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Abstract
We consider the problem of maximization of a convex quadratic form on a convex
polyhedral set, which is known to be NP-hard. In particular, we focus on upper bounds
on themaximumvalue.We investigate utilization of different vector norms (estimating
the Euclidean one) and different objective matrix factorizations. We arrive at some
kind of duality with positive duality gap in general, but with possibly tight bounds.
We discuss theoretical properties of these bounds and also extensions to generally
preconditioned factors. We employ mainly the maximum vector norm since it yields
efficiently computable bounds, however, we study other norms, too. Eventually, we
leave many challenging open problems that arose during the research.

Keywords Convex quadratic form · Concave programming · NP-hardness · Upper
bound · Maximum norm · Preconditioning

1 Introduction

This paper addresses the problem of maximizing a convex quadratic form on a convex
polyhedral set. Formally, we consider the problem
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f ∗ = max xT Ax subject to x ∈ M, (1)

where M is a convex polyhedral set and A ∈ R
n×n is a symmetric positive definite

matrix (an extension to singular A is discussed in Remark 1). This is a basic problem
arising in the context of global optimization [4,9,16,17]. Computation of the maxi-
mum is NP-hard even when M is restricted to be a box (hypercube) [2,11,18]. This
is underlined by the fact that the maximum is attained in a vertex of M provided M
is bounded [9].

There are too many works in this area that we cannot give a thorough overview
here. For a bibliographic survey, we refer to [5] for quadratic programming and
to [14] for concave function minimization. Among the many methods to solve (1),
one can identify approaches utilizing cutting plane methods [10], reformulation-
linearization / convexification and branch and bound methods [1,16,21], polynomial
time approximation methods [19], or extended Lagrange multiplier approach [20].
Theory and methods based on a global optimization perspective are presented in [12].
Most of these methods exploit the structure of the feasible set and the objective func-
tion simultaneously. In contrast, in this paper we propose bounds based on a finer
overestimation of the objective function. Due to this difference, the proposed bound
may outperform on some instances and vice versa; some instances are provided in [8].
Upper bound. This paper is an extension of [8], where we introduced the following
problem (the theory presented here is new). Since the matrix A can be factorized as
A = GTG we can write xT Ax = xT GT Gx = ‖Gx‖22. Thus the problem (1) can be
formulated as

max ‖Gx‖22 subject to x ∈ M. (2)

To derive an upper bound on f ∗ we can simply estimate the Euclidean norm by some
other norm from above. The quality of the resulting upper bound will also depend on
the particular factorization A = GTG employed. Therefore the main focus of this
paper is to investigate the relation between the upper bounds and the factorization and
the vector norm used. Throughout this paper, we assume that a certain factorization
A = GTG, G ∈ R

n×n , is provided and fixed; alternative factorizations are then
denoted by A = RT R.
Notation. The Hadamard product of matrices A, B ∈ R

m×n is denoted by A ◦ B. The
i th row and j th column of a matrix M are denoted by Mi∗ and M∗ j , respectively.
Next, e = (1, . . . , 1)T stands for the vector of ones, In for the identity matrix of size
n, and ei = (In)∗i for the i th canonical unit vector. We use three specific vector norms,
the Euclidean norm ‖x‖2 = √

xT x , the �1-norm ‖x‖1 = ∑
i |xi | and the maximum

(Chebyshev) norm ‖x‖∞ = maxi |xi |. Whenever we use ‖ · ‖ without an index we
understand it as a general vector norm. The sign of r ∈ R is defined as sgn(r) = 1 if
r ≥ 0 and sgn(r) = −1 otherwise. Inequalities, the sign and the absolute value are
applied entry-wise for vectors and matrices.

123



Maximization of a PSD quadratic form and factorization

2 Upper bounds bymaximum norm

This section describes properties of upper bounds on f ∗ when applying the maximum
norm. Denote byH the set of orthogonal matrices of size n and by

g∗:= min
R∈Rn×n :A=RT R

max
x∈M

‖Rx‖2∞

the best upper bound obtained by a factorization of A.

Theorem 1 We have

f ∗ = n · max
x∈M

min
H∈H

‖HGx‖2∞ ≤ n · min
H∈H

max
x∈M

‖HGx‖2∞ = g∗. (3)

Proof Let us prove the first equation in (3). For every H ∈ H and x ∈ M, we have

‖Gx‖22 = ‖HGx‖22 ≤ n · ‖HGx‖2∞.

Taking the minimum over H ∈ H,

‖Gx‖22 ≤ n · min
H∈H

‖HGx‖2∞.

Taking the maximum over x ∈ M,

f ∗ = max
x∈M

‖Gx‖22 ≤ n · max
x∈M

min
H∈H

‖HGx‖2∞.

To show that the inequality is attained as equation, let x ∈ M and denote y:=Gx .
Utilizing a Householder transformation, let H ∈ H be a Householder matrix trans-
forming y to α · e, where α:= 1√

n
‖y‖2 (such a matrix always exists, see [13]). That is,

Hy = α · e. Now, we have

n · ‖Hy‖2∞ = n · ‖α · e‖2∞ = n · α2 = ‖y‖22.

Therefore ‖Gx‖22 = n · minH∈H ‖HGx‖2∞ for each x ∈ M, which proves the
equation.

Let us prove the right-hand side equation in (3), which takes the form

min
H∈H

max
x∈M

‖HGx‖2∞ = min
A=RT R

max
x∈M

‖Rx‖2∞.

Let H ∈ H be arbitrary and put R:=HG. Then RT R = (HG)T HG = GT HT HG =
GTG = A is a factorization of A. Conversely, let A = GTG = RT R be two factor-
izations of A. Then In = (GT )−1RT RG−1 = (RG−1)T RG−1, so H :=RG−1 is an
orthogonal matrix. Therefore we derived R = HG for some H ∈ H.

Eventually, the inequality f ∗ ≤ g∗ follows from the standard max–min inequality.
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In other words, the proposition says that the upper bound g∗ overestimates f ∗ the
same way as max–min inequality. The inequality holds as equation in certain cases,
see Proposition 2. On the other hand, we can find examples of strict version of the
inequality in (3); see Example 1.

Example 1 LetM be the convex hull of points (0, 0)T , (1, 0)T , (
√
3
2 , 1

2 )
T and (0, 1)T ,

and let A be the identity matrix I2. It is seen that f ∗ = 1. As each orthogonal matrix
of size 2 has either the form

(
cos θ sin θ

− sin θ cos θ

)

or

(
cos θ sin θ

sin θ − cos θ

)

for some θ ∈ [0, 2π), we have

min
H∈H

max
x∈M

‖Hx‖2∞
= minθ∈[0,2π) max{| cos θ |, | sin θ |, | cos(θ − π

6 )|, | cos(θ + π
3 )|}2.

The above equality is derived from the fact that convex functions attain their maximum
at some vertices. Denote

f (θ) = max{| cos θ |, | sin θ |, | cos(θ − π
6 )|, | cos(θ + π

3 )|}.

It is seen that

f (θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cos θ 0 ≤ θ ≤ π
12 ,

cos(θ − π
6 ) π

12 ≤ θ ≤ π
3 ,

sin θ π
3 ≤ θ ≤ 7π

12 ,

− cos(θ + π
3 ) 7π

12 ≤ θ ≤ 5π
6 ,

− cos θ 5π
6 ≤ θ ≤ π.

Hence, minθ∈[0,2π) f (θ) =
√
3
2 , which implies g∗ = 3

2 > f ∗ = 1.

Proposition 1 We have g∗ ≤ n · f ∗.

Proof. Write

g∗ = n · min
H∈H

max
x∈M

‖HGx‖2∞ ≤ n · min
H∈H

max
x∈M

‖HGx‖22
= n · min

H∈H
max
x∈M

xT Ax = n · f ∗.

Proposition 2 Let H∗ ∈ H and x∗ ∈ M be optimal solutions for g∗. If |H∗Gx∗| has
all entries the same, then (3) holds as equation.

Proof. The right-hand side of (3) reads

g∗ = n‖H∗Gx∗‖2∞ = ‖H∗Gx∗‖22 = ‖Gx∗‖22 ≤ f ∗.
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Remark 1 (Extensions to singular A) The derived results can easily be extended to the
case when A is singular. Let m:= rank(A) and A = GTG be a full rank factorization,
that is, G ∈ R

m×n . Then (3) can be extended to

f ∗ = m · max
x∈M

min
H∈H

‖HGx‖2∞ ≤ m · min
H∈H

max
x∈M

‖HGx‖2∞ = g∗, (4)

where

g∗:= min
R∈Rm×n :A=RT R

max
x∈M

‖Rx‖2∞.

The proof is analogous, only the proof of the right-hand side equation in (4) differs
a bit because we cannot invert matrix G. The remedy is to consider the Moore–
Penrose pseudoinverse G† of G; see [13]. Let A = GTG = RT R be two full rank
factorizations of A. Then Im = (GT )†GTGG† = (GT )†RT RG† = (RG†)T RG†, so
H :=RG† is an orthogonal matrix. Now, RG†G = HG. Since the row spaces of R
and G are the same and since G†G is the projector to the row space of G, we have
R = RG†G = HG. Therefore we again derived that R = HG for some H ∈ H.

2.1 Maximization on a box

In this section, we consider the case when the feasible set is a box. In contrast to
numerical experiments from [8] for general polyhedral set M, we will show that g∗
is not tight in this case.

By a box we mean an interval vector

x = [x, x] = {x ∈ R
n; x ≤ x ≤ x},

where x, x ∈ R
n , x ≤ x . The center and the radius of x are respectively defined as

xc = 1

2
(x + x), x� = 1

2
(x − x).

Now, we can reformulate the original problem (1) for M being an interval box x as

f ∗ = max xT Ax subject to x ∈ x.

Assumptions. Without loss of generality assume that xc = 0 and x� = e. The latter
is obtained simply by a scaling. The former can be obtained as follows. Introduce an
auxiliary variable z and consider the quadratic form

q(y, z):=(yT , z)

(
A Axc

xTc A xTc Axc

) (
y
z

)

= (y + zxc)
T A(y + zxc)

on the interval domain y ∈ [−x�, x�], z ∈ [−1, 1]. The maximum value of the
quadratic form is attained for z ∈ {±1}. Since q(y, z) = q(−y,−z), we can consider
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only the value of z = 1. Thus we obtain that the quadratic form is the same as the
original one by substitution x :=y + xc.
Upper bound. The optimal upper bound based on (3) takes the form of

g∗:=n · min
R∈Rn×n :A=RT R

max
x∈x ‖Rx‖2∞. (5)

Since

max
x∈x ‖Rx‖2∞ = max

x :‖x‖∞=1
‖Rx‖2∞ = ‖|R|e‖2∞ = ‖R‖2∞,

we can also reformulate (5) as

g∗ = n · min
R∈Rn×n :A=RT R

‖R‖2∞.

For the feasible set in the form of an interval box, the presented upper bound is not
tight. As shown below, even a trivial upper bound f ∗ ≤ eT |A|e is never worse.
Proposition 3 We have f ∗ ≤ eT |A|e ≤ g∗.

Proof For any factorization A = RT R, we have

eT |A|e = eT |RT R|e ≤ eT |RT ||R|e = ‖|R|e‖22 ≤ n‖R‖2∞.

The factorization, for which g∗ is attained then yields eT |A|e ≤ g∗.

On the other hand, there are caseswhen the upper bound is tight, as in the proposition
below. Notice that condition sgn(G) ◦ (esT ) ≥ 0 means that the entries of the column
G∗i are nonnegative if si = 1 and nonpositive if si = −1.

Proposition 4 If sgn(G) ◦ (esT ) ≥ 0 and Gs = αs for some α ≥ 0 and s ∈ {±1}n,
then f ∗ = g∗.

Proof By the assumptions, each column of G has either nonnegative or nonpositive
entries. Thus f ∗ = ‖Gs‖22 = ‖αs‖22 = nα2. From (3), we have by putting H :=In

g∗ ≤ n · max
x∈x ‖InGx‖2∞ = n‖Gs‖2∞ = n‖αs‖2∞ = nα2.

Therefore f ∗ = g∗.

3 General preconditioning

In (3), we preconditioned matrix G by an orthogonal matrix H since orthogonal
matrices have no effect on the quadratic form xT Ax = xT GT Gx . In this section, we
consider a general class of matrices that are suitable for upper bounds:
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B:={B ∈ R
n×n; ‖x‖2 ≤ √

n‖Bx‖∞ ∀x ∈ R
n}

= {B ∈ R
n×n; 1 ≤ √

n‖Bx‖∞ ∀x ∈ R
n : ‖x‖2 = 1}. (6)

We immediately have the following:

Proposition 5 We have f ∗ ≤ n · maxx∈M ‖BGx‖2∞ for each B ∈ B.

Obviously, H ⊆ B. We will present some properties of the set B now. To this
end, let B = UΣV T be an SVD decomposition of a given B ∈ B, where U , V are
orthogonal matrices, and Σ is the diagonal matrix with singular values σ1 ≥ · · · ≥ σn
on the diagonal.

Proposition 6 If σn(B) ≥ 1, then B ∈ B.

Proof Since for the spectral norm ‖B−1‖2 = σ−1
n (B) ≤ 1, we have for each y ∈ R

n

‖B−1y‖2 ≤ ‖B−1‖2 · ‖y‖2 ≤ ‖y‖2 ≤ √
n‖y‖∞.

By substitution x :=B−1y the inequality ‖x‖2 ≤ √
n‖Bx‖∞ follows.

Proposition 7 If B ∈ B, then σn(B) > 1/
√
n.

Proof Suppose to the contrary that σn(B) ≤ 1/
√
n. We distinguish two cases. First,

suppose that σn(B) < 1/
√
n. Choose x :=Ven = V∗n , for which ‖x‖2 = 1 and

√
n‖Bx‖∞ = √

n‖UΣen‖∞ = √
nσn‖U∗n‖∞ < ‖U∗n‖∞ ≤ 1;

a contradiction.
Suppose now that σn(B) = 1/

√
n and choose x :=V (ε, . . . , ε, 1)T , where ε > 0 is

sufficiently small. Then

√
n‖Bx‖∞ = √

n‖UΣ(ε, . . . , ε, 1)T ‖∞
= √

n
∥
∥U diag

(
σ1ε, . . . , σn−1ε, 1/

√
n
)T ∥

∥∞.

If |Unn| = 1, then |U∗n| = en and

‖x‖2 > 1 = √
n‖Bx‖∞;

a contradiction. If |Unn| < 1, then for sufficiently small ε > 1 we have
√
n‖Bx‖∞ <

1, which is again a contradiction.

The inequality in Proposition 7 is tight in the following sense.

Proposition 8 For each ε > 0 there is B ∈ B such that σn(B) = (1 + ε)/
√
n.
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Proof We show that matrix B:= diag(α, . . . , α, (1 + ε)/
√
n) works provided α > 0

is large enough. Let x ∈ R
n be arbitrary such that ‖x‖2 = 1 and we need to show that

1 ≤ ∥
∥
(
α
√
n x1, . . . , α

√
n xn−1, (1 + ε)xn

)∥
∥∞. (7)

This is obviously true when |x |n ≥ 1/(1+ ε). Otherwise, if |x |n < 1/(1+ ε), then in
view of ‖x‖2 = 1 there is i such that

|x |i ≥
√

1

n − 1

(

1 − 1

(1 + ε)2

)

.

Therefore, the choice

α:=
(

n

n − 1

(

1 − 1

(1 + ε)2

))−1/2

is sufficient to make (7) hold true.

Notice that it is not true in general that the smaller singular values the better. Even
orthogonal matrices need not be the best choice.

Example 2 Let M:={x∗} = {(1, 9)T }, G = I2 and

B1 = 1√
82

(−1 9
9 1

)

, B2 = 1√
82

(−1 9
9 1

) (
7 0
0 1

)

.

We have B1, B2 ∈ B, matrix B1 is orthogonal and matrix B2 has singular values 7
and 1. Indeed, matrices B1 and B2 share the same orthogonal matrices from their SVD
decomposition. However,

‖B1x
∗‖∞ = 8.8345 > 8.1719 = ‖B2x

∗‖∞,

so matrix B2 provides tighter upper bound.

Lemma 1 We have B ∈ B if and only if ‖B−1y‖2 ≤ √
n ∀y ∈ R

n : |y| ≤ e.

Proof By substitution y:=Bx (notice that B must be nonsingular) we have B ∈ B if
and only if ‖B−1y‖2 ≤ √

n‖y‖∞ for each y ∈ R
n . It is sufficient to consider only y

such that |y| ≤ e, giving rise to the equivalent condition ‖B−1y‖2 ≤ √
n.

Proposition 9 Checking B ∈ B is a co-NP-hard problem.

Proof By Lemma 1, we have to check yT (B−1)T B−1y ≤ n for each y ∈ R
n such

that |y| ≤ e. In other words, we have to check if the optimal value of the quadratic
programming problem

max yT (B−1)T B−1y subject to − e ≤ y ≤ e
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is at most n. However, maximization of a convex quadratic function on a hypercube
is intractable [18].

Checking B ∈ B thus need not be an easy task. Thus we focus on some sufficient
conditions and special cases.

Proposition 10 If ‖|B−1|e‖2 ≤ √
n, then B ∈ B.

Proof By Lemma 1, we have to check ‖B−1y‖2 ≤ √
n for each y ∈ R

n such that
|y| ≤ e. Since ‖B−1y‖2 ≤ ‖|B−1|e‖2, the statement follows.

The following proposition states when the above bound is tight.

Proposition 11 Let B ∈ R
n×n such that sgn(B−1) ◦ (esT ) ≥ 0 for some s ∈ {±1}n.

Then B ∈ B if and only if ‖|B−1|e‖2 ≤ √
n.

Proof From the assumption we have |B−1| = B−1 diag(s). Define

x∗:= 1

‖|B−1|e‖2 |B−1|e = 1

‖|B−1|e‖2 B
−1 diag(s)e > 0.

Recall that by definition we have B ∈ B if and only if 1 ≤ √
n‖Bx‖∞ for all x ∈ R

n

such that ‖x‖2 = 1. We will show that the minimum of the right-hand side is attained
for x∗.

In order that B ∈ B, necessarily the condition for x∗ must hold true

1 = ‖x∗‖2 ≤ √
n‖Bx∗‖∞ =

√
n

‖|B−1|e‖2 ‖ diag(s)e‖∞ =
√
n

‖|B−1|e‖2 ,

from which ‖|B−1|e‖2 ≤ √
n.

Now, suppose to the contrary that there exists x ∈ R
n such that ‖x‖2 = 1 and

‖Bx‖∞ < ‖Bx∗‖∞, which implies

|Bx | ≤ ‖Bx‖∞e < ‖Bx∗‖∞e = 1

‖|B−1|e‖2 e.

From this we can derive two inequalities. First,

diag(s)Bx <
1

‖|B−1|e‖2 e,

from which

x <
1

‖|B−1|e‖2 B
−1 diag(s)e = x∗.

Second,

− diag(s)Bx <
1

‖|B−1|e‖2 e,
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from which

−x <
1

‖|B−1|e‖2 B
−1 diag(s)e = x∗.

Therefore we have |x | < x∗, which contradicts the condition 1 = ‖x‖2 = ‖x∗‖2.
Obviously, the set B is not closed under addition. It is also not closed under mul-

tiplication as the following example shows: Let B:= diag(10, 0.8); then B ∈ B, but
B2 /∈ B due to Proposition 7. The set B is, however, closed under multiplication by
orthogonal matrices.

Proposition 12 If B ∈ B and H ∈ H, then BH ∈ B.

3.1 Nonnegative case

The definition of the set of preconditioning matrices B is very general. In this section,
we suppose that Gx ≥ 0 for every x ∈ M; basically, this can be obtained by an
appropriate shift. Now, the class of matrices that are suitable for upper bounds is
defined as

B+:={B ∈ R
n×n; ‖x‖2 ≤ √

n‖Bx‖∞ ∀x ≥ 0}
= {B ∈ R

n×n; 1 ≤ √
n‖Bx‖∞ ∀x ≥ 0, ‖x‖2 = 1}.

Obviously, H ⊆ B ⊆ B+. We conjecture that checking B ∈ B+ is co-NP-hard, too.
It seems intractable even in the case B ≥ 0. The condition from Proposition 6 is tight
even for the class B+ since (1 − ε)In /∈ B+ for an arbitrarily small ε > 0.

Notice also that analogy of Proposition 7 does not hold forB+. For example, matrix
B = 1√

n
eeT is singular, but it belongs to B+.

An analogy of Proposition 11 holds true even for class B+, however, it produces
the same family of matrices.

Proposition 13 Let B ∈ R
n×n such that sgn(B−1) = esT for some s ∈ {±1}n. Then

B ∈ B+ if and only if ‖|B−1|e‖2 ≤ √
n.

Proof We have B ∈ B+ if and only if 1 ≤ √
n‖Bx‖∞ for each x ≥ 0, ‖x‖2 = 1. This

brings us to the optimization problem

min ‖Bx‖∞ subject to x ≥ 0, ‖x‖2 = 1.

We can reformulate it as

min z subject to ± Bx ≤ ez, x ≥ 0, ‖x‖2 = 1.

Since diag(s)B−1 = |B−1| ≥ 0, we can write

min z subject to ± diag(s)x ≤ diag(s)B−1ez, x ≥ 0, ‖x‖2 = 1,
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or

min z subject to ± x ≤ |B−1|ez, x ≥ 0, ‖x‖2 = 1.

Condition −x ≤ |B−1|ez is redundant. Condition x ≤ |B−1|ez will be satisfied as
equality for the optimal solution since otherwise we can define x ′:=|B−1|ez, and
x ′′:=x ′/‖x ′‖ then gives smaller objective value z′′:=‖Bx ′′‖∞. Hence the problem
reduces to

min z subject to ‖|B−1|ez‖2 = 1, z ≥ 0,

from which the optimal value is z = 1/‖|B−1|e‖2. Therefore B ∈ B+ if and only if
1 ≤ √

nz, which yields the condition from the statement.

Now, we present several sufficient conditions for matrix B to belong to class B+.

Proposition 14 Let B ∈ R
n×n such that Bi∗ ≥ 1√

n
eT for some i ∈ {1, . . . , n}. Then

B ∈ B+.

Proof For each x ≥ 0, ‖x‖2 = 1, we have ‖Bx‖∞ ≥ |Bx |i ≥ Bi∗eT x ≥ 1.

Proposition 15 Let B ∈ R
n×n, B ≥ 0. Define c j :=maxi Bi j for j = 1, . . . , n. Let I

be the row index set of these maxima. For each i ∈ I , choose the minimum value of all
maxima being in i th row of B, and put the corresponding column index to the set J .
If
∑

j∈J c
−2
j ≤ n, then B ∈ B+.

Proof. Define γ :=
√∑

j∈J c
−2
j and BI J to be the submatrix indexed by rows I and

columns J . Let x ≥ 0, ‖x‖2 = 1. Define x̃ to be restriction of x to the index set J ,
and moreover each removed entry x j ′ is added to the entry x j , j ∈ J , that caused
that j ′ /∈ J by the definition of J . Now we have ‖x̃‖2 ≥ 1 and ‖Bx‖∞ ≥ ‖BI J x̃‖∞.
Next, there is j ∈ J such that x̃ j ≥ (c jγ )−1. Let i ∈ I be the index corresponding
to j . Then Bi j x̃ j = c j x̃ j ≥ γ −1. Therefore

√
n‖Bx‖∞ ≥ √

n‖BI J x̃‖∞ ≥ √
nBi j x̃ j ≥ √

nγ −1 ≥ 1.

Corollary 1 Let B ∈ R
n×n, B ≥ 0. Then B ∈ B+ as long as each column of B contains

at least one entry greater than or equal to 1.

4 Upper bounds by other vector norms

Besides the maximum norm, we can use also other norms in (2) to obtain an upper
bound on f ∗. Let ‖ ·‖ be any vector norm. Since all vector norms are equivalent, there
is β > 0 such that ‖x‖2 ≤ β‖x‖ for each x ∈ R

n . Let ẽ ∈ R
n be a vector, for which

this bound is tight, that is, ‖ẽ‖2 = β‖ẽ‖. An adaptation of (2) reads

f ∗ = max
x∈M

‖Gx‖22 ≤ β2 · max
x∈M

‖Gx‖2. (8)
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By

h∗:=β2 · min
R∈Rn×n :A=RT R

max
x∈M

‖Rx‖2 (9)

we denote the optimal upper bound based on factorization of A. We can extend The-
orem 1 to general vector norms.

Theorem 2 We have

f ∗ = β2 · max
x∈M

min
H∈H

‖HGx‖2 ≤ β2 · min
H∈H

max
x∈M

‖HGx‖2 = h∗. (10)

Proof Let us prove the first equation in (10). For every H ∈ H and x ∈ M, we have

‖Gx‖22 = ‖HGx‖22 ≤ β2‖HGx‖2.

Taking the minimum over H ∈ H,

‖Gx‖22 ≤ β2 · min
H∈H

‖HGx‖2.

Taking the maximum over x ∈ M,

f ∗ = max
x∈M

‖Gx‖22 ≤ β2 · max
x∈M

min
H∈H

‖HGx‖2.

To show that the inequality is attained as equation, let x ∈ M denote y:=Gx . Then

‖y‖22 ≤ β2 · min
H∈H

‖Hy‖2.

Utilizing a Householder transformation, let H ∈ H be a Householder matrix trans-
forming y to α · ẽ, where α:=‖y‖2/‖ẽ‖2. That is, Hy = α · ẽ. Now, we have

β2‖Hy‖2 = β2‖α · ẽ‖2 = β2‖ẽ‖2 ‖y‖22
‖ẽ‖22

= β2‖ẽ‖2 ‖y‖22
β2‖ẽ‖2 = ‖y‖22.

Therefore ‖Gx‖22 = β2 · minH∈H ‖HGx‖2 for each x ∈ M, which proves the
equation.

The proof of the right-hand side equation in (10) is the same as for (3).
The inequality follows from f ∗ ≤ h∗ or from the standard max–min inequality.

4.1 Upper bounds on a box by �1-norm

It is natural to use the �1-norm as an alternative norm, which is discussed in this
section. Here, we have β = 1 since ‖x‖2 ≤ ‖x‖1 for each x ∈ R

n . In this section we
assume that the feasible set is an interval box, that is,M = x = [−e, e].
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Proposition 16 If G has nonzero entries in one row only, then f ∗ = h∗.

Proof From the assumption, Gs = ei yT for some i , where y ∈ R
n . Denoting

s:= sgn(y) ∈ {±1}n and α:=yT s = |y|T e, we have Gs = αei . Next, f ∗ = ‖Gs‖22 =
‖αei‖22 = α2. From (10), we have by putting H :=In

h∗ ≤ max
x∈x ‖InGx‖21 = ‖Gs‖21 = ‖αei‖21 = α2.

Therefore f ∗ = h∗.

Unfortunately, �1-norm is not suitable for a computationally cheap upper bound
because even the inner optimization problem in (9) is hard. The value

max
x∈x ‖Rx‖1 = max

x :‖x‖∞=1
‖Rx‖1 = ‖R‖∞,1

is the so called subordinate matrix norm of R. Rohn [15] proved that, in contrast to
many other norms, this one is NP-hard to compute (cf. also [3]). Tight bounds can
be calculated by means of semidefinite programming [6]. Some other bounds and not
apriori exponential algorithm were presented in [7].

5 Conclusion

In this paper, we discussed upper bounds on the maximum of a convex quadratic
function on a convex polyhedral set. In particular, we focused on the objective matrix
factorization and estimations of the Euclidean norm by another vector norms. We
presented some kind of duality (utilizing min–max inequality) and derived the related
theoretical properties.

The preliminary numerical experiments from [8] indicate a potential of obtain-
ing tight bounds, however, there are still many obstacles and challenging problems
remaining.

First, the value of g∗ needs to be inspected more from the point of view of both
theory andmethods. Computational complexity of determining g∗ is unknown, as well
as any characterization of optimality. The heuristic methods from [8] are promising,
but there is an open space for other, too.

Second, we showed that our approach (with maximum norm) is not convenient
when M has the form of a box. On the other hand, for general convex polyhedra the
experiments from [8] were favorable. Thus identifying the classes of sets for which
our approach is suitable is another open problem.

Third, we proposed a more general preconditioning of the factors than just by
orthogonal matrices. It would be interesting to determine the gap and quality of the
upper bounds. Also, some (heuristic) method employing the preconditioning would
be of interest. From the theoretical perspective, we stated a conjecture on intractability
of recognizing matrices belonging to B+.
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