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Abstract A collision between two bodies is a usual phenomenon in many engineering ap-
plications. The most important problem with the collision analysis is determining the hys-
teresis damping factor or the hysteresis damping ratio. The hysteresis damping ratio is re-
lated to the coefficient of restitution. In this paper, an explicit expression is determined for
this relation. For this reason, a parametric expression is considered for the relation between
the deformation and its velocity of the contact process. This expression consists of two un-
known constants. Using the energy balance, a new explicit parametric expression between
the hysteresis damping factor and the coefficient of restitution is derived. For determining
the unknown constants, the root mean square (RMS) of the hysteresis damping ratio of this
new expression with respect to the numerical model is minimized. This new model is com-
pletely suitable for the whole range of the coefficient of restitution. So, the new model can
be used in the hard and soft impact problems. Finally, three numerical examples of two col-
liding bodies, the classic bouncing ball problem, the resilient impact damper, and a planar
slider–crank mechanism, are presented and analyzed.

Keywords Collision · Damping · Contact force model · Hysteresis damping factor ·
Hysteresis damping ratio

Nomenclature
RMS Root of mean square
F Contact force
K Generalized stiffness parameter
� Relative normal deformation
R1 and R2 Radii of spheres
σ1 and σ2 Material parameters
v1 and v2 Poisson’s ratios
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E1 and E2 Young moduli
D Damping coefficient
C Hysteresis damping factor
N Exponent
δ̇ Relative normal velocity of two contacting bodies
cr Coefficient of restitution
x1 and x2 Displacements of the center of mass
δ1 and δ2 Deformations of two spheres
m1 and m2 Masses of spheres
ẍ1 and ẍ2 Acceleration of the centers of mass of two spheres
m Equivalent mass
δ̈ Relative normal acceleration of two contacting bodies
V −

1 and V −
2 Velocities of the two spheres at the initial instant of contact

V12 Common velocity of both spheres in the maximum deformation instant
δ̇− and δ̇+ Impacting and the separating velocities
�Tcom Change in the kinetic energy in the compression period
�Tres Change in the kinetic energy in the restitution period
�T Total change in the kinetic energy in the contact process
�Wcom Work done by the Hertz contact force in the compression period
�Wres Work done by the Hertz contact force in the restitution period
�W Total work done by the Hertz contact force in the contact process
δmax Maximum deformation
ln Natural logarithm
�Ecom Energy loss due to the damping force in the compression period
�Eres Energy loss due to the damping force in the restitution period
�E Total energy loss due to the damping force in the contact process
hr Hysteresis damping ratio
H0 Initial height of bouncing ball
g Gravity acceleration
V0 Initial velocity of bouncing ball

1 Introduction

A collision between two bodies is a usual phenomenon in many engineering applications
such as mechanisms [1, 2], robotics [3], biomechanics [4], railway dynamics [5], and impact
dampers [6]. The state of mechanical system is changed abruptly in the contact events.
The velocities and accelerations of colliding bodies are discontinuous in these problems.
This discontinuity causes the nonlinearity of the dynamic behavior of multibody systems.
When the two bodies impact each other, the contact force relationship between them must
be satisfied. Therefore the contact force model is an important issue in the contact–impact
process.

The first work on the collision between two bodies was done by Hertz, who developed
the theory now bearing his name [7]. In this theory, a perfectly nonlinear elastic element is
considered as the contact force model between the two colliding bodies. The Hertz model is
not representing the energy dissipation in the collision process. For this reason, a damping
element is added to the Hertz model to account for energy dissipation during the impact
of colliding bodies. The combination of the stiffness and the damping element is called
the viscoelastic constitutive model. The first viscoelastic impact model is the Kelvin–Voigt
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model, which consists of a linear spring and a linear damper element connected in parallel
configuration [7]. This model is not very accurate because it does not consider nonlinearity
of the impact process. Also the contact force at the beginning of contact is not continuous,
because of the existence of the damping element in this model. To solve this problem, Hunt
and Crossley proposed a nonlinear viscoelastic model for the contact problems [8].

The most important problem in the nonlinear viscoelastic model is determining the hys-
teresis damping factor. Many researchers have worked on this matter. Their studies can be
divided into four categories. In the first category, the hysteresis damping factor is determined
by the experimental tests, as done by Ristow [9], Lee and Herrmann [10], Schäfer et al. [11],
Bordbar and Hyppänen [12], as well as Zhang and Sharf [13]. In the second category, an ex-
act equation is proposed for determining the hysteresis damping factor, as done by Herbert
and McWhannell [14], Gonthier et al. [15], as well as Zhang and Sharf [16]. The exact equa-
tion is a nonlinear function between the hysteresis damping factor and the physical parame-
ters of the contact process. This equation doesn’t have an explicit solution, but can be solved
numerically. In the third category, a simple assumption is considered and an explicit expres-
sion for the hysteresis damping factor is obtained, as done by Hunt and Crossley [8], Lee
and Wang [17], Kuwabara and Kono [18], Lankarani and Nikravesh [19], Tsuji et al. [20],
Brilliantov et al. [21], Marhefka and Orin [3], as well as Gharib and Hurmuzlu [22]. In the
fourth category, the researchers considered an expression for the relation between the defor-
mation and its velocity; an explicit expression between the hysteresis damping factor and
the coefficient of restitution was obtained as in Flores et al. [23] and Hu and Guo [24].

Further comparative and review studies of contact force models for solid colliding bodies
can be found in [25–30].

In this paper, a new model for contact force between two colliding bodies is derived. For
this purpose, the mathematical modeling of a contact process is presented in Sect. 2. The
kinetic energy and the work done by the Hertz contact force in the process are obtained in
Sects. 3 and 4, respectively. In Sect. 5, the exact expression for the maximum deformation
of the contact process is obtained. The energy loss due to the damping force is calculated
in Sect. 6. In Sect. 7, the new model for contact force is derived. Finally, three numerical
examples of two colliding bodies, the classic bouncing ball problem, the resilient impact
damper, and a planar slider–crank mechanism, are presented and analyzed in Sects. 8, 9,
and 10, respectively.

2 Mathematical modeling

The Hertz model is the base of most contact force models in the engineering applications.
This model relates the contact force and the normal deformation with a nonlinear power
function and is expressed as [7, 19, 31, 32]

F = Kδn (1)

where K represents the generalized stiffness parameter and δ is the relative normal defor-
mation between the two contacting bodies. For the two contacting spheres, the generalized
parameter K is a function of the radii of the spheres and the material properties. Under this
condition, the generalized parameter K can be expressed as [7, 19, 31, 32]

K = 4

3π(σ1 + σ2)

√
R1R2

R1 + R2
(2)

Author's personal copy
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Table 1 The hysteresis damping
factor in some earlier contact
force models

The contact force model The hysteresis damping factor (C)

Hunt and Crossley [8] 3(1−cr )
2

K

δ̇−

Lankarani and Nikravesh [19] 3(1−c2
r )

4
K

δ̇−
Flores et al. [23] 8(1−cr )

5cr
K

δ̇−
Gharib and Hurmuzlu [22] 1

cr
K

δ̇−
Hu and Guo [24] 3(1−cr )

2cr
K

δ̇−

where R1 and R2 are the radii of the spheres, and the material parameters of the spheres are
given by

σi = 1 − v2
i

πEi

i = 1,2 (3)

where the variables vi and Ei are the Poisson’s ratios and the Young moduli of the spheres,
respectively. For a contact between sphere 1 and a plane surface of body 2, the generalized
stiffness parameter K is expressed as

K = 4

3π(σ1 + σ2)

√
R1. (4)

It is well known that the Hertz model cannot represent the dissipative energy during the
contact process.

Hunt and Crossley presented a nonlinear viscoelastic contact force model which can be
expressed as [8]

F = Kδn + Dδ̇ (5)

where the exponent n is usually set to 3/2 in the Hertz model [19]. Hunt and Crossley
proposed that the damping coefficient D be expressed as [8]

D = Cδn (6)

where C is the hysteresis damping factor. So the contact force between the two colliding
spheres is expressed as

F = Kδ3/2 + Cδ3/2δ̇. (7)

The relations between the hysteresis damping factor and the coefficient of restitution in some
earlier contact force models are listed in Table 1.

Each contact process consists of two phases. The first is named compression, the ap-
proaching or loading period, while the other is restitution, the separating or unloading pe-
riod [7]. The two spheres come in contact and reach their maximum deformation during the
compression period. In this period, the deformation velocity is reduced from its initial value
to zero. The two spheres separate from each other during the restitution period, in which the
deformation velocity is increased to its maximum value.

Figure 1 shows the contact between the two spheres. In this figure, x1, x2, δ1 and δ2

represent the displacements of the center of mass and the deformations of both spheres,
respectively, just like the parameters m1, m2, R1, and R2 that represent the masses and the
radii of both spheres.
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Fig. 1 The contact between two
spheres

Fig. 2 Free diagrams of two
spheres

In Fig. 1, the total deformation δ is the sum of both spheres, i.e., δ = δ1 +δ2. The total de-
formation is also equal to the relative motion between the two spheres and can be expressed
as [33]

δ = x1 + x2. (8)

It is be noted that the deformation of each sphere in not equal to the displacement of the
center of mass, i.e., δ1 �= x1 and δ2 �= x2.

The free diagram of two spheres in contact is shown in Fig. 2. In this figure, F represents
the contact force between the two colliding spheres and expressed by (7).

Using the Newton’s second law, the acceleration of the center of mass of each sphere can
be obtained as:

ẍ1 = − F

m1
, (9)

ẍ2 = − F

m2
. (10)

By double differentiation of (8) and combining with (9) and (10), the mathematical repre-
sentation of the dynamical equivalent system can be expressed as

mδ̈ + F = 0 (11)

where δ̈ represents the acceleration of the equivalent system and the equivalent mass, m, is
given by

m = m1m2

m1 + m2
. (12)

Author's personal copy



238 H. Safaeifar, A. Farshidianfar

Using (7) and (11), the mathematical model of the dynamical system can be expressed as

mδ̈ + Cδ3/2δ̇ + Kδ3/2 = 0. (13)

The mathematical model (13) is a second-order ordinary differential equation with variable
coefficients. This equation doesn’t have an analytical solution.

3 The kinetic energy

The balance of the linear momentum for the two spheres between the initial instant and the
maximum deformation instant of the contact can be expressed as [34]

m1V
−

1 + m2V
−

2 = (m1 + m2)V12 (14)

where V −
1 and V −

2 are velocities of the two spheres in the initial instant of contact. So, the
common velocity of both spheres in the maximum deformation instant of the contact can be
obtained as

V12 = m1V
−

1 + m2V
−

2

m1 + m2
. (15)

The coefficient of restitution is defined as the ratio between the deformation velocity at the
separation and the deformation velocity at the initial contact of the two spheres and can be
expressed as

cr = − δ̇+

δ̇− (16)

where δ̇− and δ̇+ represent the impacting and the separating velocities, respectively.
The change in the kinetic energy in the compression period of the contact process can be

expressed as

�Tcom = 1

2
(m1 + m2)V

2
12 −

(
1

2
m1

(
V −

1

)2 + 1

2
m2

(
V −

2

)2
)

. (17)

Using V −
1 = δ̇−

1 , V −
2 = −δ̇−

2 , δ̇− = δ̇−
1 + δ̇−

2 and combining with (15), (16), and (17), the
change in the kinetic energy in the compression period is obtained as

�Tcom = −1

2
m

(
δ̇−)2

(18)

where m is the equivalent mass as given by (12).
Similarly, the change in the kinetic energy in the restitution period can be expressed as

�Tres = +1

2
m

(
δ̇+)2

. (19)

The total change in the kinetic energy in the contact process of the two solid spheres is the
sum of the changes in the kinetic energy in the compression and the restitution periods. The
total change in the kinetic energy can be obtained as

�T = −1

2
m

(
δ̇−)2(

1 − c2
r

)
. (20)
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Equation (20) represents the kinetic energy loss in the contact process of the two solid
spheres in terms of the initial deformation velocity and the coefficient of restitution. For
a fully elastic contact, the coefficient of restitution is equal to one, so the change in the ki-
netic energy in this contact is zero. For a fully plastic contact, the coefficient of restitution
is null, so the change in the kinetic energy in this contact is maximized.

4 The work done by the Hertz contact force

The work done by the Hertz contact force in the compression period of the contact process
can be expressed as

�Wcom =
∫ δmax

0

(−Kδ3/2
)
dδ (21)

which can be obtained as

�Wcom = −2

5
Kδ5/2

max. (22)

Similarly, the work done by the Hertz contact force in the restitution period can be obtained
as

�Wres = 2

5
Kδ5/2

max. (23)

So, the total work done by the Hertz contact force in the contact process can be obtained as

�W = �Wcom + �Wres = 0. (24)

5 The maximum deformation

The relation between the deformation and its velocity can be expressed as [34]

δ̇dδ̇ = δ̈dδ. (25)

This equation is a relation between distance, velocity, and acceleration in 1 DOF motion of
a particle.

Using (13), the acceleration of the equivalent 1-DOF system can be obtained as

δ̈ = −Cδ3/2δ̇ + Kδ3/2

m
. (26)

Combining (25) and (26) gives

δ̇dδ̇ = −Cδ3/2δ̇ + Kδ3/2

m
dδ. (27)

Equation (27) can be represented as

δ̇

K + Cδ̇
dδ̇ = −δ3/2

m
dδ. (28)
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Integrating (28) from δ̇− to 0 for δ̇ and from 0 to δmax for δ, the maximum deformation of
the contact process can be obtained as

δmax =
(

5m

2C

(
δ̇− − K

C
ln

(
K + Cδ̇−

K

)))2/5

. (29)

Equation (29) is an exact expression for the maximum deformation of the contact process.

6 The energy loss due to the damping force

The energy loss due to the damping force in the compression period can be expressed as

�Ecom =
∫ δmax

0

(−Cδ3/2δ̇
)
dδ. (30)

This energy is dissipated in the thermal form and the plastic deformation in the colliding
bodies.

For evaluation of Eq. (30), the relation between the deformation and its velocity must be
specified.

Integrating (28) from δ̇− to δ̇com for δ̇ and from 0 to δcom for δ, the relation between the
deformation and its velocity in the compression period can be obtained as

δcom =
(

5m

2C

((
δ̇− − δ̇com

) − K

C
ln

(
K + Cδ̇−

K + Cδ̇com

)))2/5

. (31)

Combining (31) with (30), the energy loss due to the damping force in the compression
period can be obtained as

�Ecom = m

(−(δ̇−)2

2
+ K

C
δ̇− +

(
K

C

)2

ln

(
K

K + Cδ̇−

))
. (32)

Similarly, the energy loss due to the damping force in the restitution period can be obtained
as

�Eres = m

(
(δ̇+)2

2
− K

C
δ̇+ +

(
K

C

)2

ln

(
K + Cδ̇+

K

))
. (33)

The total energy loss due to the damping force in the contact process of the two solid spheres
is the sum of the energy losses in the compression and the restitution periods. So, the total
energy loss due to the damping force can be calculated as

�E = −1

2

((
δ̇−)2 − (

δ̇+)2) + mK

C

(
δ̇− − δ̇+)

+ m

(
K

C

)2(
ln

(
K

K + Cδ̇−

)
+ ln

(
K + Cδ̇+

K

))
. (34)

Combining (16) and (34) gives

�E = −1

2

(
δ̇−)2(

1 − c2
r

) + mK

C
δ̇−(1 + cr) + m

(
K

C

)2

ln

(
K − Ccr δ̇

−

K + Cδ̇−

)
. (35)
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Fig. 3 The hysteresis damping
ratio versus the coefficient of
restitution in the numerical
model and earlier models

The balance of the energy in the contact process can be expressed as

�W + �E = �T. (36)

Combining (20), (24), and (35) with (36) gives

δ̇−(1 + cr) + K

C
ln

(
K − Ccr δ̇

−

K + Cδ̇−

)
= 0. (37)

For simplicity, the hysteresis damping ratio is defined as

hr = Cδ̇−

K
. (38)

So, the relation between the hysteresis damping ratio and the coefficient of restitution can
be expressed as

hr(1 + cr) = ln

(
1 + hr

1 − crhr

)
. (39)

This relation is the exact equation between the hysteresis damping ratio and the coefficient
of restitution as obtained by Zhang and Sharf [16]. This equation has no explicit solution,
but can be solved numerically. In this paper, this numerical solution is called the numerical
model. To derive an explicit expression for the relation between the hysteresis damping ratio
and the coefficient of restitution, a simpler relation between the deformation and its velocity
can be considered instead of (31).

The relation between the hysteresis damping ratio and the coefficient of restitution in the
numerical model and the earlier models are shown in Fig. 3.

All the models presented in Fig. 3, except the Gharib and Hurmuzlu model [22], have
a similar response when the value of the coefficient of restitution is higher than 0.8. The
contact force approaches by Flores et al. [23], Gharib and Hurmuzlu [22], Hu and Guo [24],
and the numerical model have a similar behavior for moderate and low values of the coeffi-
cient of restitution. Indeed, when the coefficient of restitution is equal to zero, the hysteresis
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damping ratio and the hysteresis damping factor in these models become infinite, which is
logical from the physical view of the contact process.

The numerical model is nearly equivalent to the real contact force model. So for the
low values of coefficient of restitution, Gharib and Hurmuzlu model is closer to reality but
this model is originally not proper for the high values of coefficient of restitution. For such
values, Flores et al. and Hu and Guo models are closer to reality.

It can be observed that the behavior of Flores et al. [23] and Hu and Guo [24] models is
very similar to the numerical model in the whole range of the coefficient of restitution.

Flores et al. used the solution of the Kelvin–Voigt model and considered the relation
between the deformation and its velocity as [23]

δ̇

δ̇− =
(

1 −
(

δ

δmax

)2) 1
2

. (40)

Hu and Guo used the solution of the Hertz model and considered the relation between the
deformation and its velocity as [24]

δ̇

δ̇− =
(

1 −
(

δ

δmax

) 5
2
) 1

2

. (41)

Similarly, in this paper, a parametric expression is considered for the relation between the
deformation and its velocity in the compression period given by

δ̇

δ̇− =
(

1 −
(

δ

δmax

)a) 1
b

(42)

where a and b are two unknown constants.
Combining (30) and (42) gives

�Ecom =
∫ δmax

0

(
−Cδ3/2δ̇−

(
1 −

(
δ

δmax

)a) 1
b
)

dδ. (43)

Considering δ/δmax = y gives

�Ecom = −Cδ5/2
maxδ̇

−
∫ 1

0
y3/2

(
1 − ya

) 1
b dy. (44)

Introducing I = ∫ 1
0 y3/2(1 − ya)

1
b dy gives

�Ecom = −ICδ5/2
maxδ̇

−. (45)

Similarly, the energy loss due to the damping force in the restitution period can be obtained
as

�Eres = ICδ5/2
maxδ̇

+. (46)

So, the total energy loss due to the damping force in the contact process of two solid spheres
can be calculated as

�E = −ICδ5/2
max

(
δ̇− − δ̇+)

. (47)
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Combining (16) with (47) gives

�E = −ICδ5/2
maxδ̇

−(1 + cr). (48)

As shown in (28), the relation between the deformation and the deformation velocity is
related to K , C, and m. Using (2), (3), and (12), it is clear that the relation between the
deformation and deformation velocity is related to the modulus of elasticity, Poisson’s ratio,
radius, and mass of two colliding bodies. Equation (42) show a combination of parameters
a and b that determine the relation between the deformation and the deformation velocity.
An integral combination of these two parameters is equal to parameter I . So parameters a,
b and I are related to the modulus of elasticity, Poisson’s ratio, radius, and mass of two
colliding bodies.

7 The new contact force model

The energy balance in the compression period of the contact process can be expressed as
[34]

�Ecom + �Wcom = �Tcom. (49)

Combining (18), (22), and (46) with (49) gives

−ICδ5/2
maxδ̇

− − 2

5
Kδ5/2

max = −1

2
m

(
δ̇−)2

. (50)

Solving Eq. (50) gives

δ5/2
max =

1
2 m(δ̇−)2

2
5K + ICδ̇− . (51)

So, the maximum deformation in the contact process can be obtained by

δmax =
( 1

2m(δ̇−)2

2
5K + ICδ̇−

)2/5

. (52)

Combining (20), (24), (48), and (51) with (36) gives

−IC

( 1
2m(δ̇−)2

2
5K + ICδ̇−

)
δ̇−(1 + cr) + 0 = −1

2
m

(
δ̇−)2(

1 − c2
r

)
. (53)

Solving (53), the hysteresis damping factor can be obtained as

C = 2

5I

(1 − cr)

cr

K

δ̇− . (54)

So, the hysteresis damping ratio in the new model can be expressed as

hr = 2

5I

(1 − cr)

cr

(55)

where I is a function of two unknown constants a and b. To determine a and b, the RMS
of the percentage error of the hysteresis damping ratio of the new model with respect to the
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Table 2 The RMS of the percentage error of the hysteresis damping ratio of the new model with respect to
the numerical model

a b

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

1 95.092 61.628 43.599 32.598 25.416 20.575 17.303 15.144 13.794 13.030

1.5 62.251 40.756 28.937 21.838 17.468 14.853 13.417 12.761 12.596 12.718

2 44.786 29.438 21.136 16.483 14.015 12.904 12.597 12.729 13.078 13.521

2.5 34.047 22.566 16.708 13.873 12.774 12.612 12.901 13.379 13.917 14.455

3 26.921 18.221 14.266 12.812 12.620 12.983 13.549 14.161 14.756 15.308

3.5 22.003 15.496 13.067 12.599 12.949 13.576 14.257 14.910 15.508 16.046

4 18.564 13.875 12.632 12.813 13.464 14.212 14.932 15.584 16.164 16.676

4.5 16.178 13.010 12.640 13.221 14.027 14.824 15.544 16.178 16.732 17.217

5 14.572 12.649 12.886 13.701 14.581 15.387 16.091 16.700 17.226 17.683

5.5 13.547 12.609 13.250 14.196 15.103 15.897 16.578 17.159 17.657 18.088

6 12.953 12.763 13.663 14.676 15.584 16.357 17.010 17.564 18.036 18.442

numerical model is minimized. The RMS of the percentage error of the hysteresis damping
ratio of the new model with respect to the numerical model for various values of a and b is
listed in Table 2.

It is clear that the RMS of the percentage error is minimized at a = 1.5 and b = 5.5. This
minimized value is 12.596. So, the relation between the deformation and its velocity can be
expressed as

δ̇

δ̇− =
(

1 −
(

δ

δmax

) 3
2
) 2

11

. (56)

Thus, parameter I can be expressed as

I =
∫ 1

0

(
y3/2

(
1 − y3/2

)2/11)
dy (57)

which can be evaluated as

I = 0.3180 ≈ 0.3200 = 8

25
. (58)

It is being noted that the RMS of the percentage error of Flores et al. and Hu and Guo
models is 29.438 and 22.566, respectively. These values are much greater than the RMS of
the minimized value, which is 12.596.

Combining (55) with (58), the hysteresis damping ratio can be obtained as

hr = 5

4

(1 − cr)

cr

. (59)

The relation (59) is called the new model. The relation between the hysteresis damping ratio
and the coefficient of restitution in the new model, the numerical model, as well as Flores
et al. [23] and Hue and Guo [24] models are shown in Fig. 4.

Although Flores et al. and Hu and Guo models have similar behavior as the numerical
model, they are not completely consistent with the numerical model for the low values of
the coefficient of restitution.
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Fig. 4 The hysteresis damping
ratio versus the coefficient of
restitution in the contact force
models

Analyzing Fig. 4, it is clear that the new model is completely consistent with the numer-
ical model in the whole range of the coefficient of restitution. So, the new model can be
selected as the best contact force model for the collision between the two solid spheres in
the whole range of the coefficient of restitution. Thus, this new model can be used in the
hard and soft impact problems.

The same result can be obtained by another way. The contact force model is performed by
using the input coefficient of restitution (cr,in). Then the deformation velocity at separation
time (δ̇+) is obtained by using the new contact force model. Thus, the output coefficient of
restitution is obtained as

cr,out = − δ̇+

δ̇− . (60)

It can be found that the output coefficient of restitution differs from the input coefficient of
restitution, but they should be the same value theoretically. The plots of the output coefficient
of restitution versus the input coefficient of restitution for different contact force models are
shown in Fig. 5. The error of the output coefficient of restitution with respect to the input
coefficient of restitution for various contact force models are plotted in Fig. 6.

Analyzing Figs. 5 and 6 shows that the error of the new model for low values of the
coefficient of restitution (e.g., less than 0.4) is less than the error of Flores et al. and Hu
and Guo models. So the new model is closer to reality for low values of the coefficient of
restitution.

Analyzing Figs. 3, 4, 5, and 6 shows that the contact force models can be divided into
four groups. In the first group, the contact force models are suitable for the high values of
the coefficient of restitution. All of the models, except for Gharib and Hurmuzlu model, are
placed in this group. In the second group, the contact force models are suitable for the low
and moderate values of the coefficient of restitution, such as Flores et al. model, Gharib and
Hurmuzlu model, Hu and Guo model, and the new model derived in this paper. In the third
group, the contact force models are nearly suitable for the whole range of the coefficient of
restitution and include Flores et al. and Hu and Guo models. In the fourth group, the contact
force models are completely suitable for the whole range of the coefficient of restitution.
The new model is placed in this group.
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Fig. 5 The relation between the
output and the input coefficients
of restitution

Fig. 6 The error of output
coefficients of restitutions respect
to the input coefficients of
restitution

The hysteresis damping factor in the new model can be obtained as

C = 5

4

(1 − cr)

cr

K

δ̇− . (61)

Thus, the new model of the contact force can be expressed as

F = Kδ3/2

(
1 + 5

4

(1 − cr)

cr

δ̇

δ̇−

)
. (62)

It is important to point out that the new model is valid for the direct central and frictionless
impacts. In perfectly elastic contacts when the coefficient of restitution is equal to one, the
hysteresis damping factor is zero and the new model is equivalent to the Hertz model. When
the coefficient of restitution is equal to zero, the hysteresis damping factor become infinite,
which is logical from the physical view of the contact process.
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Fig. 7 The bouncing ball

Fig. 8 The contact force versus
the deformation for cr = 0.2

Table 3 Numerical values for
the bouncing ball problem [24] Parameter Value

Mass m = 1.0 kg

Radius R = 0.1 m

Initial height H0 = 1.0 m

Gravity acceleration g = 9.8 m/s2

Equivalent stiffness K = 1.4 × 108 N/m3/2

Initial velocity V0 = 0 m/s

8 Example 1: the bouncing ball problem

A numerical example, the classic bouncing problem, which is a simple example for analyz-
ing the contact process, is considered here to compare the new model with the earlier contact
force models listed in Table 1. The model of this problem is shown in Fig. 7. The numerical
values of this example are listed in Table 3 [24].

The bouncing ball falls down and collides with the ground. The ground is assumed to be
rigid and stationary. The initial velocity of the ball when it collides with the ground can be
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Fig. 9 The contact force versus
the deformation for cr = 0.4

Fig. 10 The contact force versus
the deformation for cr = 0.6

expressed as [34]

δ̇− = √
2g(H0 − R) (63)

where g represents gravity acceleration. In relation (63), H0 and R are the initial height of
the center of mass and the radius of the ball, respectively.

The new model, the Hertz model, and the earlier contact force models are used to cal-
culate the contact force, deformation, and time of the contact during the contact process
between the ball and the ground. Analyzing this problem is done by using Matlab codes.
The contact force versus the deformation for four values of the coefficient of restitution
(0.2, 0.4, 0.6, and 0.8) is plotted in Figs. 8, 9, 10, and 11, respectively.

By analyzing Figs. 8–11, the following results are obtained:

1. When the coefficient of restitution is high, i.e., 0.8, all of the models, except for Gharib
and Hurmuzlu model, have a similar behavior and become very similar to Hertz model.
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Fig. 11 The contact force versus
the deformation for cr = 0.8

2. When the coefficient of restitution is low, i.e., 0.2, Flores et al. model, Gharib and Hur-
muzlu model, Hu and Guo model, and the new model have a similar behavior.

3. When the coefficient of restitution is increasing (from Fig. 8 to Fig. 11), the maximum
deformation increases while the maximum contact force is reduced. These results are
expected because of decreasing in energy loss due to damping force while the coefficient
of restitution is increasing.

9 Example 2: the resilient impact damper

The impact damper is a passive device composed of one or more cavities that are filled with
dry granular particles such as granules of steel, aluminum, lead, tungsten carbide, or ce-
ramic [35]. The impact damper consists of one or several small masses which are mounted
on top or inside the vibrating system. When the primary system vibrates, the impact mass
moves and collides with fixed stops of the mounting system. These collisions lead to the
momentum transfer from the primary system to the impact mass. The kinetic energy of the
vibrating system equipped with the impact damper gets dissipated due to impact between
impact and primary masses, friction and sound radiation. So the kinetic energy of the pri-
mary system is reduced and the vibrating motion gets damped.

The impact dampers can be classified into rigid and resilient. For low contact velocity
and high modulus of elasticity, the impact damper can be considered as rigid. While for
high contact velocity and low modulus of elasticity, the impact damper is resilient. In the
rigid impact damper, the contact time is very small. Thus the changes in the positions of
the primary and impact masses can be neglected. So the positions after contact can be con-
sidered equal to those before contact. In the resilient impact damper, the contact time is
not negligible. So the changes in the positions of the primary and impact masses must be
considered.

Figure 12 shows a schematic of a 1-DOF system equipped with the resilient single-unit
impact damper.
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Fig. 12 The 1-DOF system
equipped with resilient impact
damper

When there is no contact between the impact and primary masses, the equations of mo-
tion of the system can be written as

− CẋM − KxM − μmg sgn(ẋM − ẋm) = MẍM

μmg sgn(ẋM − ẋm) = mẍm

(64)

where xM and xm are the positions of the primary and the impact masses, respectively; μ

is the kinetic friction coefficient between these two masses. Dot and double dot denote the
first and second derivatives with respect to time, respectively. These equations are a system
of two nonhomogeneous coupled second-order ordinary differential equations with constant
coefficients and so can be solved analytically as

xM(t) = e−ξωnt
{
A sin

(√
1 − ξ 2t

) + B cos
(√

1 − ξ 2t
)} − μ

m

K
g sgn(ẋM − ẋm),

xm(t) = 1

2
μg sgn(ẋM − ẋm)t2 + Ct + D

(65)

where ωn, ξ , and t represent the natural frequency, damping ratio, and time, respectively.
The initial conditions are considered parametrically as

xM(t0) = xM,0, ẋM(t0) = VM,0,

xm(t0) = xm,0, ẋm(t0) = Vm,0.
(66)

Using these initial conditions, the general solution of the equations of motion can be deter-
mined. The contact situation between main mass and impact mass can be determined using
the following relations:

xm − (xM − d/2) = 0 (Contact between impact mass and left side),

(xM + d/2) − xm = 0 (Contact between impact mass and right side)
(67)

where d is the gap size.
When contact occurs between impact mass and two end stoppers, the contact force be-

tween them must be added to the equations of motion. In this situation, the equations of
motions can be written as

MẍM + CẋM + KxM + μmg sgn(ẋM − ẋm) + Fcontact = 0

mẍm − μmg sgn(ẋM − ẋm) − Fcontact = 0
(68)

where Fcontact is the contact force between the impact and main masses. By defining the
deformation between impact mass and the left side of main mass container as δ = (xM −
d/2)−xm and also using the new contact force model described in this article, the equations
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Fig. 13 Time response of impact
mass and left and right sides of
the container (the impact damper
with 10 mm gap size)

Table 4 Numerical values for
the impact damper problem Parameter Value

Main mass M = 500 gr

Impact mass m = 4 gr

Stiffness of main mass K = 100 N/m

Damping ratio of main mass ξ = 0.003

Generalized stiffness KHz = 1 × 108 N/m3/2

Coefficient of restitution cr = 0.7

Coefficient of kinetic friction μ = 0.1

Initial displacement of main mass x0 = 0.03 m

Initial velocity of main mass V0 = 0 m/s

of motion can be obtained as

MẍM + CẋM + KxM + μmg sgn(ẋM − ẋm)

+ KHz

〈
(xM − d/2) − xm

〉 3
2

(
1 + 5

4

1 − cr

cr δ̇− (ẋM − ẋm)

)
= 0

mẍm − μmg sgn(ẋM − ẋm)

− KHz
〈
(xM − d/2) − xm

〉 3
2

(
1 + 5

4

1 − cr

cr δ̇− (ẋM − ẋm)

)
= 0

(69)

where KHz is the generalized stiffness parameter which can be determined using Eq. (2) or
(4). These equations form a system of two coupled nonlinear differential equations. They
cannot be solved analytically but can be solved numerically.

The numerical values of this example are listed in Table 4.
Figure 13 shows the time response of the positions of the impact mass and two end

stoppers in the impact damper with 20 mm gap size. As shown in this figure, the behavior
of this damper can be classified into three zones. In the first zone, from 0 to 30 seconds, the
impact mass has effective collisions with two end stoppers. This zone is named the impact
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Fig. 14 Amplitude of position of
1-DOF system equipped with
impact damper with 20 mm gap
size

Fig. 15 Amplitude of position of
1-DOF system equipped with
impact damper with 30 mm gap
size

zone. The effect of friction and structural damping is insignificant in the impact zone. In
this zone, the decreasing rate of the amplitude of the position of the primary mass is nearly
linear. In the second zone, from 30 to 45 seconds, the collisions between the impact mass
and two end stoppers is not so effective. The reason for the movement of the impact mass in
this zone is mainly the friction between the impact mass and the guiding bars. This zone is
named the friction zone. In the third zone, after 45 seconds, the movement of impact mass
relative to the end stoppers is nearly insignificant. In this zone, the dynamic behavior of
this system is similar to the behavior of the system without an impact damper. This zone is
named the no-impact zone.

For simplifying response graphs, the amplitude of the position of the 1-DOF system can
be displayed. Figures 14, 15, 16 and 17 show the amplitude of the position response in
the 1-DOF system equipped with an impact damper with 20, 30, 40, and 50 mm gap size,
respectively.
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Fig. 16 Amplitude of position of
1-DOF system equipped with
impact damper with 40 mm gap
size

Fig. 17 Amplitude of position of
1-DOF system equipped with
impact damper with 50 mm gap
size

As shown in these figures, while the gap size increased, the impact damper effect in
free vibration reduction improved. When the gap size is very small, the effect of the impact
damper is insignificant. For the zero gap size, the impact damper has no effect on the free
vibration reduction. In this situation, the system is equivalent to a 1-DOF system without
impact damper. When the gap size is very large, greater than twice the initial displacement
of 1-DOF system theoretically, the impact mass cannot collide with the end stoppers. Thus
the impact damper has no effect on the free vibration reduction. In this situation, the system
is equivalent to a 1-DOF system without an impact damper, which is similar to the zero gap
size situation.

10 Example 3: a planar slider–crank mechanism

A planar slider–crank mechanism is a classical contact–impact problem in multibody system
dynamics. This system consists of five solid bodies representing the slider–crank mechanism
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Fig. 18 A slider–crank
mechanism and a free sliding
block [36]

Table 5 Geometrical and
inertial propertied of multibody
system

Body Length (m) Mass (kg) Moments of inertia (kg m2)

Crank 0.200 0.010 8 × 10−5

Connecting rod 0.300 0.015 6 × 10−5

Slider – 0.050 2 × 10−5

Free block – 0.200 3 × 10−5

Table 6 Initial conditions and
simulation configurations of
multibody system

Parameter Value

Initial position of free sliding block 1 m

Initial velocity of free sliding block (to the left) 20 m/s

Angular velocity of rod (counterclockwise) 200 rad/s

The radius of spherical shapes of two contact
surfaces

8.5 mm

The contact stiffness parameter of two colliding
bodies

9.5 × 109 N/m3/2

The coefficient of restitution between two
colliding bodies

0.7

Distance a 10 mm

and the free sliding block as shown in Fig. 18 [36]. When the slider moves to the right,
it collides with the free block and the contact problem occurs. This system represents a
multibody model with a total of two degrees of freedom (2-DOF). The geometrical and
inertial properties of solid bodies and the initial conditions and simulation configurations of
this multibody system are listed in Tables 5 and 6, respectively.

The relative deformation of the slider with respect to the free block can be determined
using the following geometrical condition [36]:

δ = x5 − x4 − 2a. (70)

The crank and the connecting rod are aligned in the x direction at the start of dynamic anal-
ysis. Using the constraint equation between the crank and slider, the position and velocity
of the slider can be calculated. When the slider and free block collide, the difference in their
velocities can be obtained using the new contact force model described in this article.

The time response of positions and velocities of the slider and free block are shown in
Figs. 19 and 20, respectively.

At the start of dynamic analysis, the crack rotates counterclockwise and the slider moves
to the left. At this time, the free block moves to the left. When time is close to 0.28, the
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Fig. 19 The time response of
positions of the slider and free
block

Fig. 20 The time response of
velocities of the slider and free
block

slider moves to the right and collides with the free block. After collision, the slider moves to
the left and the free block moves to the right. As shown in Fig. 19, two collisions between
slider and free block occur. After each collision, the velocity of the slider decreased while
the velocity of the free block increased.

As shown in this example, the new contact force model described in this article can be
used in multibody system dynamics problems.

11 Conclusions

The new model of the contact of the collision between the two solid bodies has been de-
rived in this paper. This model can be used directly for the impact analysis of the multibody
dynamics. This model has been developed by using the energy balance during the contact
process. The change in the kinetic energy is obtained by using the classical kinetic en-
ergy principle. Furthermore, a parametric relation between the deformation and its velocity
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is considered. Then the dissipated energy due to the damping force has been calculated.
Equating the change in the kinetic energy with the energy loss due to the damping force, an
explicit parametric expression between the hysteresis damping factor and the coefficient of
restitution is obtained. For determining the unknown constants, the RMS of the percentage
error of this expression with respect to the numerical model is minimized. This expression
is called the new model which can be used directly for the impact analysis of the multibody
dynamic systems.

To sum up, this new model is completely suitable for analyzing the contact process for
the whole range of the coefficient of restitution (0–1). So this model is valid for the hard and
soft contact problems. Also this model, as an independent formula, can be used directly for
impact analysis of the multibody dynamic systems.
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