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Abstract 
To tackle the problem of stainless steel parts welding, gas tungsten arc welding (GTAW) process also 

known as tungsten inert gas (TIG) welding, widely used for joining thin sheet metals due to its high 

quality joint (spatter free) has been introduced. In this study, the effects of welding process 

adjusting/input parameters on the joint quality of thin sheet metals (AISI304 austenite stainless steel 

sheets, extensively used for corrosive areas such as marine structures) have been investigated. To study 

the corrosion resistance and strength of the weldments, heat affected zone (HAZ) width has been 

considered as the process output characteristics. Conducting modeling procedure (regression modeling), 

orthogonal array (OA) Taguchi based design of experiments (DOE) technique has been used to design 

an experimental matrix to gather data needed for the procedure. Next, the proposed models (linear, 

curvilinear and logarithmic) has been verified employing analysis of variance (ANOVA) approach. 

Then, the proper and most fitted models have been selected. Furthermore, opted models have been used 

carrying out optimization of the process in such a way that HAZ width minimized using simulated 

annealing (SA) algorithm. 

Keywords:  GTAW process, orthogonal array (OA) Taguchi technique, Simulated annealing (SA) 

algorithm. 

Introduction 

Metallurgical changes such as solidification cracks and grain growth in the heat affected zone (HAZ) 

area often leads to poor mechanical properties [1, 2]. However, based on the excellent mechanical 

properties and proper resistance corrosion, austenitic stainless steels (such as AISI304/316) have been 

extensively used for marine structural materials. Generally, welding process is one of the processes 

widely used to fabricate stainless steel structures [3]. A non-consumable electrode and shielding inert 

gas like helium, argon or combination of both (to protect the molten weld pool and hot filler wire from 

atmospheric contaminants) has been used in gas tungsten arc welding (GTAW) process known as 

tungsten inert gas (TIG) welding extensively used for joining a number of metals such as stainless steel, 

magnesium and aluminum with 1-6 mm thickness [4]. Controlling of the welding input process 

parameters is a common problem for manufacturer to obtain a good welded joint with the required weld 

quality [5]. Conventionally, selection of process input parameters for every new weldments to obtain a 

joint with required specifications have been chosen by technicians/engineers based on time-consuming 

trial and error method. Then weldments have been examined to determine whether they meet the needed 

specifications or not [4]. Nowadays, application of different techniques such as design of experiment 

(DOE), evolutionary algorithms (SA, GA, PSO and etc.) and artificial neural networks (ANNs) are 

widely used to develop mathematical relationships between the process input parameters and output 
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measures in order to determine the proper levels of input parameters that lead to the desired output 

characteristics [6]. 

      On modeling and optimization of TIG welding process there is an extensive body of research. To 

the best of our knowledge there is no published study in which modeling and optimization of TIG 

welding process with proposed procedure has been considered. In this article mathematical models 

developed to establish the relations between multi-input, multi-output parameters of TIG welding 

process using different regression models (linear, curvilinear, modified curvilinear and logarithmic). 

The proposed model has five input variables and an output (heat affected zone (HAZ)). In the proposed 

approach optimization is carried out to determine optimal values of process parameters (to be set on the 

welding machine). These settings would results in minimum HAZ width. The proposed approach has 

been implemented on AISI304 stainless steel sheets, a widely used alloy in various industries including 

marine structures. 

Experimental set up and equipment used 

In this research, a semi-automatic welding machine (“Figure 1”) has been employed to carry out the 

experiments. To conduct the pre-determined experiments based on design of experiments (DOE) 

approach, non-consuming Tungsten electrodes have been used. Furthermore, argon with 99.7% purity 

acted as welding shielding gas. Schematic illustration of TIG welding process has been shown in 

“Figure 1”. Experiments were conducted on AISI304 stainless steel sheets with dimension of 100 

mm×40 mm×5 mm. 

 

Figure 1. Schematic illustration of TIG welding process and the welding machine used 

  

  The variable limits were then evaluated by inspecting the weldments for a smooth appearance and 

good penetration without any visible defected to surface porosities and undercuts. The input variables 

and their corresponding levels based on the experimental tests are listed in Table 1. Other parameters 

with trivial effects (electrode diameter, electrode angle and etc.) have been considered at a fixed level 

based on the results of experimental preliminary tests. 
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Table 1. The process parameters and their corresponding levels. 

Debi (D) 

(l/min) 

Welding Speed 

(S) 

(m/min) 

Frequency (F) 

(Hz) 

Base current (Ib) 

(Ampere) 

Welding current 

(I) 

(Ampere) 

Level 

5 0.4350 30 5 30 Level 1 

7 0.5075 40 8 35 Level 2 

- 0.5365 50 10 40 Level 3 

- 0.5800 60 15 45 Level 4 

 

Design of experiments (DOE) approach and experimental test results 

The next step following process variables determination based on the experimental tests or reference 

studies, is determining the appropriate experimental design matrix for carrying out the experiments. 

Based on the input variables numbers and their levels, Taguchi’s L32 design matrix has been selected. 

This experimental matrix (Table 2) consists of 32 sets of process input parameters, based on which the 

experiments have been performed. In DOE approach, the number of required experiments (and hence 

the experiment cost) increases as the number of parameters and/or their corresponding levels increase.  

Conducting experiments in random order results in increased accuracy, therefore, in this study tests 

were carried out in random orders. For measuring HAZ values from each sample, on each sample two 

transverse cross sections were made. Microstructural image processing (MIP) software has been used 

to determine samples HAZ width (“Figure 2”). 

Next, the cut faces were polished and etched smoothly using 10% Nital solution. Then, electro-polish 

and electro-etch machines have been used (“Figure 3”).Then, an optical microscope with X10 

magnification (OLYMPUS-530) has been used to take images (“Figure 3”). 

 

 
Figure. 2 The welded sample and evaluation of HAZ using microstructural image processing software 

 
Figure 3. Electro-polish machine and optical microscope used 
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Table 2. The TIG welding process experimental conditions and their corresponding results. 

No 
I 

(Ampere) 

Ib 

(Ampere) 

F 

(Hz) 

S 

(m/min) 

D 

(l/min) 

HAZ 

width 

(mm) 

1 4 2 1 4 1 0.29 

2 4 1 2 3 1 0.24 

3 3 4 4 2 1 0.25 

. . . . . . . 

. . . . . . . 

. . . . . . . 

30 2 2 2 1 1 0.20 

31 4 3 3 2 1 0.30 

32 2 3 2 1 2 0.30 

 

Regression modeling approach 
To model the relation between independent process input variables and desired response/s different 

methods are used among which regression modeling is extensively used [5].The output for each test 

settings (required for modeling purpose) have been shown in last two columns of Table 2. Any of the 

above output is a function of process parameters which are formulated by linear, second order, modified 

second order and logarithmic functions; as stated in Equations 1 to 3 respectively [6, 7]. 

(1) 1 0 1 2 3      Y b bC b F b D     

(2) 2 0 1 2 3

11 22 33

12 13 23

    

   

                                              

Y b b C b F b D

b C C b F F b D D

b C F b C D b F D

   

  

  

 

(3) 1 2

3 0

3 11 2 2

3 3 12 13 2 3

 

 

                                                          

b b

b b b

b b b b

Y b C F

D C C F F

D D C F C D F D

   

  

  

 

 

In Equations 1-3, b0, b1, b2 and b3 are the regression coefficients to be estimated. In this study, based 

on the UTS and HAZ data given in Table 2, the regression models are developed using MINITAB 

software. 

The nature of initial data and the required accuracy dictate the proper model [8]. Models representing 

the relationship between process input parameters and output characteristics have been stated in 

equations 4 to 6. 
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Linear Model 

(4)   0.260  0.0170  –  0.145

 –  0.00298   0.00678   0.00182

HAZ D S

F Ib I

   

    

 

 

Logarithmic Model 

(5) )0.456 0( ) ( .2100.986  bHAZ F I    
 

Second order/Curvilinear Model 

                                                        

(6)   3.98  0.207   4.51   

0.0616   0.141   0.205   

0.615  0.00298  

 0.0109   0.0338  

0.157 0.000422  

0.000869  

0.000129  0.00347  

0.00138

HAZ D S

F Ib I

D S D F

D I S F

S Ib F Ib

F I

F F Ib Ib

I I

    

     

    

     

     

  

    

 

 

      

Analysis of variance (ANOVA) technique has been used to check the adequacies of the proposed 

models (Table 3) based on confidence limit of 95% [8]. Given the required confidence limit (Pr), the 

correlation factor (R2), the adjusted correlation factor (R2-adj) and predicted correlation factor (R2-

pre) for these models, it is evidence that modified second order (second order model with elimination 

of unimportant factors) model is superior to linear and logarithmic models, thus, these models have 

been considered as the best representative of the authentic TIG welding process throughout in this paper. 

Table 3. ANOVA results for the process characteristics. 

Model Variable R2 R2 (adj) 

 

R2 (Pre) F value Pr>F 

Linear HAZ 49.4 43.9 
 

42.18 
9.1 <0.0001 

logarithmic HAZ 40.3 36.8 
 

41.2 
9.8 <0.0001 

Second order HAZ 92.4 89.9 90.1 12.4 <0.0001 

 

   The interaction effects of process parameters (frequency and pulse current) for HAZ have been 

shown in “Figure 4” As demonstrated, by increasing welding frequency, the HAZ decreases. 

Similarly by increasing pulse current, the HAZ at first increases then decreases. 
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Figure 4.  interaction of process parameters for HAZ 

 

Simulated annealing algorithm 
The SA algorithm procedure begins by generating a primary solution at random. At early stages, in the 

current solution a small random change is made, then the new solution objective function value is 

calculated and compared with that of current ones. A move is made towards the new solution if the new 

objective function either has better value or the probability function (Equation 10) implemented in SA 

has a higher value than a number which is been generated randomly between (0, 1] . The probability of 

accepting a new solution is given as Equation (7) [9]: 

(7) 1  if 0

p   
te if 0

 


  
  

 

 

  Where, T, is temperature parameter, on which the calculation of probability function relies, while the 

same role as the temperature in the physical annealing process is played. The rate of temperature 

reduction is also slow avoiding getting trapped at a local minimum point [5]. Equation (8) shows the 

method by which the temperature is reduced: 

(8) T c T i 0,1,... and 0.9 c 1
i 1 i

    


 

Based on the Equation (8) given, at the initial stages of SA algorithm most worsening moves may 

be accepted, nevertheless at the end only improving ones are likely to be accepted. This could help 

the procedure jump out of a local minimum trap. The algorithm may be terminated after a pre-

determined iteration or a run time.  

Performance improvement of other artificial intelligence methods and determining the optimal set 

of process parameters are some examples of SA algorithm diverse applications [9]. In this research, 

SA has been used twice (for single and multi-criteria optimization purpose).    

Table 4 illustrates the results of optimization using SA algorithm and their corresponding 

confirmation tests for single objective optimization. 

As shown in table 4 the predicted values for HAZ, are less than the desired values (approximately 

0.07 mm) in TIG welding process. The results of optimization show the accuracy of the proposed 

method as the both objectives has been satisfied. 
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Table 4. Result of optimization.  

Error 

(%) 
experiment Predicted 

Process parameters 
Output 

D S F bI I 

4 0.198 0.188 5 0.435 60 

 

5 

 

35 HAZ 

 

Conclusion 
In this study, the problem of single and multi-criteria modeling and optimization of TIG welding process 

used for AISI304 stainless steel sheets has been addressed. First, experimental data gathered as per L32 

Taguchi design of experiments (DOE) has been used to carry out the process of modeling of TIG 

welding process. Moreover, the MIP software has been used to measure the HAZ areas. Next, the 

models have been embedded to SA algorithm to determine the optimal set of process settings both for 

optimization. The result of optimization technique has shown using SA algorithm result in small errors 

(about 5%) which shows the proposed model can accurately simulate and optimized the actual TIG 

welding process. 
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