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ABSTRACT
In this paper, we investigate the relationships between proper
efficiency and the solutions of a general scalarization problem
in multi-objective optimization. We provide some conditions
under which the solutions of the dealt with scalar program
are properly efficient and vice versa. We also show that, under
some conditions, if the considered general scalar problem is
unbounded, then the original multi-objective problem does
not have any properly efficient solution. In another part of the
work, we investigate a general transformation of the objec-
tive functionswhich preserves proper efficiency.We show that
several important results existing in the literature are direct
consequences of the results of the present paper.
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1. Introduction

Consider a general multi-objective optimization problem,

min f (x)

s.t. x ∈ X,
(1)

where X ⊆ R
n is the feasible set, and f : X → R

p with p ≥ 2 is the objective
function.Multi-objective optimization problems arise naturally inmany applica-
tions in engineering,management, economics, finance, etc. Indeed, each decision
making or optimization problem with more than one criterion or objective can
be cast as a multi-objective optimization problem.

Efficient solutions of problem (1) are defined as members of X for which it is
impossible to improve some objective(s) without deteriorating (at least) another
one [1,2]. Mathematically, x̄ ∈ X is an efficient solution of problem (1) if there is
no x ∈ X with fi(x) ≤ fi(x̄) for every i = 1, 2, . . . , p and fj(x) < fj(x̄) for some j ∈
{1, 2, . . . , p}. Proper efficiency, an important solution concept in multi-objective
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optimization, has been proposed in order to eliminate efficient solutions with
unbounded trade-offs [2,3].

Scalarization is one of the most common approaches to handle multi-
objective optimization problems [1,2,4]. A scalarization method is to solve a
single-objective problem (corresponding to (1)) whose optimal solutions can be
(weakly, properly) efficient for (1). In addition, the single-objective programs
derived from scalarization techniques are employed as subproblems in iterative
methods which generate an approximation of the efficient set [5], and also in
interactive approaches which try to produce the most preferred solution [2].

An important question concerning scalarization problems is about the con-
nection between their solutions and proper efficiency, as well as their ability
to generate properly efficient solutions. Scalarization methods are not only
strong tools to generate (properly) efficient solutions, but also provide valuable
information about (the quality of) these solutions. In this study, we consider
a general (unified) scalarization program, and provide some sufficient condi-
tions under which the optimal solutions of the dealt with scalarization problem
are properly efficient. We list some well-known scalarization techniques which
satisfy the given sufficient conditions. Furthermore, we focus on the paramet-
ric scalarization tools, and give sufficient conditions under which a parametric
scalarizationmethod is able to generate all properly efficient solutions. We inves-
tigate the unbounded case separately, and establish that under some conditions
the unboundedness of the considered general scalarization problem implies the
emptiness of the set of properly efficient solutions.

Another part of the current study is devoted to investigation of a general trans-
formation which maps objective functions preserving proper efficiency. Trans-
formation of objective functions has been mainly proposed for normalization
of objectives with different units [6]. In addition, it has been exploited to facili-
tate handling multi-objective problems, for instance by convexification [7,8]. In
this paper, we give sufficient conditions under which the set of properly efficient
solutions of the original and transformed problems are the same. We show that
several important results existing in the literature are direct consequences of the
results of the present paper.

The rest of the paper is organized as follows. We review terminologies and
notations in Section 2. Section 3 is devoted to the scalarization methods. A uni-
fied transformation formulti-objective problems is studied in Section 4. Section 5
contains a short conclusion.

2. Terminologies and notations

The p-dimensional Euclidean space is denoted by R
p. Vectors are considered

to be column vectors and the superscript T denotes the transpose operation.
We use both notations xTy and 〈x, y〉 to denote the standard inner product of
two vectors x, y ∈ R

p. Throughout the paper, we employ the Euclidean norm
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defined as ‖x‖ =
√
xTx. We denote the i-th component (resp. row) of a given

vector (resp. matrix) y by yi. We use e and ei to denote the vector of ones and
the i-th unit coordinate vector, respectively. For a set Y ⊆ R

p, we use the nota-
tions int(Y), cl(Y), and co(Y) for the interior, the closure, and the convex hull
of Y, respectively. Furthermore, cone(Y) and Pos(Y) are the cone and the convex
cone generated byY, respectively. Recall that cone(Y) = {λy : λ ≥ 0, y ∈ Y} and
Pos(Y) = cone(co(Y)).

The nonnegative orthant is defined by

R
p
+ = {

y ∈ R
p : yi ≥ 0, i = 1, 2, . . . , p

}
.

The notations �, ≤ and < stand for the following orders on R
p with p ≥ 2,

x � y ⇐⇒ y − x ∈ R
p
+,

x ≤ y ⇐⇒ y − x ∈ R
p
+ \ {0},

x < y ⇐⇒ y − x ∈ int(Rp
+).

Likewise, matrix inequalities are understood componentwise.
According to Rademacher’s theorem, every locally Lipschitz function on R

n

is almost everywhere differentiable in the sense of Lebesgue measure [9]. Let
g : R

p → R
q be a locally Lipschitz function. The generalized Jacobian of g at x̄,

denoted by ∂g(x̄), is defined by

∂g(x̄) = co
{

lim
ν→+∞ ∇g(xν) : xν → x̄, xν /∈ Xf

}
,

whereXf is the set of points at which g is not differentiable, and∇g(xν) is the q ×
p Jacobian matrix of g at xν . If g is continuously differentiable at ȳ, then ∂g(ȳ) =
{∇g(ȳ)}. See [9] for more information about the generalized Jacobian. Hereafter,
for a measurable set E ⊆ R, μ(E) denotes its Lebesgue measure.

The point yI ∈ R
p in which yIi = minx∈X fi(x) for every i = 1, 2, . . . , p, is

called the ideal point of (1), and a point yU ∈ R
p with yU < yI is said to be a

utopia point.
Several concepts for proper efficiency have been introduced in the literature.

In what follows, we list some definitions which will be used in the sequel. For a
comprehensive study of proper efficiency, the reader is referred to [10].

Definition 2.1 ([3]): A feasible solution x̄ ∈ X is called a properly efficient solu-
tion of (1) in the Geoffrion’s sense, if it is efficient and there exist a real number
M>0 such that for all i ∈ {1, 2, . . . , p} and x ∈ X with fi(x) < fi(x̄), there exists
an index j ∈ {1, 2, . . . , p} with fj(x) > fj(x̄) and

fi(x̄) − fi(x)
fj(x) − fj(x̄)

≤ M.
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Definition 2.2 ([11]): A feasible solution x̄ ∈ X is called a properly efficient
solution of (1) in the Benson’s sense, if

cl
(
cone

(
f (X) + R

p
+ − f (x̄)

)) ∩ (−R
p
+) = {0}.

Definition 2.3 ([12]): A feasible solution x̄ ∈ X is called a properly efficient solu-
tion of (1) in the Henig’s sense if there exists a closed convex pointed cone C with
Rp+ \ {0} ⊆ int(C) and

f (X) ∩ (f (x̄) − C
) = {

f (x̄)
}
.

Definitions 2.1–2.3 formulti-objective problem (1) with natural ordering cone
R
p
+ are equivalent; see [11, Theorem 3.2] and [12, Theorem 2.1]. We remark that

having different definitions for the proper efficiency turns out to be of value. In
fact, a result can be easily derived from a given definition, while the proof of the
same result with other definitions may be less obvious.

Let C∗ denote the dual cone of C, that is, C∗ = {ξ : 〈ξ , y〉 ≥ 0, ∀y ∈ C}. For
δ ∈ R+, we define the convex cone

Cδ = {
y ∈ R

p : 〈ei + δe, y〉 ≥ 0, i = 1, . . . , p
}
.

Remark 2.1: For a convex cone C with Rp
+ \ {0} ⊆ int(C), there exists some δ >

0 such that Rp+ ⊆ Cδ ⊆ C; see [13, p.1259].

An effective tool to analyse the scalarization methods and also proper effi-
ciency is cone approximation [14,15]. Indeed, the coneCδ can be obtained invok-
ing Henig’s procedure addressed in [14]. Henig considered a general ordering
cone and an arbitrary norm.Here, we explain his procedure for the natural order-
ing cone and a special norm defined as �y� = (1 + pδ)−1∑p

i=1 |yi|, where δ > 0
is a given scalar. This norm depends on δ. We denote it by � · � to avoid confu-
sion with Euclidean norm. Define Kδ = {y ∈ R

p : y + δ�y�B ⊆ R
p
+}, where B is

the unit ball in R
p. We have

Kδ = Pos
{
y : �y� = 1, y ∈ Kδ

} = Pos
{
y : eTy = 1 + pδ, y � δe

}
= Pos

{
e1 + δe, . . . , ep + δe

}
.

It can be seen that Cδ = K∗
δ .

3. Scalarization and proper efficiency: A general umbrella

Consider a general problem

min g(f (x))
s.t. x ∈ X, (2)

where f (X) ⊆ Y ⊆ R
p and g : Y → R

q are given. When q = 1, problem (2) is
corresponding to a scalarization approach. In this case, optimality and (proper)
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efficiency for (2) coincide. Throughout the paper, optimal solutions are under-
stood in the global sense.

Definition 3.1 ([16]): Let Y ⊆ R
p. A function g : Y → R

q is called properly
increasing on Y if there exists some δ > 0 such that

y1, y2 ∈ Y , y1 − y2 ∈ Cδ \ {0} ⇒ g(y1) ≥ g(y2). (3)

In fact, Definition 3.1 in [16] is given for Y = R
p and any ordering cone C

with Rp+ \ {0} ⊆ int(C). We consider the ordering cone Cδ in the definition, due
to Remark 2.1. The next theorem states that each efficient solution of (2) is a
properly efficient solution of (1) when g : Y → R

q is properly increasing. This
theorem can be derived from some results in [16]. Here, we provide a short proof
to keep the paper self-contained.

Theorem3.1: Let f (X) ⊆ Y ⊆ R
p. If g : Y → R

q is properly increasing onY, then
each efficient solution of (2) is a properly efficient solution of (1).

Proof: Assume that x̄ is an efficient solution of (2). By Definition 3.1, there exists
some δ > 0 such that (3) holds. Hence, f (X) ∩ (f (x̄) − Cδ) = {f (x̄)} (Otherwise,
one gets g(f (x̂)) ≤ g(f (x̄)) for some x̂ ∈ X, which contradicts the efficiency of x̄
for (2)). So, x̄ is a properly efficient solution of (1). �

Theorem 3.1 is an interesting result which can be employed in scalarization
methods as well. However, it is not straightforward to check if a given function
is properly increasing or not. In Proposition 3.1 and Theorem 3.2 below, we pro-
vide some necessary and sufficient conditions under which a given function is
properly increasing on a given set.

Proposition 3.1: Assume that the locally Lipschitz function g : Y → R
q is prop-

erly increasing on open set Y ⊆ R
p. Then, for each y ∈ Y and each ξ ∈ ∂g(y) one

has

ξTi ∈ C∗
δ , ∀ i = 1, 2, . . . , q,

for some δ > 0.

Proof: As g is properly increasing on Y, there exists some δ > 0 such that (3)
holds. Assume g is differentiable at ȳ ∈ Y . For any non-zero vector d ∈ Cδ and
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t>0 sufficiently small, we have g(ȳ − td) ≤ g(ȳ). Hence,

0 � lim
t↓0

g(ȳ − td) − g(ȳ)
t

= −∇g(ȳ)Td.

Hence, [∇g(ȳ)]Ti ∈ C∗
δ for each i. By the definition of generalized Jacobian, it is

seen that for each y ∈ Y and each ξ ∈ ∂g(y) one has

ξTi ∈ C∗
δ , ∀ i = 1, 2, . . . , q,

and the proof is complete. �

The converse of Proposition 3.1 does not hold necessarily (consider zero func-
tion). In the next theorem, we give some sufficient conditions under which a
function is properly increasing. Recall that, for a measurable set E ⊆ R, μ(E)

denotes its Lebesgue measure.

Theorem 3.2: Let Y ⊆ R
p be an open convex set and let g : Y → R

q be locally
Lipschitz. If there exists some δ > 0 such that

(i) ∀ y ∈ Y , ∀ ξ ∈ ∂g(y) : ξi ∈ C∗
δ , i = 1, 2, . . . , q,

(ii) ∀ y ∈ Y , ∀ d ∈ Cδ \ {0} : μ({t : 0 ∈ ∂g(y + td)}) = 0,

then g is properly increasing on Y.

Proof: Let y∈Y and d ∈ Cδ \ {0}. Bymean value theorem (see [17, Theorem 8]),

g(y + d) − g(y) =
q∑

i=1
λiξ

id,

where ξ i ∈ ∂g(zi), zi ∈ [y, y + d], λi ≥ 0 for i = 1, . . . , q and
∑q

i=1 λi = 1. Here,
[y1, y2] stands for the line segment joining y1 and y2 in R

p. Now, by assumption
(i), we have g(y + d) � g(y).

Now, we show that g is properly increasing on Y with respect to Cδ/2. Suppose
that y ∈ Y and d is a non-zero vector in Cδ/2. As proved above, g(y + d) � g(y).
So, we need to show that g(y + d) �= g(y). By indirect proof, assume that g(ȳ +
d̄) = g(ȳ) for some ȳ ∈ Y and 0 �= d̄ ∈ Cδ/2. Define the function θ : [0, 1] → R

q

by θ(t) = g(ȳ + td̄). Since θ is componentwise nondecreasing on its domain and
θ(0) = θ(1), it is a constant function and consequently θ ′(t) = 0 for each t ∈
(0, 1). As θ ′(t) ⊂ ∂g(ȳ + td̄)d̄ (see [9, Corollary 2.6.6 ]),

0 ∈
{
ξTd̄ : ξ ∈ ∂g(ȳ + td̄)

}
, ∀ t ∈ (0, 1).

As d̄ ∈ Cδ/2 \ {0} ⊆ int(Cδ), ξTd̄ = 0 together with assumption (i) imply that
ξ = 0. This contradicts assumption (ii) and the proof is complete. �
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Theorem 3.3: Let Y ⊆ R
p be an open convex set and let g : Y → R

q be locally
Lipschitz. If there are two matrices L, U>0 such that

∀y ∈ Y , ∀ ξ ∈ ∂g(y) : L � ξ � U,

then g is properly increasing on Y.

Proof: The assumption L � ξ � U for all y ∈ Y and ξ ∈ ∂g(y) implies the exis-
tence of a δ > 0 such that ξi ∈ C∗

δ for each y ∈ Y , ξ ∈ ∂g(y), and i = 1, 2, . . . , q.
So, all assumptions of Theorem 3.2 are fulfilled. Hence, g is properly increas-
ing. �

Theorem 3.3 may not hold when L = 0. The following example clarifies this.

Example 3.1: Consider the multi-objective problem

min f (x)
s.t. x ∈ R, (4)

with f (x) = (− exp(x), − exp(−x))T. Here, exp(·) is the exponential function.
Let g : −int(R2+) → R be given by g(y) = −y1y2. It is readily seen that ∇g(y) >

0 for each y < 0, and f (R) ⊆ {y : y < 0}. Furthermore,

argmin
{
g(f (x)) : x ∈ R

} = R.

Problem (4) does not admit any properly efficient solution. Hence, g cannot be
properly increasing on Y.

In the following, we show that several important existing results concern-
ing scalarization and proper efficiency are directly derived from Theorems 3.1
and 3.3. Indeed, the following results have been proved for each scalarization
method in the literature separately. Here, we give a unified framework.

• Weighted Sum method [18]: The scalar program of this method is formulated
as

min λTf (x)
s.t. x ∈ X, (5)

where λ ∈ int(Rp
+). Setting g(y) := λTy, we have∇g(y) = λ. By Theorem 3.3,

it is easily seen that g is properly increasing on R
p. Consequently, by

Theorem 3.1, the optimal solutions of (5) are properly efficient for (1).
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• Conic scalarization method [19]: The scalar problem of this method can be
written as

min
p∑

i=1
λi(fi(x) − yri ) + α

p∑
i=1

|fi(x) − yri |

s.t. x ∈ X,
(6)

where 0 ≤ α < λi, and is an arbitrary reference point. By setting

g(y) :=
p∑

i=1
λi(yi − yri ) + α

p∑
i=1

|yi − yri |,

the function g is convex but not necessarily differentiable on R
p. We have

∂g(y) ⊆ {λ + αη : −e � η � e}. By Theorem 3.3, g is properly increasing on
R
p for 0 ≤ α < λi, (i = 1, . . . , p). Therefore, by Theorem 3.1, the optimal

solutions of (6) are properly efficient for (1) when 0 ≤ α < λi, (i = 1, . . . , p).
• Modified weighted Tchebycheff method [20]: This method is written as

min max
i

{
λi(fi(x) − yUi ) + αeT(f (x) − yU)

}
s.t. x ∈ X,

(7)

where λ ∈ int(Rp
+), α > 0, and yU is a utopia point. By setting g(y) :=

maxi{λi(yi − yUi ) + αeT(y − yU)}, the function g is convex but not necessar-
ily differentiable onR

p. By Theorem 3.3, it is seen that g is properly increasing
on R

p. Therefore, by Theorem 3.1, each optimal solution of (7) is properly
efficient for (1).

Although properly increasing notion provides a unified framework for obtain-
ing some well-known results, it is not applicable for somemethods. For instance,
consider the following scalarization problem, known as compromise program-
ming [21],

min

( p∑
i=1

λsi(fi(x) − yUi )s

)1/s

s.t. x ∈ X,

(8)

where λ ∈ int(Rp
+), s > 1, and yU is a utopia point. It is known that opti-

mal solutions of (8) are properly efficient for (1) [21,22]. For instance, assume
p = s = 2, λ1 = λ2 = 1 and yU = e. Suppose that Y = int(e + R

2+), δ > 0 and

g(y) =
√
y21 + y22. Since

lim
α→0

1
α

((
cos(2α)

sin(2α)

)
−
(
cosα
sinα

))
=
(
0
1

)
,

for ᾱ > 0 sufficiently small, (cos(2ᾱ) sin(2ᾱ))T − (cos ᾱ sin ᾱ)T ∈ int(Cδ). On
the other hand, for r sufficiently large, by setting ŷ := r(cos(2ᾱ) sin(2ᾱ))T and
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ȳ := r(cos ᾱ sin ᾱ)T, we have ŷ, ȳ ∈ Y and ŷ − ȳ ∈ Cδ \ {0}while g(ŷ) = g(ȳ) =
r. Therefore, g cannot be properly increasing on Y. In the following, we give a
result which covers these cases.

Theorem 3.4: Assume the following conditions:

(i) The properly efficient set of (1) is non-empty;
(ii) Y is open and convex satisfying cl(f (X)) ⊆ Y ;
(iii) g : Y → R

q is locally Lipschitz on Y ;
(iv) ξ > 0, ∀ y ∈ Y , ∀ξ ∈ ∂g(y).

Then the set of efficient solutions of (2) is a subset of the set of properly efficient
solutions of (1).

Proof: By indirect proof, suppose that x̄ is an efficient solution of (2) while it is
not properly efficient for (1). By Benson’s proper efficiency definition, there are
{xν} ⊆ X, {dν} ⊆ R

p
+ and {tν} ⊆ R+ such that

lim
ν→∞ tν(f (xν) + dν − f (x̄)) = −d, (9)

where 0 �= d ∈ R
p
+. If f (xν) − f (x̄) = 0 for some subsequence of {xν}, then due

to

tν(f (xν) − f (x̄)) � tν(f (xν) + dν − f (x̄)), (10)

we get 0 � −d which contradicts 0 �= d ∈ R
p
+. So, without loss of generality, we

assume f (xv) − f (x̄) �= 0 for each ν. Hence, the sequence {(f (xν) − f (x̄))/‖f (xν)

− f (x̄)‖} is well-defined and, by working with subsequences if it is necessary, we
get

lim
ν→∞

f (xν) − f (x̄)
‖f (xν) − f (x̄)‖ = −d̄, (11)

for some 0 �= d̄ ∈ R
p. Now, we show that d̄ ∈ R

p
+. To this end, as {dν} ⊆ R

p
+, it

is sufficient to prove that

lim
ν→∞

f (xν) + dν − f (x̄)
‖f (xν) − f (x̄)‖ � 0. (12)

We have

lim
ν→∞

f (xν) + dν − f (x̄)
‖f (xν) − f (x̄)‖ = lim

ν→∞
tν(f (xν) + dν − f (x̄))
tν(‖f (xν) − f (x̄)‖) . (13)

If tν‖f (xν) − f (x̄)‖ goes to +∞ or a positive scalar (by choosing an appropriate
subsequence if necessary), then by (9) and (13), the inequality (12) is derived.
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Otherwise, we have limν→∞ tν‖f (xν) − f (x̄)‖ = 0, and by (9),

−d = lim
ν→∞ tν(f (xν) + dν − f (x̄))

= lim
ν→∞ tν(f (xν) − f (x̄)) + lim

ν→∞ tνdν = 0 + lim
ν→∞ tνdν � 0,

which contradicts 0 �= d ∈ R
p
+.

Therefore, one may assume

lim
ν→∞

f (xν) − f (x̄)
‖f (xν) − f (x̄)‖ = −d̄, (14)

for some 0 �= d̄ ∈ R
p
+. By [17, Theorem 8] (taking (ii) and (iii) into account), for

each ν, there are {y1ν , . . . , yqν} ⊆ Y and λν ∈ R
q
+ such that

g(f (xν)) − g(f (x̄)) =
q∑

k=1

λν
kξ

k
ν (f (xν) − f (x̄)), (15)

where ykν ∈ [f (xν), f (x̄)] and ξ kν ∈ ∂g(ykν), k = 1, . . . , q, and
∑q

k=1 λν
k = 1. Sup-

pose that {f (xν)} has a cluster point. Without loss of generality, due to (ii) and
(iii), onemay assume that λν → λ, f (xν) → ȳ ∈ Y , ykν → yk ∈ Y and ξ kν → ξ k ∈
∂g(yk) for k = 1, . . . , q. By (iv), accompanying (14) and (15), we get

lim
ν→∞

g(f (xν)) − g(f (x̄))
‖f (xν) − f (x̄)‖ = −d̂,

for some d̂ ∈ R
q
+. Indeed, d̂ > 0 (because of (iv)). The preceding relation con-

tradicts the efficiency of x̄ for (2). Now we consider the case that {f (xν)} is
unbounded. Let x̂ be a properly efficient solution of (1). One can infer from (14),

lim
ν→∞

f (xν) − f (x̂)
‖f (xν) − f (x̄)‖ = −d̄.

This contradicts the proper efficiency of x̂ for (1), and the proof is complete. �

As checking the existence of properly efficient solution might be demanding
in some cases, we replace this assumption (i.e. (i) in Theorem 3.4) with another
condition in the next theorem.

Theorem 3.5: Assume the following conditions:

(i) Y is an open convex set with Y ⊆ a + R
p
+ for some a ∈ R

p;
(ii) g is locally Lipschitz on Y;
(iii) ξ > 0, ∀ y ∈ Y , ∀ ξ ∈ ∂g(y);
(iv) cl(f (X)) ⊆ Y.
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Then each efficient solution of (2) is a properly efficient solution for (1).

Proof: The proof is same as that of Theorem 3.4. Only we need to show that the
sequence {f (xν)} is bounded. If it is unbounded, then by choosing an appropriate
subsequence, (i) and (iv) imply that

lim
ν→∞

f (xν) − f (x̄)
‖f (xν) − f (x̄)‖ = lim

ν→∞
f (xν)

‖f (xν)‖ = d̂,

for some d̂ ∈ R
p
+, which contradicts (14). �

In the following, we demonstrate that Theorem 3.5 implies that the opti-
mal solutions of some common and uncommon scalar problems are properly
efficient.

• Compromise programming [21]: As mentioned above, the scalar program of
this method is written as

min

( p∑
i=1

λsi(fi(x) − yUi )s

)1/s

s.t. x ∈ X,

(16)

where λ ∈ int(Rp
+), s > 1, and yU is a utopia point. Suppose that Y = {y : y >

yU}, and g : Y → R given as

g(y) :=
( p∑

i=1
λsi(yi − yUi )s

)1/s

.

All assumptions of Theorem 3.5 are fulfilled. Hence, the optimal solutions
of (16) are properly efficient for (1).

• Multiplicative scalarization: Let yU ∈ R
p be a utopia point for (1). Consider

the following scalarization method

min
p∏

i=1
(fi(x) − yUi )λi

s.t. x ∈ X,
(17)

where λ > 0 is a fixed vector. It is seen that the function g : int(yU + R
p
+) →

R given by g(y) = ∏p
i=1(yi − yUi )λi fulfils all conditions of Theorem 3.5. So,

each optimal solution of (17) is a properly efficient solution of (1).
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• Exponential scalarization: By considering g(y) := ∑p
i=1 λieyi with λ > 0 (a

fixed vector), we get the following scalarization

min
p∑

i=1
λiefi(x)

s.t. x ∈ X.
(18)

By setting Y = {y : y > yU}, all assumptions of Theorem 3.5 are fulfilled.
Therefore, the optimal solutions of (18) are properly efficient for (1).

A multi-objective optimization problem generally has numerous properly
efficient solutions. One important question in this regard is ‘ under which con-
dition(s) a parametric scalarization technique is able to generate each properly
efficient solution? ’. A general parametric scalarization problem can be written as

(Pu) : min g(f (x), u)
s.t. x ∈ X, (19)

where x is the decision variable and u is a parameter varying within an arbi-
trary set U. The set Y ⊆ R

p with f (X) ⊆ Y and the function g : Y × U → R ∪
{+∞} are given. Theorem 3.6 below, gives sufficient conditions under which the
parametric problem (19) generates all properly efficient solutions of (1).

Theorem 3.6: Let f (X) ⊆ Y. Assume that for each ȳ ∈ Y and each δ > 0, there
exists some u ∈ U with

{y ∈ Y : g(y, u) < g(ȳ, u)} ⊆ (ȳ − Cδ). (20)

If x̄ is a properly efficient solution for (1), then x̄ solves (19) for some u ∈ U.

Proof: Suppose that x̄ is a properly efficient solution of (1). Due to the Henig’s
proper efficiency definition, invoking Remark 2.1, there is some δ > 0 such that
f (X) ∩ (f (x̄) − Cδ) = {f (x̄)}. Set ȳ := f (x̄). By the assumption, there exists some
ū ∈ U such that{

x ∈ X : g(f (x), ū) < g(f (x̄), ū)
} ⊆ (f (x̄) − Cδ).

This implies

x̄ ∈ argmin{g(f (x), ū) : x ∈ X},
and the proof is complete. �

As an application of Theorem 3.6, we establish that conic scalarizationmethod
[19] produces all properly efficient solutions. It is enough to show that this
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method fulfils all assumptions of Theorem 3.6. As mentioned above, the scalar
program of this method is written as

min
p∑

i=1
λi(fi(x) − yri ) + α

p∑
i=1

|fi(x) − yri |

s.t. x ∈ X,

Here,

U =
{
(α, λ, yr) : yr ∈ R

p, λ ∈ int(Rp
+), 0 ≤ α < λi (i = 1, . . . , p)

}

and g : R
p × U → R ∪ {+∞} is given by

g(y, (α, λ, yr)) =
p∑

i=1
λi(yi − yri ) + α

p∑
i=1

|yi − yri |.

Now, we check the assumptions of Theorem 3.6. Let ȳ ∈ R
p and δ > 0 be given.

We show that for λ = e, α ∈ (1/(2δ + 1), 1) and yr = ȳ we have

{
y ∈ R

p :
p∑

i=1
(yi − ȳi) + α

p∑
i=1

|yi − ȳi| < 0

}
⊆ (ȳ − Cδ),

or equivalently

{
y ∈ R

p :
p∑

i=1
yi + α

p∑
i=1

|yi| < 0

}
⊆ −Cδ . (21)

It is not difficult to see that, for each α > 0,

{
y ∈ R

p :
p∑

i=1
yi + α

p∑
i=1

|yi| < 0

}

=
{
y ∈ R

p :
p∑

i=1
yi + α

p∑
i=1

βiyi < 0, ∀ β ∈ {−1, 1}p
}
.

To establish the inclusion (21), it is sufficient to show that for j = 1, . . . , p, and
y ∈ R

p with
∑p

i=1 yi + α
∑p

i=1 |yi| < 0, we have (ej + δe)Ty ≤ 0.
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Suppose that
∑p

i=1 yi + (1/(2δ + 1))
∑p

i=1 |yi| < 0. Let j ∈ {1, 2, . . . , p} be
arbitrary. Consider β̄ ∈ {−1, 1}p with

β̄i =
{ −1, i �= j

1, i = j

By our discussion,
∑p

i=1 yi + (1/(2δ + 1))
∑p

i=1 β̄iyi < 0. As

ej + δe = 1
2
(2δ + 1)

⎛
⎜⎜⎝

p∑
i=1

ei + 1
2δ + 1

⎛
⎜⎜⎝ej −

p∑
i=1
i�=j

ei

⎞
⎟⎟⎠
⎞
⎟⎟⎠

= 1
2
(2δ + 1)

( p∑
i=1

ei + 1
2δ + 1

( p∑
i=1

β̄iei
))

,

we have (ej + δe)Ty < 0. Now, to prove (21), assume α ∈ (1/(2δ + 1), 1) and∑p
i=1 yi + α

∑p
i=1 |yi| < 0. As 1/(2δ + 1) < α, we get

∑p
i=1 yi + (1/(2δ + 1))∑p

i=1 |yi| < 0. So, due to the above discussion, (ej + δe)Ty ≤ 0 for each j =
1, 2, . . . , p. This leads to y ∈ −Cδ and (21) is proved.

In the sameway, one can show that themodifiedweightedTchebycheffmethod
satisfies the conditions of Theorem3.6, and so, by choosingλ andα appropriately,
this technique is also able to generate all properly efficient solutions.

By Theorem 3.1, one can obtain a properly efficient solution. However, scalar-
ization methods can be applied to recognize the emptiness of the set of properly
efficient solutions. Consider the following scalarization problem:

min g(f (x))
s.t. x ∈ X,

f (x) � ε,
(22)

in which Y ⊆ R
p is a given set containing f (X). Furthermore, g : Y → R ∪ {∞}

is a lower semi-continuous function and ε ∈ R
p.

Theorem3.7: If problem (22) is unbounded, thenmulti-objective problem (1) does
not have any properly efficient solution.

Proof: By indirect proof assume that x̄ is a properly efficient solution of (1).
Due to the Henig proper efficiency, there exists a convex pointed cone C ⊆ R

p

with R
p
+ \ {0} ⊆ int(C) and (f (X) − f (x̄)) ∩ (−C) = {0}. We show that the set

{y ∈ f (X) : y � ε} is bounded. If not, there exist a nonnegative sequence {tν}
and a sequence {dν} ⊆ R

p
+ such that ‖dν‖ = 1 for each ν, and tν → +∞ and

{ε − tνdν} ⊆ f (X). Without loss of generality, we may assume dν → d̄ ∈ R
p
+ \
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{0}. As R
p
+ \ {0} ⊆ int(C) and (1/tν)(ε − tνdν − f (x̄)) → −d̄, for ν sufficiently

large, we have

1
tν

(ε − tνdν − f (x̄)) ∈ −C \ {0},

which contradicts (f (X) − f (x̄)) ∩ (−C) = {0}. Therefore, the set {y ∈ f (X) :
y � ε} is bounded. So, minimum of the lower semi-continuous function g on
cl({y : y ∈ f (X), y � ε}) is finite. This implies the finiteness of the optimal value
of problem (22) and completes the proof. �

As an application, we apply Theorem 3.7 to Benson’s problem [23] written as

min
p∑

i=1
fi(x)

s.t. f (x) � f (x̄),
x ∈ X,

(23)

where x̄ ∈ X. Benson [23] showed that, under convexity, if problem (23) is
unbounded, then problem (1) does not have any properly efficient solution.
Soleimani-damaneh and Zamani [24] established this result without convexity.
In addition, Zamani [25] proved it for a general ordering cone. It is readily seen
that the above-mentioned results reported in [23,24] follow from Theorem 3.7.

Another scalarization technique, to which one can apply Theorem 3.7,
is Gerstewitz/Pascoletti–Serafini scalarization. It is known that a variety of
important scalarization techniques can be modelled as special cases of Gerste-
witz/Pascoletti–Serafini scalarization [4,26]. This method is formulated as

min t
s.t. f (x) � a + tr,

x ∈ X,
(24)

where a ∈ R
p and r ∈ R

p
+. If (24) is unbounded, then

min g(f (x))
s.t. f (x) � ε,

x ∈ X,
(25)

with g(y) = min{t : y � a + tr} is unbounded for some ε ∈ R
p. The considered

g is lower semi-continuous. Hence, by Theorem 3.7, one can infer that if Ger-
stewitz/Pascoletti–Serafini scalarization with a ∈ R

p and r ∈ R
p
+ is unbounded,

then problem (1) does not have any properly efficient solution. This result has
been derived in [25, Proposition 2.2] as well.
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4. Proper efficiency and transformation

In this section, we investigate the relationship between the multi-objective prob-
lem (1) and its objective-transformed correspondence regarding the proper effi-
ciency. Transforming the objective functions has been mainly proposed for con-
vexifying the problem [7,8,27,28] and normalizing the objectives with different
units [6].

LetY ⊆ R
pwith f (X) ⊆ Y and a vector-valued functionφ : Y → R

q be given.
An objective-transformed version of (1), invoking φ, can be written as

min φ(f (x))
s.t. x ∈ X. (26)

In the sequel, we provide some sufficient conditions under which properly effi-
cient solution sets of problems (1) and (26) coincide. It is known when φ is
R
p
+-transformation on Y, then the efficient solutions of problems (1) and (26)

are the same [29, p. 296]. Recall that a function φ : Y → Z ⊆ R
p is called

R
p
+-transformation on Y if it is bijective and

ȳ � ŷ ⇔ φ(ȳ) � φ(ŷ), ∀ ȳ, ŷ ∈ Y .

By mean value theorem [17, Theorem 8], if φ : Y → φ(Y) is bijective and
the generalized Jacobian of φ and φ−1 are positive on open sets Y and φ(Y),
respectively, then it is R

p
+-transformation on Y.

By the following example, we show thatRp
+-transformation property ofφ onY

is not sufficient for coincidence of the properly efficient solutions of problems (1)
and (26).

Example 4.1: Consider the multi-objective problem

min
[
x2

x

]
s.t. x ≤ 0.

Let φ : R+ × (−R+) → R
2 be given by φ(y) = (

√y1, y2)T. It can be seen that φ
isR

2+-transformation onR+ × (−R+). The point x̄ = 0 is not properly efficient,
because there does not exist λ ∈ int(R2+) such that x̄ ∈ argminx≤0{λ1x2 + λ2x};
see [1, Theorem 3.13]. Notice that the considered multi-objective problem is
convex. Nevertheless, x̄ is properly efficient for the problem transformed by φ.
This follows from the fact that each efficient solution of a linear multi-objective
optimization problem is properly efficient [1].

Theorem 4.1: Assume the following conditions:

(i) Y is an open convex set satisfying cl(f (X)) ⊆ Y;
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(ii) Either the properly efficient set of (1) is non-empty or Y ⊆ a + R
p
+ for some

a ∈ R
p;

(iii) φ : Y → R
q is locally Lipschitz on Y;

(iv) ker(M) ∩ R
p
+ = {0}, ∀ y ∈ Y , ∀M ∈ ∂φ(y);

(v) M � 0, ∀ y ∈ Y , ∀M ∈ ∂φ(y).

Then the set of properly efficient solutions of (26) is a subset of that of (1).

Proof: It is proved similar to Theorem 3.4. �

In general, Theorem 4.1 does not hold without condition (ii). The following
example clarifies this point.

Example 4.2: Consider the multi-objective problem

min
[
f1(x)
f2(x)

]
s.t. x ≤ 1,

with f1(x) = x and

f2(x) =
{ −x, −1 ≤ x ≤ 1

1, x ≤ −1

Let φ : R
2 → R

2 given by φ(y) = [ exp(y1), exp(y2) ]T. The original and the trans-
formed problems have the same efficient solutions. Figure 1 illustrates that
all efficient points of the transformed problem are properly efficient while the
original problem does not have any properly efficient solution.

Note that in the same line one can establish Theorem 4.1 when f (X) is
Lipschitz arc-wise (arc-wise R

p
+-convex) connected while Y is not necessarily

convex.

Figure 1. f (X) and φ(f (X)).
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Definition 4.1 ([29]): A set Y ⊆ R
p is called

(i) Lipschitz arc-wise connected if for each y1, y2 ∈ Y , there exists a Lipschitz
function γ : [0, 1] → Y such that γ (0) = y1 and γ (1) = y2.

(ii) arc-wise R
p
+-convex connected if for each y1, y2 ∈ Y , there exists a convex

function γ : [0, 1] → Y such that γ (0) = y1 and γ (1) = y2.

Remark 4.1: Since convex functions on compact subsets of Euclidean spaces
are Lipschitz [9], arc-wise R

p
+-convex connectivity implies Lipschitz arc-wise

connectivity.

Corollary 4.1 below, addresses the result of Theorem 4.1 for differentiable case.

Corollary 4.1: Assume that the properly efficient set of (1) is non-empty, and Y is
an open convex set satisfying cl(f (X)) ⊆ Y. Furthermore, assume thatφ : Y → R

q

is continuously differentiable on Y. If ∇φ(y) � 0 and {d ∈ R
p
+\{0} : ∇φ(y)d =

0} = ∅ for each y ∈ Y , then the set of properly efficient solutions of (26) is a subset
of that of (1).

In the next corollary, we give other sufficient conditions under which the
properly efficient sets of problems (1) and (26) are the same.

Corollary 4.2: Assume the following conditions:

(i) Y1,Y2 ⊆ R
p are open convex sets;

(ii) Either the properly efficient set of (1) is non-empty or Y1 ⊆ a + R
p
+ for some

a ∈ R
p;

(iii) φ : Y1 → Y2 and its inverse, φ−1, are locally Lipschitz;
(iv) cl(f (X)) ⊆ Y1 and cl(φ(f (X))) ⊆ Y2;
(v) ker(M) ∩ R

p
+ = {0}, ∀ y ∈ Y1, ∀M ∈ ∂φ(y); M � 0, ∀ y ∈ Y , ∀ M ∈

∂φ(y);
(vi) ker(M) ∩ R

p
+ = {0}, ∀ y ∈ Y2, ∀M ∈ ∂φ−1(y); M � 0, ∀ y ∈ Y , ∀M ∈

∂φ−1(y).

Then the properly efficient solutions of (1) and (26) are the same.

Proof: It follows from Theorem 4.1. �

In [27], Zarepisheh et al. have proved, given integer l>0, the set of properly
efficient solutions of (1) coincides with that of the following problem

min

⎡
⎢⎣
f1(x)l
...

fp(x)l

⎤
⎥⎦

s.t. x ∈ X,
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provided that yI > 0. This result follows from Corollary 4.2. It is enough to
consider Y1 = Y2 = {y : y > 0} and φ(f (x)) = (f1(x)l, . . . , fp(x)l)T.

Hirschberger [29, Theorem 5.2] showed that both problems (1) and (26)
share the same properly efficient solutions provided that the following conditions
hold:

(a) f (X),φ(f (X)) ⊆ R
p are closed and arc-wise R

p
+-convex;

(b) Y1 and Y2 are open sets with f (X) ⊆ Y1 and φ(f (X)) ⊆ Y2;
(c) φ : Y1 → Y2 is a diffeomorphism (both φ and φ−1 are bijective and differ-

entiable);
(d) φ : Y1 → Y2 is R

p
+-transformation;

(e) The properly efficient set of (1) is non-empty.

Since φ is R
p
+-transformation, for given ȳ ∈ Y and d ∈ R

p
+ \ {0},

∇φ(ȳ)d = lim
t→0

φ(ȳ + td) − φ(ȳ)
t

� 0.

As d ∈ R
p
+ \ {0} is arbitrary, we have ∇φ(ȳ) � 0. In addition, φ is a diffeomor-

phism. Thus, ∇φ(ȳ) is invertible and ker(∇φ(ȳ)) ∩ R
p
+ = {0}. Similarly, under

these circumstances, one can derive condition (vi) of Corollary 4.2 as well. Since
the efficient set of (1) is non-empty, R

p
+-transformation property implies that

the efficient set of (26) is also non-empty. Consequently, by [29, Proposition
4.1], the properly efficient set of (26) will be non-empty. As mentioned ear-
lier, Corollary 4.2 holds under arc-wise R

p
+-convex connectivity as well. So,

Hirschberger’s result follows from Corollary 4.2 when φ and φ−1 are locally
Lipschitz on their domain.

In another paper, Zarepisheh and Pardalos [28] investigated some special
classes of transformations. They considered the transformed problem

min

⎡
⎢⎣
g1(f1(x))

...
gp(fp(x))

⎤
⎥⎦

s.t. x ∈ X,

(27)

in which gi : [infx∈X fi(x), supx∈X fi(x)] → R for i = 1, 2, . . . , p. This transfor-
mation is a special case of transformation φ investigated in Corollary 4.2. They
established if yI ∈ R

p exists and the following conditions are satisfied for each
i = 1, 2, . . . , p, then the properly efficient solutions of problems (1) and (27) are
the same [28, Theorem 2]:

(I) gi is continuous on [infx∈X fi(x), supx∈X fi(x)];
(II) gi is differentiable and g′

i is positive on Ii := (infx∈X fi(x), supx∈X fi(x));
(III) Both gi and g′

i are increasing on (infx∈X fi(x), supx∈X fi(x)).
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This result is valid when the interval considered in (II) and (III) is replaced
with closed interval Īi := [infx∈X fi(x), supx∈X fi(x)]. Indeed, assumptions (II)
and (III) should be considered on a set containing Īi. Then [28, Theorem 2] is a
consequence of Corollary 4.2 of the current paper. The following example shows
that the properly efficient solutions of (1) and (27) may not be the same if one
assumes (I) –(III) with Ii’s instead of Īi’s.

Example 4.3: Consider the multi-objective problem

min
[

x
1 − x

]
s.t. 0 ≤ x ≤ 1,

(28)

As the above problem is linear, all efficient solutions are properly efficient [1].
In addition, inf0≤x≤1 f1(x) = inf0≤x≤1 f2(x) = 0. Let φ : R

2+ → R
2 be given by

φ(y) = [ y12, y24 ]T. It is easily seen that the example fulfils all assumptions (I)
–(III) listed above. Here, x̄ = 1 is a properly efficient solution of (28), but not
for the transformed problem. This follows from the fact that the transformed
problem is convex and x̄ /∈ argmin{λ1x2 + λ2(1 − x)4 : 0 ≤ x ≤ 1} for each λ ∈
int(R2+).

5. Conclusion

In this paper, we provided some theorems for analysing a unified scalarization
approach as well as a general objective transformation, regarding proper effi-
ciency. In addition to establishing fundamental important results, we showed
that several well-known results existing in the literature can be obtained as a
by-product of these new theorems. These results not only address a unified
framework for examination of the scalarization techniques, they pave the road
for introducing and analysing new scalarization methods.
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