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Abstract: This paper deal with the varentropy for the residual lifetime ran-
dom variables. The influence of systems age on residual varentropy is investi-
gated. It is shown that in some distributions such as uniform, exponential and
generalized Pareto, residual varentropy is independent of systems age. These
distributions have characterized using residual varentropy, and a new class of

distributions is also introduced.
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1 Introduction

The Shannon entropy (1948) of a continuous random variable X, with density

function f, is defined as follows

h(X) = = | 1) log(F(x)dr, (n

where h(X) is called differential entropy, and S is the support of X. It is obvi-
ous that the Shannon differential entropy of X is the expectation of information
content —log(f(X)).

In applied statistics, the moments of a random variable such as mean and

variance have important roles in data analysis. Due to —log(f(X)) is a random
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variable, looking at its statistics including variance, higher moment, and so on
can be valuable. The variance of information content —log(f(X)) has been
studied in some papers recently, and considerable results in finite-blocklength
information theory have been achieved. This variance is called varentropy, and
it is a important parameter to estimate the performance of optimal coding, de-
termine the dispersion of sources and channel capacity in computer sciences.
There are few papers about varentropy in statistical studies. Song (2001) in-
vestigated varentropy for comparing the measure of kurtosis in heavy tailed
distributions. Liu (2007) presented some mathematical properties for varen-
tropy. Zagrofos (2008) and Enomoto et al. (2013) proposed a goodness of fit
test based on varentropy. See also Kontoyiannis and Verdu (2013), Fradelizi
et al. (2016), and Erdal (2016).

Let X be a continuous random variable with density function f the varen-

tropy of X is defined as follows
VE(X) = Var(~log f(X)) = E[~log f(X) — h(X)]’, (2)

where VE(X) is the varentropy of the random variable X. The varentropy is the
expectation of the squared deviation of the information content —log(f (X)),
from its mean. This is a measure that indicates how the information content is
dispersed around the entropy. Song (2001) showed that the varentropy can be
used to compare the tail and shape of different densities as an intrinsic measure
of the shape of a distribution. Within density functions that have the fourth
moment, (4, and variance o2, the varentropy provides similar information
to the well known kurtosis measure, %. If the standard measure of kurtosis
can not be calculated, (several heavy-tailed distributions) such as Student’s t
with the degree of freedom less than four, Cauchy and Pareto distribution, the
varentropy is a good measure instead of %

The varentropy can provide a partial order about the distribution tails. For
example, if X has a Student’s t distribution with degree of freedom v =1,2,3,4.5,
the varentropies are, 3.2899, 1.5978, 1.1595, 0.9661, and 0.8588, respectively.

Therefore when Vv is increased, the tails become lighter and the varentropy
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decreases, consequently.

Liu (2007) in his Ph.D. thesis introduced some mathematical characteris-
tics of the varentropy. Liu called the varentropy by Information Volatility and
showed that this measure can be characterized the uniform distribution, and
used varentropy for separating the normal and gamma and a subfamily of the
beta distribution.

If the lifetime of a system is considered as a random variable, the uncertainty
measure of this system up to a specified time or afterword, has particular im-
portance. These two important measures are referred to as past and residual
entropies, respectively. That entropies have many applications, such as char-
acterization of distributions, stochastic ordering, and so on.

Studying the varentropy for residual lifetime distributions is the aim of this
paper. We will investigate the effect of systems age on it, and introduce some
characterization using the residual varentropy. Also, a new class of the distri-

butions by the residual varentropy is introduced.

2 Residual varentropy and characterization

Shannon entropy is used as a measure of uncertainty for a random variable in
information theory. Nonetheless, if two random variables have the same en-
tropy, there is a common question. Which of the entropies is the most suitable
criterion for measuring uncertainty? For instance, the Shannon entropy is zero
for standard uniform and also exponential distribution with parameter e. In
reality, the question is, do both entropies calculate uncertainty equally accu-
rately? If the concentration of information content is more around the entropy,
then the entropy would be appropriate to measure the amount of uncertainty.
This concentration can be calculated with the variance of —log f(X). It can be
shown that the varentropy of the uniform distribution is zero and for exponen-
tial distribution is 1, so in the uniform distribution, entropy is more appropriate
for measuring the uncertainty.

In lifetime studies, we usually have knowledge about the age of the system
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and we know, the system is still operating at the moment. If a system is known
to have survived to age ¢, Clearly (2) is no longer useful for measuring the un-
certainty about remaining lifetime of the system. Ebrahimi (1996) introduced

a measure of uncertainty of residual lifetime distributions as follows

h(X,1) = —/too;;(();;log;(g;dx, 3)

where h(X,t) is the residual entropy, F (-) is survival function and (3) is ex-
pressed based on the Shannon entropy for random variable {X —¢|X > t}.
For further study see also Ebrahimi and Kirmani (1996), Sankaran and

Gupta (1999), Asadi and Ebrahimi (2000) and Abraham and Sankaran (2006).
Jf(X)

This entropy is the expectation of the random variable — log 0] with respect
to density function g (x,7) = %, x > t. In this section, we introduce the resid-

ual varentropy for lifetime distribution. The residual varentropy is variance of
— log% and is noted by VE (X ,1).

Now the last question is raised again, if two residual lifetime random vari-
ables have the same uncertainty, which of them shows the uncertainty with
more accurately? It is clear that the answer must be found by the residual
varentropy. Therefore residual varentropy also indicate concentration of infor-
mation content — log % around the residual entropy, & (X,?), and it answers
the last question.

On the other hand, similar to Song’s measure, the residual varentropy is able
to compare the lifetime distribution in term of the heaviness tail, and gives us

similar information to kurtosis measure for residual lifetime distributions.

Definition 2.1. Let X be a non-negative random variable with density func-
tion f, and {X —¢|X >t} be residual lifetime random variable, the residual
varentropy is define as follows

f(X)
F(1)

VE(X —1]X > 1) =VE (X,t) = Var( —log X>1).

It is clear that VE (X,0) is the varentropy of X.

Basically, the calculation of the variance of the random variable —log f(X)
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in not simple, and for the residual lifetime random variables is very difficult.
Therefore we propose the using of the moment generating function (MGF) of
the —log LX) for calculating the VE (X ,t).

F(t)
Proposition 2.2. We define MGF of log % as below
1)log i) o A
L(X,1,A)=E (e“ log Fm) = / (@) dx. )
r \F(1)
Then,
" / 2
VE(X,1) =1 (X,1,1) = (L(X,1,1)) 5)

where L'(X,t,1) and L" (X ,t,1) are first and second order derivatives of L (X ,t, ),
with respect to A, respectively, at A = 1.

Using this proposition we calculated the residual varentropy in some life-
time distributions and compare varentropy with the residual varentropy. We
see in uniform, exponential, Laplace and generalized Pareto distributions, the
residual varentropy is independent of the systems age but in other distribu-
tions such as gamma, weibull, lognormal and so on the residual varentropy is

dependent of ¢.

Example 2.3. Let X has gamma distribution with parametrers 6 and A and

density function f (x) = %xe_le_lx, 0 > 0,1 > 0,x > 0, the residual varen-

tropy using (5)is: VE (X,t) =M[At— (6 —1)(2log (A1) —1)]—M>4+2M (6 — 1)
2 T(6+1,4

W (0,A41) + (0~ 1% (8,41) +2~ 6. and M = ool -,

where I'(a,b), ¥(a,b) and ¥(a, b) are incomplete gamma, incomplete digamma

and incomplete trigamma functions respectively.

This example implies that if 6 =2 and A =1, VE (X) =0.63 butif t = 1,
VE (X,1) =.76. Therefore the residual varentropy is dependent of the systems
age in this distribution.

If we calculate the derivative of the VE (X,7), with respect to ¢, then:

VE'(X,1) = r(t)VE(X,1) - (log f (1) — E(log f (X)X > 1)°],  (6)
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also it can be shown that

VE'(X,1) = r(t) [VE (X,1) — (logr (1) +h (X,t))z] , 7)
where r(t) = % is the hazard rate function and using (7) we have the follow-

ing proposition

Proposition 2.4. The residual varentropy is a constant function with respect
totif

VE (X,1) = (logr (1) +h(X,1))? (8)

where h(X,t) is the residual entropy of X, and r(t) is the hazard rate function
of it.

We shown that the residual varentropy is able to characterises some distri-

butions. In the following Theorems we express this distributions.

Theorem 2.5. X has a uniform distribution if and only if VE (X,t) = 0 for all
r>o.
Proof. Let X ~ U(a,b) then VE (X,t) = Var(logz-|X > 1) = 0. Also if

VE (X,t) =0, then we can show that f(x) = F(r)e "X = ¢, O
Theorem 2.6. X has exponential distribution if and only if VE (X ,t) = 1.

Proof. Let X ~ Exp(0) then the random variable {X —¢| X > ¢} is identical in
distribution with X. So VE (X,t) = VE(X) = 1. Vice versa if VE (X,t) = 1,
then by using (7) and some mathematical computation it can be shown that

r(t) = c. Therefore X has exponential distribution. ]

One of the important distribution in reliability theory and survival analysis is
the generalized Pareto distribution (GPD). This distribution was introduced by
Pickands (1975). Its applications include use in the analysis of events, in the
modeling of large insurance claims, as a failure-time distribution in reliability
studies, and in any situation in which the exponential distribution might be

used but in which some robustness is required against heavier tailed or lighter
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tailed alternatives. if X has GPD, the distribution function of X as follows
kx ;

F(x,k,c)zl—(l—g) , k#0,0>0, 9)
where k and o are the shape and scale parameters, respectively. The support
of Xisx>01fk<0,and 0 <x < % if £ > 0. In the special cases, if k — 0,
the GPD reduces to the exponential distribution with mean ¢, and when k =1,
GPD has uniform distribution, and if k < O, it has second kind of the Pareto

distribution.

Theorem 2.7. The continuous non-negative random variable X is GPD with
distribution function (9) if and only if VE (X,t) = ¢ > 0,c # 1.

Proof. 1f the random variable X has a generalized Pareto distribution ,then the
conditional distribution X —¢ given X >t , is also generalized Pareto with
the same value of k. It can be shown that, VE (X,1) = VE(X) = (k—1)* =
¢, k#0. Vice versa, if VE (X,t) = c; therefore VE'(X,t) = 0 and by using
(7) we have h (X ,t) = ¢ —logr(t). Asadi and Ebrahimi (2000) showed the last

equation implies F' is the generalized Pareto distribution. [

3 A class of distributions

Ebrahimi (1996) provided a class of lifetime distributions based on the mea-

sure of uncertainty of residual lifetime random variables as follows:

Definition 3.1. F has decreasing (increasing) uncertainty of residual life
DURL(IURL), if h(X,t) is decreasing (increasing) in ¢.

He showed that if F is an increasing (decreasing) failure rate I[FR (DFR),
then it is also a DURL (IURL) and

r(1) < (2)exp(l —h(X,1)). (10)

parallel to work of Ebrahimi(1996) we are going to introduce a class of lifetime
distributions using residual varentropy. Various properties of this class will

also provided.
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Definition 3.2. F has increasing (decreasing) residual varentropy IRV E (DRVE),
if VE(X,t) is an increasing (decreasing) inz, t > 0.

Remark 3.3. 1t is clear that if F is IRVE(DRVE) we have:
VE (X,1) > (S)VE(X), (11)

equality holds if (8) is established. We see that (11) is lower(upper) bound for

residual varentropy in this situations.

Proposition 3.4. For a non-negative random variable X, F has IRVE(DRVE),
if
VE(X,t) > (<)(logr (1) +h(X,1))*. (12)

Proof. using (7) , (12) easily obtained. L]

Corollary 3.5. Suppose that F is both IRVE(DRVE) and 0 < f(0) < co. then
VE (X) = (log f (0) + 1 (X))".

Corollary 3.6. If F has IRVE(DRVE) in t, then
VE (X) > (<) (log £ (0) + 1 (X))*. (13)
Therefore (13) is the lower (upper) bound for the V E in this distributions.
Corollary 3.7. If F is IFR and DRVE (DFR and IRVE), then
VE(X,t) < (>)1.
Proof. If X 1s IFR using (10) we have:
(logr(t) +h(X,1))* < 1, (14)

and if X is DRVE (12) and (14) implies VE(X,t) < 1. Other inequality is

similarly proved. [
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Conclusion

In this paper, a measure has been proposed for evaluating uncertainty about
the random variable of residual lifetime distribution with the name of residual
varentropy. This measure is able to compare the kurtosis measure of residual
lifetime distributions. It has been shown that the residual varentropy in some
distributions is independent of the systems age, such as uniform, exponential,
and generalized Pareto family. It also has been proven that the residual var-
entropy characterizes these distributions. Moreover, a new class of lifetime
distributions has been introduced using residual varentropy. Future work in

this direction may focus on characterizing by past varentropy.
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