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A B S T R A C T   

The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) mission was 
launched on 31st January 2015, with the aim of providing global soil moisture maps at 9 km spatial resolution 
by combining L-band radar and radiometer observations. However, after the SMAP radar became inoperable, 
NASA decided to utilize the Sentinel 1A/1B C-band SAR data in its place. The new version of baseline brightness 
temperature (Tb) downscaling algorithm for SMAP is tested using L-band airborne data to evaluate the cap
abilities of the C-band Sentinel-1A SAR relative to L-band radar data in downscaling the SMAP Tb for achieving 
high resolution brightness temperature. In this study, the downscaling algorithm used L-band airborne Synthetic 
Aperture Radar (SAR) backscatter (σ) collected from the fifth Soil Moisture Active Passive Experiment (SMAPEx- 
5) in south-eastern Australia to downscale 36 km L-band SMAP radiometer Tb pixels to 3 km and 9 km. The 
downscaling results were then compared with the published results using Sentinel-1A C-band backscatter, and 
evaluated against airborne 1 km resolution L-band passive microwave brightness temperature collected from 
SMAPEx-5. The results show that for vertical polarization the average Root Mean Square Error (RMSE) of 
downscaled Tb when compared with reference airborne Tb across 4 days at 9 km resolution were 4.9 K for L- 
band and 6.0 K for C-band, and increased to 9.3 K for L-band and 9.6 K for C-band at 3 km spatial resolution. 
Moreover, the correlation coefficient (R) of downscaled and reference Tb across the 4 days was 0.92 for L-band 
and 0.88 for C-band at 9 km, decreasing to 0.75 for L-band and 0.72 for C-band at 3 km spatial resolution. 
Accordingly, the RMSE increased and the correlation coefficient decreased when using C-band radar data in 
place of that at L-band. However, overall there is expected to be only a slight decrease in performance of the 
downscaling algorithm by using the Sentinel 1A data in place of the SMAP radar.   

1. Introduction 

Soil moisture is a fundamental parameter for monitoring the global 
water, energy and carbon cycles between the land surface and the at
mosphere, especially in hydrology, meteorology and agriculture 
(Falloon et al., 2011; Seneviratne et al., 2010). Due to the necessity to 
access soil moisture observations globally, remote sensing technology 
has been adopted as an appropriate alternative to ground soil moisture 
measurement approaches (Entekhabi et al., 2010; Kerr et al., 2012). 

The most widely accepted method to measure near surface soil 
moisture is passive microwave remote sensing at L-band, as it has the 
capability of observing data in all weather conditions, a direct re
lationship between soil moisture and brightness temperature, and 

minimal vegetation, surface roughness and atmospheric effects (Ulaby 
et al., 1981). While passive microwave remote sensors have the cap
ability to estimate soil moisture accurately (Colliander et al., 2017), the 
spatial resolution is approximately 40 km, which is not adequate for 
hydrometeorology, hydrology or agricultural applications (Leese et al., 
2001). The greatest advantage of active microwave remote sensing is its 
high spatial resolution (Torres et al., 2012). However, it is hard to in
terpret the radar data for soil moisture due to its strong dependence on 
vegetation and surface roughness (Jagdhuber et al., 2019a). Moreover, 
the revisit time of such high resolution satellites is not able to meet the 
requirements of global coverage with 2 to 3 day temporal repeat 
(Walker and Houser, 2004). Accordingly, microwave radiometer 
downscaling algorithms have been developed to disaggregate the 
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coarse resolution observations using medium resolution ancillary, op
tical, radiometer or radar data (Jian et al., 2017; Sabaghy et al., 2018). 
However, there are some variations between these downscaling 
methods, with each having its own advantages and disadvantages. 
Generally, the oversampling-based downscaling techniques are more 
accurate in terms of RMSE than either the radiometer, radar or optical 
based techniques, due to their spatially detailed input requirements on 
soil surface attributes (Sabaghy et al., 2020; Sabaghy et al., 2018). 

NASA's Soil Moisture Active Passive (SMAP) mission was launched 
on the 31st January 2015, with the explicit purpose of using L-band 
radar backscatter observations at 3 km resolution to downscale the 
~40 km radiometer data (Entekhabi et al., 2010). Several active passive 
downscaling approaches have been proposed, such as the “old” (Das 
et al., 2014) and “new” (Das et al., 2019) versions of the SMAP baseline 
downscaling algorithm, SMAP “optional” downscaling algorithm (Das 
et al., 2011), “change detection” methods (Narayan et al., 2006; Piles 
et al., 2009), and “Bayesian merging” method (Xiwu et al., 2006). 
Unfortunately, on the 7th July 2015, the SMAP radar encountered a 
failure and became unworkable. Hence, the SMAP project has explored 
a number of alternative approaches to recover the ability of SMAP to 
provide high resolution soil moisture estimates, including the use of 
active microwave observations from other satellites such as the Co
pernicus Project Sentinel-1A/1B C-band (5.405 GHz) synthetic aperture 
radar (SAR) (Yueh et al., 2016). Sentinel-1 has a similar orbit config
uration to SMAP, overlapping its swath with an acceptable time dif
ference and providing both the co-polarization and cross-polarization 
measurements needed for the SMAP active passive algorithm (Das et al., 

2018). Despite some limited evaluation of the SMAP/Sentinel-1 pro
ducts, the effect of replacing the designed L-band radar data with C- 
band data has not been made clear. Notably, the wavelengths at L-band 
and C-band are different, strongly affecting the backscatter response 
and penetration depth of the radar signal. L-band, having a longer 
wavelength than C-band, penetrates more easily through the vegetation 
canopy and interacts with a deeper layer of soil. Thus, the use of C-band 
in place of L-band may cause several limitations and decrease the ac
curacy, especially over vegetated areas. Accordingly, this study tested 
the assumption that the L-band backscatter data required by the base
line brightness temperature downscaling algorithm of the SMAP mis
sion (Das et al., 2018) can be replaced by the C-band backscatter data 
provided by Sentinal-1A. Importantly, it makes an assessment of the 
accuracy impact on the downscaling algorithm by contrasting the C- 
band results with those from coincident L-band observations collected 
over the semi-arid region of the Soil Moisture Active Passive Experi
ments (SMAPEx-5) airborne field campaign (Ye et al., 2020). The 
brightness temperature of SMAP, downscaled from 36 km to 3 km and 
9 km, were subsequently evaluated against airborne brightness tem
perature observations collected at 1 km resolution from SMAPEx-5. 

2. Study area and data set 

2.1. Study area 

The Soil Moisture Active Passive Experiments (SMAPEx) comprise a 
series of five airborne field campaigns over an approximately six year 

Fig. 1. Overview of the SMAPEx-5 study area in the Murrumbidgee catchment overlain with the Digital Elevation Model (DEM) and the SMAP EASE-2 36-km grid 
(top panel); Location and blow up of the selected SMAP EASE-2 36-km pixels (1 & 2), including the 9 km and 3 km scales overlain with the land use map (bottom 
panel). 
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time frame (2010 to 2015) ((Panciera et al., 2014; Ye et al., 2020). 
These campaigns were designed to develop the algorithms to interpret 
the NASA SMAP mission soil moisture observations before launch and 
validate the SMAP soil moisture products after launch. To achieve these 
objectives, SMAPEx collected airborne data similar to SMAP observa
tions together with in situ soil moisture and ancillary information. The 
fifth campaign (SMAPEx-5), which was used in this study for evaluating 
the use of C-band radar in place of L-band radar for SMAP downscaling, 
was undertaken in the Austral spring from 6th to 28th September 2015. 
During this campaign, airborne active and passive microwave data and 
field measurements coincident with the overflight of the SMAP and 
Sentinel-1 satellites were acquired. Detailed information on the ex
perimental data set is available in (Ye et al., 2020), so only a summary 
of the pertinent information is provided here. 

The selected study area in this paper includes two 36 km EASE-2 
Grid SMAP pixels (36 km × 36 km nominal resolution), located in the 
Yanco area of the Murrumbidgee River catchment (34.67°S, 35.01°S, 
145.97°E, 146.36°E) in south-eastern Australia (Fig. 1). The selected 
site (pixel 1 and 2) was chosen to evaluate the SMAP baseline down
scaling algorithm by reason of its flat topography, variability in vege
tation and soil, and availability of required satellite and airborne data 
(Ye et al., 2020). This site is located in a semi-arid region having 
minimal changes in elevation, with predominantly irrigated and dry 
cropping and grazing land use. As can be seen in Fig. 1, the middle and 
western parts of the selected area are dominated by grazing and irri
gated croplands, and the eastern part are covered mostly by dryland 
cropping, including a large wetland in the center of pixel 2 and a water 
body in pixel 1. Some woodlands and conservation areas exist along the 
Murrumbidgee River. There are also some forest areas in the north east 
of pixel 2, and some urban area mostly in pixel 2. Accordingly, the 
pixels contain typical heterogeneous land cover conditions. During the 
SMAPEx-5 campaign, the soil moisture varied from saturated to dry, 
providing data for an ideal dry-down period. In addition, the cropping 
and grazing areas were covered mainly by wheat and dense grasses, 
respectively. The SMAPEx-5 campaign was conducted in the Austral 
spring season, having high growth rates of vegetation with vegetation 
water content up to ~2 kg/m2 (Ye et al., 2019). 

2.2. Campaign data set 

The SMAPEx airborne instruments for L-band passive and active 
microwave remote sensing measurement included the Polarimetric L- 
Band Multibeam Radiometer (PLMR) and the Polarimetric L-band 
Imaging Synthetic Aperture Radar (PLIS), at 1.41 GHz and 1.26 GHz, 
respectively. The airborne data was scheduled to be collected three 
times per week over the three weeks long SMAPEx-5 experiment period, 
including eight flights in total. These flights were coincident with SMAP 
and several Sentinel overpasses, providing airborne radar and radio
meter data over several of the SMAP radiometer 3 dB footprints. The 
passive radiometer brightness temperature observations collected using 
PLMR measured both v and h (vertically and horizontally) polarized 
emissions at nominal incidence angles of 7°, 21.5° and 38.5° on each 
side of the flight track at 1 km spatial resolution. Flights were under
taken between the local time of 3 AM and 9 AM, coincident with the 
nominal 6 AM descending SMAP morning overpass time. The calibra
tion of PLMR was confirmed before and after each flight. The calibra
tion accuracy for both horizontal and vertical polarization was less than 
1.4 K, calculated by considering the sky and microwave absorber as 
cold and warm targets, respectively. 

Incidence angle normalization was undertaken for the PLMR ob
servations to the outer beam angle (38.5°), being close to the SMAP 40° 
incidence angle by the approach of Ye et al. (2015). The approach uses 
a 2-D Cumulative Distribution Function (CDF) matching technique to 
normalize the microwave observations (brightness temperature or 
backscatter) from the original incidence angles to a reference angle. The 
same cumulative distribution of observations at the original and 

reference incidence angles are considered to force the CDF of the nor
malized observations of the original observations to that of the re
ference observations under the assumption of equivalent land surface 
heterogeneity. Based on the investigation by Wu et al. (2015), the ac
curacy of incidence angle normalization through this CDF approach was 
2.4 K for PLMR brightness temperature at 1 km resolution. Moreover, a 
polynomial regression method, which uses the ratio between the soil 
temperature of the actual time and the nominal 6 AM time, was applied 
to thermally correct the PLMR observations to the exact descending 
SMAP overpass time. The accuracy of the PLMR brightness temperature 
thermal correction is around ± 1.5 K (Ye et al., 2020). 

The active radar surface backscatter observations were collected 
using PLIS at hh, hv, vh and vv polarizations. PLIS is Australia's only L- 
band Polarimetric airborne interferometric SAR system with the ability 
of measuring data at high temporal and spatial resolution (Zhu et al., 
2018). The PLIS antennas were mounted at an angle of 30° from the 
horizontal to either side of the aircraft to obtain push broom imagery 
over a cross track swath of ± 45°, providing high resolution imagery 
across an ~2 km swath on either side of the flight track. Due to the SAR 
technology, no high resolution data is available for the approximately 
2 km swath immediately under the flight track. During the SMAPEx-5 
airborne measurements, parallel flight lines were used for SMAP foot
print coverage flights over the target area, with the distances between 
flight lines designed to support the full coverage of PLMR. Accordingly, 
there are PLIS coverage gaps in the middle of the swath which needed 
to be overcome. Therefore, the impact of these gaps on the aggregated 
PLIS data was investigated. For this purpose, vv-polarization PLIS 
backscatter measured during the SMAPEx-3, where there was full radar 
coverage over a similar part of the study area, was analysed to under
stand the impact of the gaps. 

In order to prepare the PLIS observations for evaluation of the 
downscaling methods, data collected during the SMAPEx-5 campaign 
were processed in terms of calibration, georegistration and angle nor
malization. The processing steps are described as follows. For calibra
tion, two type of targets were used: i) a large forest area for polarimetric 
calibration once a day and ii) artificial reflectors including trihedral 
passive radar calibrators (PRCs) and polarimetric active radar cali
brators (PARCs). The accuracy of calibration was obtained as 0.58 dB. 
The calibration process and algorithms have been completely described 
in Zhu et al. (2018). Georegistration of the PLIS images was performed 
using the Landsat-8 operational land imager (OLI) image acquired on 
the 30th September 2015 as reference. In addition, the normalization of 
PLIS incidence angle to the SMAP 40° was performed using the same 
approach as for the PLMR data (Ye et al., 2015). The accuracy of angle 
normalization for PLIS observations was found as ~0.8 dB at 1 km 
resolution (Wu et al., 2015). Prior to aggregation of PLIS backscatter 
observations from high resolution (10 m) to the required spatial re
solutions (1, 3 and 9 km), hybrid spatial filtering (including a median 
filter and a filter based on standard deviation thresholds developed at 
NASA JPL) was applied to eliminate the effects of urban areas, con
structions, and water bodies from the PLIS measurements (replicating 
the processing applied to the Sentinel-1 data). 

Briefly, the hybrid spatial filtering was applied considering four 
steps: a) for each 1 km2 grid cell within a given SMAP pixel the mean 
(mi) and the standard deviation (si) of the PLIS backscatter was calcu
lated, i = 1…NC, where NC is the number of 1 km2 grid cells within the 
SMAP pixel. b) The mean standard deviation (SM) over all the si with 
i = 1…NC was computed. c) For all 1 km2 grid cells with si  >  SM, a 
moving window median filter with sample window size of 9 × 9 was 
considered. d) For all 1 km2 cells with si ≤ SM, all PLIS values out of 
range [mi − SM: mi + SM] were eliminated. A more detailed descrip
tion of the filtering process can be found in Das et al. (2019). 

The original SMAPEx-5 spatial resolutions of the PLMR brightness 
temperature and PLIS backscatter observations were 1 km and 10 m, 
respectively. However, for use in this study the PLIS data have been 
aggregated to 36 km, 9 km, 3 km and 1 km by linear averaging of pixels 
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within the specific grid. In addition, the PLMR data were upscaled to 
3 km and 9 km by the same method to evaluate the SMAP brightness 
temperature downscaling algorithm at the desired spatial resolutions. 
As the PLIS observations have been averaged from 10 m to 1 km, and 
then up to 3 km and 9 km for both PLIS and PLMR observations, the 
expectation is that the errors described earlier from normalization 
would be further reduced, and so those would be conservative worst 
case estimates. 

2.3. Satellite data set 

Sentinel-1 was the first of the Copernicus Project satellite con
stellation commissioned by the European Space Agency, composed of 
two separate satellites (A and B), launched on 3rd April 2014 and 25th 
April 2016, respectively. Note that only Sentinel-1A data correspond to 
the study period used in this paper. The operational band of the 
Sentinel SAR sensors is C-band (5.405 GHz) with the interferometric 
wide swath (IW) acquisition mode being the type of data used for 
providing the backscatter observations to the active passive down
scaling algorithm. NASA has utilized this sentinel data to produce a new 
product, SMAP L2_SM_SP (Level 2 SMAP/Sentinel Active Passive Soil 
Moisture). The SMAP L2_SM_SP product is derived using the Sentinel-1 
radar backscatter from L2_S0_S1 (aggregated at 1 km resolution on the 
EASE-2 grid) and the 9 km gridding of the enhanced radiometer 
brightness temperature available in the SMAP L2_SM_P_E products. A 
complete description can be found in Das and Dunbar (2017), with the 
products being available at https://earthdata.nasa.gov. In this paper, 
the downscaled brightness temperature of the SMAP L2_SM_SP product 
was compared with the downscaled brightness temperature achieved 
from the “new” baseline downscaling algorithm of Das et al. (2019) at 
3 km and 9 km resolution using L-band radar data from PLIS. Finally, 
the brightness temperature (Tbv(c)) values of SMAP L2_SM_P, which are 
the average of fore- and aft-looking brightness temperature on the 
36 km EASE-2 grid cell, were used as the original base data in the 
downscaling algorithm. 

2.4. Experiment data set 

Table 1 shows details on characteristics of the different sensors used 
in this study. Based on the availability of the Sentinel-1A data 4 days of 
the SMAPEx-5 campaign were selected, being September 9 (D1), 14 
(D3), 22 (D6), 27 (D8), 2015, (“D” represents flight “Day”). The si
mulated SMAP data stream used in this study is shown in Fig. 2. Ac
cording to previous research, σvv has shown the best correlation with Tbv 

(Wu et al., 2014). Moreover, Chan et al. (2016) found that Tbv showed 
the best soil moisture retrieval performance and so was used as the 
post-launch baseline retrieval algorithm. Therefore, the vertical 

polarization has been utilized for this research. 
The SMAPEx-5 airborne flight schedule had been arranged to align 

with the overpasses of SMAP on multiple days as seen in Table 1. To 
minimize the effect of soil temperature variations from that of the 
SMAP overpass, each flight started at local time of approximately 
2:20 AM and finished at approximately 9:40 AM, aligning the centre 
flight time with the SMAP overpass time of 6:00 AM (Ye et al., 2020). 
While SMAP and Sentinel-1 were not designed to have synchronized 
overpasses, SMAP and Sentinel-1 had the same overpasses on days D6 
and D8. Moreover, there was a Sentinel-1 overpass within +24 h of 
SMAP observations on D1 and D3, allowing them to also be used. 

2.5. Impact of coverage gaps 

As mentioned earlier, the PLIS coverage includes gaps over the 
SMAPEx-5 flight area, located in the middle of the PLMR swaths. A 
sample of PLIS coverage gaps can be seen in Fig. 3. In order to in
vestigate the impact of gaps on the aggregated SMAPEx-5 PLIS data, the 
PLIS backscatter measured during the SMAPEx-3 were analysed, having 
full radar coverage over a part of the study area with similar conditions. 
A total of three of the 9 flights from SMAPEx-3 were used for this 
purpose, including one at the start, middle and end of the campaign 
(September 4 (D1), 15 (D5) and 23 (D9), 2011). This data was used to 
represent a comparison of the backscatter for the case of full coverage 
without gaps and the coverage with the SMAPEx-5 gaps imposed. As 
shown in Fig. 3, the original 10 m resolution PLIS data from SMAPEx-3 
had the SMAPEx-5 gaps applied and then aggregated to 3 km resolu
tion. It can be seen from the difference plot that the values of back
scatter data at full coverage and the coverage with gaps at 3 km re
solution had approximately zero bias and an RMSE of 0.2 dB, which was 
less than the calibration uncertainty of PLIS. The results for the other 
two dates is included in Fig. 4, with a correlation between the original 
and gap-imposed data being 0.98. These results demonstrate that the 
gaps should not adversely impact the accuracy of using PLIS backscatter 
data for downscaling at 3 km and 9 km resolutions, and the impact of 
this can therefore be ignored. 

3. Methodology 

The original SMAP active passive baseline downscaling algorithm 
(Das et al., 2018; Das et al., 2014; Entekhabi et al., 2014) assumes a 
near-linear relationship between coarse resolution brightness tem
perature (Tb, in kelvin) and fine resolution backscatter coefficient (σ, in 
decibel) at the same incidence angle and time. The SMAP brightness 
temperature is downscaled through this relationship, and then the re
trieved soil moisture obtained using the downscaled brightness tem
perature. This algorithm utilizes two parameters, β [K/dB] and Г [dB/ 

Table 1 
Summary of the original data set characteristics.           

Sensor Band Frequency Polarization Incidence angle Spatial resolution of product Revisit frequency Overpass dates used Accuracy  

SMAP radiometer L-band 1.4 GHz h & v 40° 36 km 2–3 days 09/09/2015 
14/09/2015 
22/09/2015 
27/09/2015 

1.3 K 

Sentinel-1A C-band 5.405 GHz hh, vv, hh + hv & vv + vh 20°–45° 5 × 20 m 1–2 weeks 10/09/2015 
15/09/2015 
22/09/2015 
27/09/2015 

1 dB 

PLMR L-band 1.4 GHz h & v 17°, 21.5° & 38.5° 1 km 2–3 days 09/09/2015 
14/09/2015 
22/09/2015 
27/09/2015 

1.4 K 

PLIS L-band 1.26 GHz hh, vv, hv & vh 15°–45° 10 m 2–3 days 09/09/2015 
14/09/2015 
22/09/2015 
27/09/2015 

0.58 dB 
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dB]. The parameter β of the original baseline downscaling algorithm 
depends on the vegetation cover conditions, vegetation type and sur
face roughness. This parameter is supposed to be constant during time 
and also homogenous over each 36 km grid cell. It is estimated by re
gressing the brightness temperature and backscatter observations at 
coarse resolution (C) from multiple overpasses. The parameter Г in
dicates the vegetation and roughness heterogeneity of each radiometer 
pixel, and is determined using regression between aggregated co-po
larized and cross-polarized radar backscatter for any particular 

overpass at the finest considered resolution (1 km in this research) (Das 
et al., 2018). 

3.1. The SMAP active passive baseline downscaling algorithm 

NASA recently introduced a “new” version of their downscaling 
algorithm with important changes in implementation (Das et al., 2019). 
In the new algorithm, an emissivity procedure was selected to replace 
the brightness temperature procedure, and the radar observations used 

Fig. 2. Data sets used including SMAP L2_SM_P 36 km vertical brightness temperature (Tbv), SMAPEx5 1 km PLMR vertical brightness temperature (Tbv), PLIS vv 
backscatter at 3 km and 9 km (σvv), and Sentinel-1A vv backscatter at 3 km and 9 km (σvv). Data are for pixel 1 & 2 across four days of the SMAPEx5 experiment 
(September 9 (D1), 14 (D3), 22 (D6) and 27 (D8), 2015). 

Fig. 3. The original SMAPEx-3 PLIS vv-polarization backscatter data at 10 m spatial resolution and with gaps imposed over D1 as an example. Data aggregated to 
3 km with and without gaps, and the difference plot between backscatter data at full coverage and coverage with gaps at 3 km resolution is shown. 
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in linear scale [−] rather than dB. The changes in implementation are 
intended to make this algorithm more suitable and efficient to Sentinel- 
1 than the “old” version because of differences in the overpass times of 
the radar and radiometer instruments. The reduced repeat interval of 
the Sentinel-1 also required other changes. Parameter estimation 
through time series was seen as inappropriate, as the brightness tem
perature and backscatter time series is too sparse, meaning there could 
be significant variations in vegetation cover and surface roughness 
conditions over the regression time period for β. In order to resolve the 
algorithm's reliance on sparse time series data, the snapshot retrieval 
approach of Jagdhuber et al. (2018) was adapted for estimating the 
covariation parameter between the SMAP brightness temperature and 
the radar backscatter observation. Accordingly, this new version of al
gorithm is used to provide the SMAP-Sentinel-1 products. 

Since only four time instances are available in this study and to be 
consistent with the official SMAP-Sentinel product, the snapshot re
trieval approach is also applied here to the L-band data from PLIS. This 
algorithm can be written as (Jagdhuber et al., 2018): 

= + +T M
T C

T
C M C C M T( )

( )
( ). {[ ( ) ( )] . [ ( ) ( )]} .bp j

bp

s
pp j pp pq pq j s

(1) 

where Tbp(C) [K] is the coarse resolution brightness temperature 
(~36 km), and Ts [K] is the land surface soil temperature. The radar 
backscatter aggregated to coarse resolution is σpp(C) [−] and σpq(C) 
[−], being the co-polarized and cross-polarized backscatter in linear 
scale values, respectively. The radar backscatter σpp(Mj) [−] and σpq 

(Mj) [−] are at the desired medium resolution (3 km or 9 km, in this 
case). Tbp(Mj) [K] is the disaggregated brightness temperature at 
medium resolution. 

As shown in Eq. (1), the “new” SMAP baseline downscaling algo
rithm utilizes two parameters, β′(C) and Г, which completely control 
the brightness temperature disaggregation performance (Das et al., 
2019). The parameter β′(C) [−] is calculated based on the snapshot 
approach at each coarse (C) grid cell for each coincidence between the 
SMAP and SAR observation, and solely uses the remote sensing ob
servations for retrieving the active passive microwave covariation. 
Moreover, it is dependent on land surface soil temperature and vege
tation radiative transfer properties (Jagdhuber et al., 2018) and com
puted as (Jagdhuber et al., 2019a): 

=
+

C
S M µ S M

( )
( (1 )(1 ))

| ( )| . | ( )|

Tb C
T

pp j pp pq pq j

( )

2 2

p
S

(2) 

where ω [−] is the effective scattering albedo, = e cos [−] is the 
vegetation loss term, including τ [−] as the vegetation opacity and θ 
[rad] as the incidence angle (in this study the SMAP angle of 40°) 
(Jagdhuber et al., 2018). The τ [−] parameter is an indicator of the 
vegetation cover characteristics, such as the vegetation water content 
(VWC). The numerator of Eq. (2) comprises passive microwave mea
surements and the physical land surface temperature, resulting in the 
measured surface emission minus the vegetation correction term. The 
second term of the numerator, known as the vegetation correction term, 
includes γ as the vegetation loss term plus (1 − ω)(1 − γ) as the ve
getation emission term. The denominator, which is based on the active 
microwave observations, can be calculated through subtraction of the 
vegetation volume scattering from the co-polarized backscatter 
(Jagdhuber et al., 2019a). |Spp(Mj)|2 is the co-polarized backscatter 
such that |Spp(Mj)|2 ≡ σpp(Mj), and |Spq(Mj)|2 is the cross-polarized 
backscatter such that |Spq(Mj)|2 ≡ σpq(Mj). The vegetation volume 
scattering includes the cross-polarized backscatter and the projection of 
the cross-polarized backscatter onto the co-polarized backscatter. The 
projection, which is called the vegetation structure parameter, can be 
defined as μpp−pq = S M

S M
| ( )|

| ( )|pp j
pq j

2
2. It should be calculated the same 

as Г of Eq. (1), through the linear regression between co-polarized and 
cross-polarized backscatter at fine scale (1 km in this research) within 
each radiometer resolution grid cell. Overall, the time series of Tbp(C) 
and σpp(C) are not required when the parameters β′(C) and μpp−pq are 
estimated using this snapshot approach. 

In order to calculate β′(C) in this study, the snapshot approach 
based on Eq. (2) is used for every coincidence of SMAP and PLIS ob
servations, with the estimation of β′ being unique for any given day. In 
this study, Tbp(C) of Eq. (2) is the average of the fore- and aft-looking 
SMAP vertical brightness temperature (L2_SM_P) at 36 km resolution. 
Estimation of β′ is also dependent on Ts [K], ω [−], and = e cos [−] 
of the 36 km grid cell. The parameter Ts [K], which is the land surface 
temperature based on GMAO GEOS-5 data, and the scattering albedo 
and vegetation loss parameters (ω [−], and τ [−]), have been extracted 
from the SMAP Level-2 product (L2_SM_P) at 36 km spatial resolution 
and 40° incidence angle (θ). For |Spp(Mj)|2 and |Spq(Mj)|2, the vv-po
larized and vh-polarized radar backscatter observations from PLIS (σvv 

and σvh) at 10 m original resolution were spatially aggregated to the 
36 km resolution SMAP EASE-2 grids. In addition, the slope of the 
linear regression between PLIS σvv and σvh at fine scale (1 km) was 
considered as μpp−pq. All PLIS backscatter observations were used as 
linear scale values. Finally, the parameter β′ utilized in the downscaling 
process has been estimated using the above described observations 
through Eq. (2). 

The parameter Г [−] is estimated through the regression between 
the co-polarized and cross-polarized radar observations collected at fine 
spatial resolution within each radiometer grid cell. This parameter is 
calculated individually for each coarse grid cell and represents the 
spatial heterogeneity effects. It is estimated the same way in the new 
algorithm as in the old algorithm but in linear scale, such that Г ≡ 

M
M C

( )
( )

pp j
pq j

. In this study, Г was evaluated as the sensitivity of radar co- 

polarized to cross-polarized using PLIS σvv and σvh at fine scale (1 km) 
within each 36 km SMAP grid cell. The spatial deviation of cross-po
larization backscatter (σvh) at C scale was used as the indicator of het
erogeneity. Г, which is unique for any particular overpass, projects the 
spatial deviation in σvh in the σvv space. This calculation can be additive 
or subtractive depending on the surface roughness and vegetation, with 
the magnitude of Г being an indicator of the heterogeneity within the 
36 km SMAP grid cell (Das et al., 2019). According to the baseline 
downscaling algorithm, the σvh variation can be converted to σvv var
iation by multiplying with the sensitivity Г. 

Fig. 4. Scatterplot of 3 km SMAPEx-3 backscatter vs 3 km SMAPEx-3 back
scatter with the SMAPEx-5 gaps across the 3 dates of the three-week long 
SAMPEx-3 campaign, with the D1, D5 and D9 being September 4, 15 and 23, 
2011 respectively. 
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Overall, the magnitude of covariation β′ decreases with increasing 
soil roughness and vegetation water content due to the higher dynamic 
range of scattering compared to emission. This reduction is strongest for 
sparsely vegetated land or dry vegetation coverage conditions with 
VWC less than 1 kg/m2. Soil roughness variations play the next most 
important role in covariation magnitude offsets, while the vegetation 
moisture variation does not change the covariation significantly 
(Jagdhuber et al., 2017). In addition, the covariation magnitude moves 
toward zero for VWC greater than 5 kg/m2 (Jagdhuber et al., 2018). 
Since a dense or moist canopy leads to the attenuation of microwave 
signals of the soils, the covariation decreases with increased vegetation 
growth or wetness (Jagdhuber et al., 2019a; Jagdhuber et al., 2019b). 
With increased roughness and vegetation cover on the land surface, the 
parameter Г increases, as the cross-polarized backscatter displays high 
sensitivity to vegetation and surface roughness (Das et al., 2011; Das 
et al., 2014). 

3.2. Algorithm implementation 

In this study, the term [σvv(Mj) − σvv(C)] of Eq. (1) was calculated 
by considering the vv-polarization PLIS backscatter upscaled to medium 
resolution (3 km and 9 km) as σvv(Mj) and the average of vv-polarization 
PLIS backscatter for the coarse resolution SMAP pixel as σvv(C) for each 
selected SMAP 36 km pixel. The term [σvh(C) − σvh(Mj)] was also cal
culated using the average of vh-polarization PLIS backscatter at coarse 
resolution SMAP pixel as σvh(C) and the vh-polarization PLIS back
scatter upscaled to medium resolution as σvh(Mj) for each SMAP 36 km 
pixel. Then, the 36 km spatial resolution SMAP vertical brightness 
temperature (Tbv(C)) was downscaled to 3 km and 9 km (TbV(Mj)) using 
backscatter (σvv and σvh) provided by the SMAPEx-5 airborne instru
ment PLIS and considering the calculated β′ and Г parameters men
tioned above through Eq. (1), and contrasted to that downscaled by the 
same process using backscatter from Sentinel-1, as archived in the 
NASA EarthData website (https://earthdata.nasa.gov). 

3.3. Estimation of β′ and Г parameters 

Fig. 5 shows the variation in β′(C) for the four days of this campaign 
across pixel 1 and 2. The vegetation and soil roughness conditions have 
most effect on the magnitude of β′(C) (Jagdhuber et al., 2018). As 
mentioned before and shown in Fig. 1, pixel 1 and 2 present hetero
geneous land cover conditions which can lead to different magnitudes 
of β′(C) for each day. The magnitudes for the L-L band combination 
were obtained as 4.45, 4.26, 3.56 and 3.06 for pixel 1 and 5.86, 5.84, 
4.88 and 4.82 for pixel 2 from D1 to D8, while for the L-C band com
bination were 3.38 and 2.59 for pixel 1 for D3 and D8, respectively and 
4.73, 3.83, 3.79 and 4.1 for pixel 2 from D1 to D8. The main vegetation 
types of SMAPEx-5 were cropping and grazing, with vegetation water 
contents increasing during D1 to D8 from 1.37 to 1.84 kg/m2 for pixel 1 
and 1.41 to 2.14 kg/m2 for pixel 2, due to growth in the vegetation 
biomass during the three weeks long spring-time experiment. Das et al. 
(2019) and Jagdhuber et al. (2019a) showed that the β′ parameter has a 
robust relation to vegetation water content, with reduced magnitude of 
β′ for increased vegetation water content (VWC). In this study, the 
magnitude of β′ estimations also decreased with higher values of ve
getation water content (Fig. 5). However, the magnitudes of β′ over 
pixel 2 were higher than pixel 1, with a change in β′ of around 1.5 
between the two pixels for each day. This may be explained by the 
greater heterogeneity and different land cover type of pixel 2, con
taining several patches of forest and a conservation area that are absent 
from pixel 1. The cross-polarized backscatter values were −24.00, 
−24.57, −24.53 and −24.81 dB across pixel 1, and −22.57, −23.89, 
−23.77 and −24.74 dB across pixel 2 at coarse resolution, while the 
co-polarized backscatter values were −13.96, −15.10, −16.05 and 
−16.06 dB across pixel 1, and −14.17, −15.43, −16.33 and 
−16.91 dB across pixel 2 at coarse resolution. Therefore, the dynamic 

range of backscatter across pixel 2 was larger compared with pixel 1, 
resulting in the higher vegetation structure parameter. 

Consistent with the results from Jagdhuber et al. (2019b), it can also 
be seen that β′ for both the C-L and L-L band combinations had limited 
sensitivity to soil moisture in high vegetation conditions. Fig. 5 shows that 
the β′ magnitudes retrieved from C-band were less than L-band for each 
day. This is explained by increases in vegetation coverage leading to an 
increase in cross-polarized potential and decrease in covariation magni
tude. These changes are stronger for the L-L band combinations than L-C 
band combinations of β′ covariation because of higher canopy scattering 
for C-band (Jagdhuber et al., 2019a). It is notable that Sentinel didn't 
capture backscatter data for estimating β′ of pixel 1 during D1 and D6. 

The increasing of surface roughness also has an impact on reduction 
of β′ magnitude. Previous research has shown that in low vegetation 
conditions, soil roughness causes a stronger reduction of β′ magnitude 
for the L-C band combinations in contrast to the L-L band combinations 
(Jagdhuber et al., 2018). This means that surface roughness loss is 
greater at C-band compared to L-band due to the contribution from 
surface emission and scattering (Jagdhuber et al., 2019a). Overall, it 
can be said that the results using PLIS observations for estimation of β′ 
through Eq. (2) matched with the results from Das et al. (2019). 

The Г values estimated using snapshots of PLIS σvv and σvh ob
servations within each 36 km pixel ranged from 2.00 to 2.34 across 
pixel 1 and 2.28 to 2.92 across pixel 2. Globally, the mean values of Г 
have been found to range from 2.5 to 4.5 (Das et al., 2019). Therefore, 
the results of Г estimations from using σvv and σvh of PLIS closely follow 
the global values. It can be noted that the parameters (β′ and Г) derived 
on dates D1 and D6 for SMAP-Sentinel (L-C band) combination may not 
be optimal, as on those dates the Sentinel data only partially cover the 
SMAP 36 km grid cells. 

4. Accuracy of downscaling 

In this study, the vertical polarization of SMAP Level-2 brightness 
temperature with 36 km spatial resolution (L2_SM_P) was taken as the 
background Tb. The variation of σvv observations, aggregated to the 
downscaling resolution, was utilized to produce the higher resolution 
brightness temperature. In addition, σvh was considered as the indicator 
of vegetation impact because of strong correlation between cross-po
larized backscatter and vegetation. Accordingly, the downscaled 
brightness temperature were retrieved from 36 km to 3 km and 9 km 
resolution from aggregating the 10 m resolution PLIS radar backscatter 
and Sentinel-1 observations to the target downscaling resolution. The 
method used for preparing the SMAP-PLIS downscaled Tb is the same as 
that used for preparing the SMAP-Sentinel downscaled Tb product. An 
alternate application of the method is to retrieve the downscaled Tb at 
fine resolution and then aggregate the downscaled Tb to 3 km and 9 km 
resolution. Wu et al. (2014) applied both methods and reported that 
both showed similar results. Finally, the downscaled Tb derived from 
combining the L-band SMAP radiometer and L-band PLIS radar ob
servations, and that from the SMAP-Sentinel active-passive product 
were compared with the L-band Tb measured from PLMR, as a re
ference. As mentioned before, the SMAP-Sentinel active passive Tb is 
the product which NASA has utilized through combination of L-band 
SMAP Tb and C-band Sentinel-1 backscatter observations using the new 
baseline downscaling algorithm provided in Eq. (1). 

4.1. Comparison between PLMR and SMAP brightness temperature 

During SMAPEx-5, a total of 7 flights were undertaken coincident 
with SMAP overpasses. However in this study, only the information 
from 4 flights was considered due to the limited availability of Sentinel- 
1 data. The PLMR brightness temperature observations were aggregated 
from the 1 km original resolution to the 36 km SMAP coarse resolution 
pixel on these 4 days and compared with SMAP radiometer brightness 
temperature values on the selected area. As evidenced in Fig. 6, the 
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comparison between the brightness temperature of PLMR and SMAP at 
36 km resolution determined a bias of −3.2 K, RMSE of 3.6 K and 
correlation coefficient of 0.99. Consequently, in order to evaluate the 
downscaled brightness temperature algorithm, this bias was removed 
by subtracting the magnitude of the bias from all PLMR brightness 

temperature observations before using them as the independent re
ference in this study. This step was important, to ensure that differences 
between the downscaled Tb and reference observations of Tb at higher 
spatial resolution were the result of the downscaling algorithm and not 
due to sensor-to-sensor bias. 

Fig. 5. Estimation of parameter β′(C) over a) pixel 1 and b) pixel 2 on the four days for SMAP-PLIS (L-L bands) combinations (top row) and SMAP-Sentinel (L-C 
bands) combinations (bottom row). Each pixel had a size of 36 km × 36 km. 

Fig. 6. Comparison between 36 km aggregated vertical Tb of PLMR and SMAP Level-2 vertical polarization brightness temperature (L2_SM_P) at 36 km resolution on 
two selected pixels across the 4 days. 
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4.2. Comparison between PLIS and Sentinel-1A backscatter observations 

The Sentinel-1 spacecraft has a revisit interval time ranging from 6 
to 12 days for different areas around the world. According to the 
Sentinel-1A overpass during the SMAPEx-5 campaign period, the 
backscatter observations were measured across 4 days at full or partial 
coverage over the selected study area, as shown in Fig. 2. The Sentinel- 
1A radar backscatter observations at 3 km resolution provided from the 
original NASA L2_S0_L1 product of Sentinel, were also aggregated to 
9 km resolution. The comparison between aggregated PLIS σvv and 
Sentinel-1A σvv on the EASE-2 grid at 3 km and 9 km resolutions over 
the study area across the 4 days with coincident coverage are shown in  
Fig. 7. Through comparing pixel-by-pixel it can be seen that the mag
nitude of Sentinel-1A σvv was less than PLIS σvv, while the dynamic 
range of PLIS backscatter observations was higher than Sentinel-1A 
backscatter. The main reason for the difference between the magnitude 
of PLIS and Sentinel-1A SAR backscatter measurements is that the 
different frequency of L-band and C-band leads to differences in emis
sion depths and the way the different wavelengths interact with the 
vegetation and surface roughness (El Hajj et al., 2018; Ulaby et al., 
2019). It is noted that the overpass time of PLIS and Sentinel-1A is also 
different and that this can also have had an effect on the backscatter 
values, especially for D1 and D3 with 24 h time difference. Accordingly, 
it is expected that there will be some difference between PLIS and 
Sentinel-1A in Fig. 7, but as the main driver for the downscaling, it is 
useful to see the extent of this difference. Importantly, the day-to-day 
comparison between backscatter values shows a decrease from D1 to D8 
for both C-band and L-band consistent with the soil moisture dry down 
across the 4 days. 

4.3. Spatial and temporal variability of L-band and C-band downscaling 

Based on the day-to-day estimation of β′ at v-polarization and the Г 
estimations described in the previous section, the new baseline down
scaling algorithm was applied to downscale the brightness temperature 
for each of the four days using SMAP Tb and PLIS σ. Fig. 8a and b 
represent the vertically polarized brightness temperature maps of ag
gregated L-band SMAPEx-5 PLMR brightness temperature observations 
and the L-band and C-band SMAP downscaled brightness temperature 
data on the 3 km and 9 km EASE-2 grid. The pixel-by-pixel Tb absolute 
difference between downscaled brightness temperatures and PLMR Tb 
as the reference are also shown in Fig. 8. Importantly, the existence of 
urban areas, manmade structures and water bodies (Fig. 1) were suc
cessfully removed by the filtering process. 

Generally, both the Tb downscaled SMAP-PLIS and Tb downscaled 
SMAP-Sentinel estimates had a similar temporal variation to the 

SMAPEx-5 airborne Tb from PLMR across the 4 days. While the heavy 
rainfall before starting the SMAPEx-5 campaign provided a hetero
geneity in soil surface conditions, this reduced during the dry-down 
from D1 to D8, as clearly seen in the PLMR brightness temperature 
maps in Fig. 2. The plots of Tb downscaled SMAP-PLIS and Tb down
scaled SMAP-Sentinel in Fig. 8 mirror this reduction in heterogeneity at 
both the 3 km and 9 km spatial resolutions, with more heterogeneous 
conditions during the first days of the campaign. Notably, D8 was the 
driest condition when compared to the other days. Moreover, based on 
the pixel-by-pixel absolute difference between Tb downscaled and Tb 
reference shown in Fig. 8, the results showed higher difference values 
for both C-band and L-band in pixels under higher soil moisture con
ditions. This can also result from the effect of heterogeneity in soil 
surface conditions on the downscaling algorithm. For example, the 
difference plots show that the downscaling errors were largest (29 K) at 
the southern part of pixel 1 and the eastern part of pixel 2 (3 km spatial 
resolution), being dominated by irrigated and dry cropping area with 
wet soil conditions. However, these differences reduced from D1 to D8 
due to drying of the soil moisture with values of 15.5, 9.8 and 4.4 K for 
D3, D6 and D8, respectively. In contrast, 3 km grid cells with the lowest 
soil moisture during D1, located at the north west of pixel 1, had dif
ferences around 9 K. The results of this comparison show the large 
impact of soil moisture on downscaling errors. 

Overall, comparison of the difference between Tb downscaled and 
Tb reference at the pixels with high soil moisture values showed that C- 
band presented higher error than L-band. This confirms the expectation 
that L-band has better ability for estimation of downscaled brightness 
temperature especially with heterogeneous soil conditions. 

As shown in Fig. 1, the vegetation coverage of the selected area 
included irrigated and dry land cropping dominated by wheat in the 
eastern part of pixel 2 and the western part of pixel 1, grazing areas 
dominated by grassland in the central section, some forest area espe
cially located in the northern part of pixel 2, and also some woodland 
along the Murrumbidgee River. Based on the difference between Tb 
downscaled and Tb reference shown in Fig. 8, the effects of vegetation 
cover on the downscaled brightness temperature achieved by the new 
baseline downscaling algorithm using C-band and L-band were in
vestigated. Due to the maturity phase of crops during SMAPEx-5, the 
use of L-band backscatter in the downscaling algorithm showed better 
performance than C-band on the cropping area. This can be explained 
by the fact that the shorter wavelength C-band signals display stronger 
sensitivity than L-band to the vegetation cover. For instance, several 
cropping areas are located at the south western part of pixel 1. Con
sidering D8 was the driest day and least affected by heterogeneous 
moisture conditions it is mostly affected by vegetation coverage. 
However, being later in the growing season the crop biomass and water 

Fig. 7. Comparison between aggregated vv-polarization backscatter of PLIS and Sentinel 1A at EASE grid 3 km and 9 km resolutions over the study area across the 
4 days. 
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content was greatest, with both the 3 and 9 km difference plots in Fig. 8 
showing lower errors for L-band (5.9 and 3.4 K) than C-band (8.8 and 
7.6 K). 

Similar to the cropping area, for dense grasses in grazing parts of 
selected pixels, the errors of the new baseline downscaling algorithm 
using L-band observations were lower than C-band. For example, the 
average of difference values between L-band Tb downscaled and Tb 
PLMR for several 3 km grid cells located in the grassland area at the 
central part of pixel 1 during D8 was 2.9 K, increasing to 3.3 K for C- 
band. Moreover, the difference values between Tb downscaled and Tb 
PLMR for one of the 9 km spatial resolution pixels located at the central 
part of pixel 1 and dominantly covered by grasslands were 1.5 K and 
1.9 K for L-band and C-band, respectively on D8. For the pixels covered 
by forest canopy and woodland, L-band also showed better performance 

due to the higher ability to penetrate the dense vegetation coverage. 
Investigation on the forest area located at the northern part of pixel 2 
showed that the average difference value between L-band Tb down
scaled and Tb PLMR for 3 km grid cells located at this forest part during 
D8 were 5.8 K, and increased to 11.5 K for C-band. Furthermore, the 
average of difference values across the 4 days for two 9 km grid cells 
located at this forest area were 5.1 K and 10.3 K for L-band and C-band, 
respectively. Therefore, the downscaled brightness temperature of C- 
band observations has shown a higher difference with regard to the 
reference brightness temperature spatially at the northern part of pixel 
2. It is also notable that the heterogeneous land cover conditions of 
pixel 2 were higher than pixel 1, leading to more variation in the dif
ference plots, as can be seen in Fig. 8 at 3 km and 9 km spatial re
solution. 

Fig. 8. Downscaling results at v-polarization across 4 days of SMAPEx-5 over selected pixels: reference PLMR Tb, Tb downscaled SMAP-Sentinel (NASA product), Tb 
downscaled SMAP-PLIS, and absolute difference between downscaled Tb SMAP-Sentinel and also, Tb SMAP-PLIS with reference Tb, a) at 3 km and b) 9 km spatial 
resolutions. 
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In order to assess the new baseline downscaling algorithm, the 
SMAP-PLIS and SMAP-Sentinel downscaled brightness temperature es
timations were compared with PLMR Tb at the pixel level at 3 km and 
9 km resolution, with RMSE, bias and correlation coefficient (R) cal
culated over the study area for each day. Table 2 shows the accuracy of 
the downscaling algorithm on each day of the campaign over the study 
area for 3 km and 9 km resolutions at vertical polarization. The results 
show the higher correlation coefficient of SMAP downscaled brightness 
temperature estimates for L-band than C-band. Taking the aggregated 
PLMR Tb as the independent reference, the RMSE was calculated for 
brightness temperature estimates on each day. It can obviously be seen 
from Table 2 that the results of the downscaling algorithm using L-band 
backscatter have shown lower RMSE than C-band for each day. Gen
erally, the RMSE of L-band comparing day-to-day with C-band have 
decreased by around 0.3 to 0.7 K at 3 km, and decreased by around 0.4 
to 2.5 K at 9 km spatial resolution across D1 to D8. The RMSE results of 
the new baseline algorithm in downscaling the brightness temperature 
for D1 and D3 displayed relatively poorer performance than D6 and D8 
for both L-band and C-band at 3 km and 9 km resolutions. This can be 
explained by the heterogeneous soil surface conditions which occurred 
because of the heavy rainfall events before the beginning of the 
SMAPEx-5 campaign, and decreased as the campaign progressed. 
Moreover, the RMSE reduced when the spatial resolution decreased 
from 3 km to 9 km. In other words, changing from coarse to fine spatial 
resolution reduced the accuracy of the downscaled brightness tem
perature. This can be associated with the increase in backscatter noise 
and soil surface heterogeneity both in terms of soil moisture and ve
getation at finer resolution. 

4.4. Impact of C-band and L-band on the downscaling performance 

For the purpose of performance assessment of the new baseline 
downscaling algorithm, the SMAP-PLIS and SMAP-Sentinel downscaled 
brightness temperature estimations were compared with PLMR Tb at 
the pixel level in Fig. 9 respectively. The statistical results including 
RMSE, bias and correlation coefficient (R) calculated across the four 
days over the study area are shown in Table 2. The statistics indicate 
that the L-band SMAP-PLIS downscaled brightness temperature esti
mates had a correlation of 0.75 and 0.92, and bias of 0.6 K and 0.3 K, 
when compared with PLMR brightness temperature observations at 
both 3 km and 9 km spatial resolutions. This can be compared to 
downscaled brightness temperature of the SMAP L2_SM_SP product for 
C-band SMAP-Sentinel. Accordingly, the SMAP-PLIS downscaled 
brightness temperature estimates had a lower RMSE than SMAP- 

Sentinel Tb at both 3 km and 9 km spatial resolution, with a 0.3 K 
improvement at 3 km and 1.1 K improvement at 9 km. 

In order to differentiate the impact of C-band SAR and L-band SAR 
on the downscaling performance, considering the land use and cover 
types, the spatial distribution of temporal average RMSE and correla
tion coefficient of all 4 days was computed at different resolutions 
across the whole study area in Figs. 10 and 11. Both RMSE and R were 
computed from the time series of downscaled brightness temperature 
and reference brightness temperature at each pixel across the 4 days, 
and at two resolution levels: 3 km and 9 km. It is notable that SMAP- 
Sentinel brightness temperature data was not available at full coverage 
for D1 and D6. Therefore, the spatial maps of temporal RMSE and R 
only have partial coverage of the selected area, which is dominated by 
cropland and some forest area at the northern part of pixel 2. 

As shown in Fig. 10, based on the available pixels, the RMSE values 
between Tb downscaled and Tb reference were generally lower at L- 
band than C-band. This means that L-band had a better downscaling 
performance than C-band for croplands, forests and woodlands. It can 
be noted that the existing noise produced by radar in croplands was 
more than for other surface coverages since croplands showed more 
variation in the vegetation and surface roughness conditions. Accord
ingly, considering these radar data, the croplands produce an obstacle 
for the accuracy of downscaling. Moreover, the estimation of SMAP 
downscaled brightness temperature displayed high correlation to PLMR 
observations across the 4 days observed brightness temperature over 
the study area for both C-band and L-band. However, as shown in  
Fig. 11, L-band downscaled brightness temperature had higher corre
lation than C-band with PLMR brightness temperature in croplands and 
forest conditions. This is because of the increased capability of L-band 
to penetrate the crop and forest. 

5. Conclusions 

The soil moisture active passive (SMAP) satellite launched by NASA 
on 31st January 2015, intended to provide global soil moisture maps at 
9 km spatial resolution by downscaling L- band radiometer brightness 
temperature with L-band radar backscatter, obtained at 36 km and 3 km 
spatial resolution respectively. However, SMAP's radar ended its op
eration prematurely due to a technical problem and NASA focused on 
other active microwave satellites, ultimately selecting the C-band 
Sentinel-1A/1B SAR data as an alternative for the SMAP L-band radar. 
The objective of this study was to investigate the impact of using C- 
band in place of L-band in downscaling the brightness temperature. The 
new SMAP baseline downscaling algorithm was utilized to downscale 
SMAP brightness temperature using L-band airborne radar backscatter 
(PLIS) from the SMAPEx-5 field campaign in Australia, to spatial re
solutions of 3 km and 9 km at vertical polarization. The downscaled Tb 
was evaluated by L-band observed airborne Tb from the SMAPEx-5 
(PLMR) and contrasted against the C-band downscaled Tb. The SMAP- 
Sentinel brightness temperature active passive product which is pro
vided by NASA using combination of L-band SMAP Tb and C-band 
Sentinel-1 backscatter observations was considered for this purpose. 

The average RMSE, correlation coefficient and bias of downscaled 
Tb compared with Tb of PLMR as a reference data across 4 days at 9 km 
resolution were 4.9 K, 0.92 and 0.3 K for L-band and 6 K, 0.88 and 
−0.5 K for C-band, and increased to 9.4 K, 0.75 and 0.6 K for L-band 
and 9.7 K, 0.72 and −0.3 K for C-band at 3 km spatial resolution. The 
RMSE over the 4 days at L-band comparing with C-band decreased by 
0.3 K at 3 km, and by 1.1 K at 9 km spatial resolution. Moreover, when 
considering the statistical analysis for each day separately, it was found 
that the new baseline downscaling algorithm performed poorly in the 
early days of the campaign for both L-band and C-band as a result of 
high soil moisture leading to large spatial heterogeneity. Results 
showed an increase in the algorithm performance during the drying 
down period, with an RMSE better than 3.5 K for L-band at 3 km spatial 
resolution. Overall, there were better results for the L-band comparison 

Table 2 
Accuracy of the SMAP baseline downscaling algorithm; Root mean square error 
(RMSE)/Correlation coefficient (R)/Bias between L-band downscaled Tb 
(SMAP-PLIS) and de-biased L-band PLMR Tb, and between Tb SMAP-Sentinel 
(NASA product) and de-biased Tb PLMR across the 4-days (D1, D3, D6, D8) 
averaged over the entire study area (pixel 1 and 2), with the analysis for all 4 of 
the days shown in the last column. The RMSE and Bias values are in K. The rows 
1, 2 and 3 present RMSE, R and Bias, respectively.         

Downscaling 
resolution (km) 

Downscaling 
product 

D1 D3 D6 D8 All days  

3 SMAP-PLIS 11.4/ 10.2/ 8.3/ 7.9/ 9.4/ 
0.44/ 0.34/ 0.36/ 0.18/ 0.75/ 
1.9 −0.77 −0.85 2 0.6 

SMAP-Sentinel 12.1/ 10.5/ 8.7/ 8.3/ 9.7/ 
0.43/ 0.32/ 0.43/ 0.06/ 0.72/ 
−1.83 −2.2 −0.74 2.1 −0.3 

9 SMAP-PLIS 5.9/ 5.8/ 3.9/ 3.9/ 4.9/ 
0.60/ 0.63/ 0.76/ 0.44/ 0.92/ 
−0.09 −0.7 −1.67 1.9 0.3 

SMAP-Sentinel 8.4/ 6.2/ 6.3/ 4.8/ 6.0/ 
0.39/ 0.63/ 0.35/ 0.15/ 0.88/ 
−2.6 −2.2 −1.9 2.1 −0.5 
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than C-band for all days at 3 km and 9 km spatial resolution. Based on 
the fact that 3 K error of brightness temperature is generally expected to 
translate to approximately 0.01 m3/m3 additional soil moisture esti
mation error (De Lannoy and Reichle, 2016), the use of C-band back
scatter in place of L-band backscatter is expected to result in less than 
0.01 m3/m3 error in soil moisture estimates. 

Accordingly, it can be said that generally the performance of the 
new version of the baseline downscaling algorithm is better when used 
with L-band than C-band, but these differences can be expected to have 
a minor impact on results. However, there are several sources of 

difference between using L-band and C-band radar observations in the 
downscaling algorithm which effect the results. L-band and C-band 
represent different emission depths due to their different frequency. 
Moreover, the land cover type and surface heterogeneity have a greater 
impact on the C-band backscatter than at L-band. Therefore, the dis
advantage of using Sentinel-1 observations is that there is a greater 
sensitivity to vegetation. Overall, the results of this study clearly show 
that the L-band backscatter provided satisfactory downscaling results at 
9 km resolution. 

Fig. 9. Comparison between a) Tb downscaled SMAP-PLIS and Tb PLMR, and b) Tb SMAP-Sentinel and Tb PLMR during SMAPEx-5 across 4 days at 3 km and 9 km 
resolution at vertical polarization. 

Fig. 10. Spatial maps of temporal RMSE between PLMR brightness temperature observations as the reference and a) SMAP-PLIS downscaled brightness temperature 
estimates and b) SMAP-Sentinel brightness temperature, in vertical polarization over the selected pixel 1 and 2 during SMAPEx-5 at 3 km and 9 km resolution. 
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