2∇̄aφ̄∇̄aϕ − 2a1∇̄a∇̄aϕ

+(
1

4
a1 + 3a3)(e−ϕ W 2 − eϕ V 2)

]
(11)

One can easily observe that for the following relations between the parameters:

a3 = − 1

12
a1 ; a2 = 4a1 (12)

The right-hand side of (11) becomes a total derivative term in the base space, i.e.,

S0(ψ) − S0(ψ
′) = 4a1

κ2

∫
dD−1x

√−ḡ∇̄a(e−2φ̄∇̄aϕ) (13)

The general form of the Stokes’s theorem relating total derivative of a vector V A in a bulk to its value at the boundary is∫
M

ddx
√|G|∇A V A =

∫
∂M

dd−1 y
√|g|nA V A (14)

where G AB is the bulk metric, gI J is the induced metric and the boundary is specified by the functions xA = xA(yI ). In above relation, nA

is normal vector to the boundary. It is outward-pointing (inward-pointing) is the boundary is spacelike (timelike).
It is convenient to use the Gaussian normal coordinates in the Stokes’s theorem. Using the normal coordinates {z, y1, · · · , yD−2} in the 

base space, i.e.,

ds2 = ḡabdxadxb = σd2z + g̃ãb̃(z, yc̃)dyãdyb̃ ; or, ḡab =
(

σ 0
0 g̃ãb̃(z, yc̃)

)
(15)

where σ = ±1, and specifying the boundary as xa = (z∗, yã) where boundary is at z = z∗ , one can write the induced metric in the base 
space as

gãb̃ = ∂xa

∂ yã

∂xb

∂ yb̃
ḡab

= ∂z∗
∂ yã

∂z∗
∂ yb̃

σ + ∂ yc̃

∂ yã

∂ yd̃

∂ yb̃
g̃c̃d̃

= g̃ãb̃(z∗, yc̃) (16)

The total derivative term in the base space then can be written as the following boundary term:

S0(ψ) − S0(ψ
′) = ±4a1

κ2

∫
dD−2 y

√
±g̃(z∗, yã)e−2φ̄∇̄aϕna (17)

where na = (1, 0, · · · , 0) is the outward-pointing unit vector orthogonal to the boundary, the plus (minus) sign is when the boundary is 
spacelike (timelike).

We now turn to the T-duality constraint on the boundary term (4). In the D-dimensional Gaussian normal coordinates {z, y1, · · · , yD−1}, 
the bulk metric takes the form

ds2 = Gμνdxμdxν = σd2z + γαβ(z, yδ)dyαdyβ ; or, Gμν =
(

σ 0
0 γαβ(z, yδ)

)
(18)

Inverse of this metric is

Gμν =
(

σ 0
0 γ αβ(z, yδ)

)
(19)

The unit vector orthogonal to the boundary in the normal coordinates is nμ = (1, 0, . . . , 0). In using the Stokes’s theorem in the base 
space, we have specified the boundary of the base space as xa = (z∗, yã), hence, the boundary in the original D-dimensional spacetime 
is specified as xμ = (z∗, yδ) where yδ = (yã, y) and y is the circle along which we have used the T-duality transformation of the bulk 
action. The induced metric in (4) then becomes

gαβ = ∂xμ

∂ yα

∂xν

∂ yβ
Gμν

= γαβ(z∗, yδ) (20)
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Since one of the yδ directions is the circle along which we have used the T-duality transformation in the bulk action, the reduction of the 
boundary metric and its inverse are

γαβ =
(

g̃ãb̃ + eϕ gã gb̃ eϕ gã
eϕ gb̃ eϕ

)
; γ αβ =

(
g̃ãb̃ −gã

−gb̃ e−ϕ + gc̃ gc̃

)
(21)

The reduction of different terms in the boundary action (4) then becomes

e−2�√±g ⇒ e−2φ̄
√±g̃

Gμν Kμν ⇒ ḡab K̄ab + 1

2
na∇̄aϕ

nμ∇μ� ⇒ na∇̄aφ̄ + 1

4
na∇̄aϕ (22)

where K̄ab is extrinsic curvature of the boundary in the base space, and we have used the fact that in the Gaussian normal coordinate 
na = (1, 0, . . . , 0). The reduction of the boundary action (4) then becomes

∂ S0(ψ) = − 2

κ2

∫
dD−2 y

√
±g̃(z∗, yã)e−2φ̄

[
a4(ḡab K̄ab + 1

2
na∇̄aϕ) + a5(n

a∇̄aφ̄ + 1

4
na∇̄aϕ)

]
Then under the Buscher rules (8), it transforms as

∂ S0(ψ) − ∂ S0(ψ
′) = − 2

κ2

[
a4 + 1

2
a5

]∫
dD−2 y

√
±g̃(z∗, yã)e−2φ̄na∇̄aϕ (23)

where we have used the fact that na is invariant under the T-duality.
Replacing the T-duality transformations of the bulk action, i.e., (17), and the T-duality transformation of the boundary action, i.e., (23), 

into the constraint (9), one finds

a4 = ±2a1 − 1

2
a5 (24)

This relation as well as the relations in (12) fixes the effective action up to two parameters a1, a5, i.e.,

S0 + ∂ S0 = −2a1

κ2

[∫
dD x

√−Ge−2�

(
R + 4∇a�∇a� − 1

12
H2

)
± 2

∫
dD−1 y

√±ge−2�K

]

−2a5

κ2

∫
dD−1 ye−2�

√±g

(
−1

2
K + nμ∇μ�

)
(25)

While there is only one bulk action, there are two boundary actions. In the bosonic theory there is no further constraint that should be 
imposed to fix the parameter a5. In the superstring theory however there is still another duality which should be imposed.

We now impose the S-duality constraint for D = 10 to fix a5. To show that the bulk action for type IIB superstring theory can be 
rewritten in S-duality invariant form, one should first change the string frame metric to the Einstein frame metric, i.e., Gμν = e�/2G E

μν . 
Ignoring a total derivative term resulting from this change of the frames, one finds that after including R-R couplings in which we are 
not interested in this paper, the Einstein frame couplings can be written in a S-duality invariant from (see e.g., [24]). However, for the 
spacetime manifolds with boundary, the total derivative term must be cancelled with the corresponding terms in the boundary. In fact 
the total derivative term is produced by transforming the scalar curvature in the bulk action to the Einstein frame, i.e.,

R → e−�/2
(

R − 9

2
∇μ∇μ� − 9

2
∇μ�∇μ�

)
(26)

The second term above, when replacing it into the bulk action (25), produces the following total derivative term in the Einstein frame:

9a1

κ2

∫
d10x

√
−G E∇μ∇μ� = ±9a1

κ2

∫
d9 y

√
±g E∇μ�nE

μ (27)

where on the right-hand side we have used the Stokes’s theorem as well. In this equation, nE is unite vector orthogonal to the surface in 
the Einstein frame. This Einstein frame boundary term is not invariant under the S-duality.

To fully study the S-duality of the boundary terms, we should also transform the boundary terms in (25) to the Einstein frame. Different 
terms in this action transform as the following:

√±g → e9�/4
√

±g E

K → e−�/4(K E + 9

4
nE
μ∇μ�)

nμ∇μ� → e−�/4nE
μ∇μ� (28)

where K E = ∇μ(nE )μ is the trace of the extrinsic curvature of the boundary in the Einstein frame, and we have used the fact that the 
unite vector nμ in the string frame and in the Einstein frame should be related as nμ = e−�/4(nE )μ , because their lengths are one in both 
frames, i.e., Gμνnμnν = 1 = G E

μν(nE )μ(nE )ν .
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The total boundary terms in the Einstein frame are then

2

κ2

∫
d9 y

√
±g E

[
(∓2a1 + 1

2
a5)K E + a5

8
∇μ�nE

μ

]
(29)

The first term is invariant under S-duality. On the other hand, it has been observed in [25] that the odd number of dilaton terms in the 
Einstein frame can not be combined with the corresponding R-R scalar to be written in a S-duality invariant form. Hence the S-duality 
constrains the coefficient of the last term above to be zero, i.e.,

a5 = 0 (30)

Therefore, the NS-NS part of the low energy effective action of type II string theories on the spacetime manifolds with boundary can be 
fixed by the gauge transformations and by the string duality, up to an overall factor a1. To have the standard Einstein term, this parameter 
must be a1 = 1 as well. So the effective action is

S0 + ∂ S0 = − 2

κ2

∫
dD x

√−Ge−2�

(
R + 4∇a�∇a� − 1

12
H2

)
∓ 4

κ2

∫
dD−1 y

√±ge−2�K (31)

where K is the trace of the extrinsic curvature. For zero dilaton and B-field, it is the standard action that its boundary term has been 
found by York, Hawking and Gibbons [2,3] by other means. It would be interesting to extend the above calculations to the R-R couplings 
as well as to the higher orders of α′ .
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