
Applied Soft Computing Journal 98 (2021) 106736

a
r
i
a
n
u
i
t
d
l
b
e
l
t
a
f
o

h
1

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

A variable neighborhood search algorithm for transshipment
scheduling ofmulti products at a single station
Mohammad Ranjbar ∗, Reza Ghorbani Saber
Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

a r t i c l e i n f o

Article history:
Received 27 March 2018
Received in revised form 16 July 2020
Accepted 15 September 2020
Available online 17 September 2020

Keywords:
Scheduling
Transshipment terminal
Variable neighborhood search algorithm

a b s t r a c t

In this research, we investigate a transshipment scheduling problem in which a set of loading and
unloading jobs must be performed at a single station of a transshipment terminal. We assume that
there is a set of product types and an inventory storage center with a constant capacity for each.
Each loading job decreases the inventory level of a particular product type and has a predetermined
due date, while each unloading job increases the inventory level of a product type and has a given
release date. An inbound truck delivers a set of products, which have the same release dates and
must be unloaded, to the inventory storage center. In contrast, an outbound truck conveys a set of
goods, which have identical completion times and must be loaded. We aim to minimize the total
freight cost of trucks as well as the total weighted tardiness of products. To this end, we develop a
linear integer programming model and a variable neighborhood search algorithm including a set of
efficient local search procedures. Moreover, we run the two previously developed metaheuristics, i.e. a
genetic algorithm and a particle swarm algorithm so as to solve the problem. Using a set of randomly
generated test instances, we perform extensive computational experiments and statistical analyses to
highlight the efficiency and superiority of the developed algorithm.

© 2020 Elsevier B.V. All rights reserved.
u
i
N
B
m
c
P
t
e
m
s

s
N
a
e
r
t
o

1. Introduction

In this paper, we consider a transshipment terminal, named
cross-dock, with a single station where different products are

eceived and delivered at given dates using a set of trucks. Each
nbound truck carries various types of products, and we consider
ll as a batch that must be unloaded at the transshipment termi-
al. Furthermore, an unloading job includes unloading all prod-
cts of the same type in a batch. For each type of product, there
s a limited capacity for temporary storage in the transshipment
erminal. Moreover, a demand consists of a particular amount of
ifferent products as well as a due date. A loading job includes
oading products asked by a demand. Outbound trucks only can
e loaded using loading batches, consisting of consolidating sev-
ral loading jobs. In addition, it is assumed that partial delivers of
oading job are not allowed, all trucks have identical capacity and
he single loading/unloading station can process only one job at
time. We aim to construct loading batches and find a sequence

or loading and unloading jobs in such a way that the total cost
f outbound trucks and weighted tardiness is minimized.

∗ Corresponding author.
E-mail address: m_ranjbar@um.ac.ir (M. Ranjbar).
 B

ttps://doi.org/10.1016/j.asoc.2020.106736
568-4946/© 2020 Elsevier B.V. All rights reserved.
The problem at hand is a generalization of the problem in-
troduced by Briskorn and Leung [1], in which a single type of
product was considered, and inventory capacity of the transship-
ment terminal was supposed to be unlimited (shown as 1|inv|Lmax
sing the notation of Graham et al. [2]). Having aimed to min-
mize the maximum lateness, they proved that the problem is
P-hard and developed a set of branch-and-bound algorithms.
riskorn et al. [3] studied the complexity of a set of single-
achine scheduling problems in which nonnegative inventory
onstraints were factored in. Bazgosha et al. [4] investigated
m|inv|Cmax with a single type of product and limited capacity for
he inventory storage center. They developed two scheduling gen-
ration schemes, i.e. serial and parallel, and also developed three
etaheuristic algorithms based on genetic algorithm, particle
warm optimization and cuckoo optimization algorithms.
Rarely are papers in the field of scheduling with inventory con-

traints consideration. We can cite Schwindt and Trautmann [5],
eumann and Schwindt [6], Neumann et al. [7] and Bartels
nd Zimmermann [8] as articles that addressed this issue. Buijs
t al. [9] and Boysen and Fliedner [10] seem to be the two most
ecent related surveys that studied cross-docking systems. In
his context, most research papers intended to find a sequence
f inbound and outbound trucks to minimize operational costs.

oysen et al. [11] studied the scheduling of trucks at cross-dock

https://doi.org/10.1016/j.asoc.2020.106736
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2020.106736&domain=pdf
mailto:m_ranjbar@um.ac.ir
https://doi.org/10.1016/j.asoc.2020.106736

M. Ranjbar and R.G. Saber Applied Soft Computing Journal 98 (2021) 106736

t
p
s
e
w
o
p
p
d
w
a
a
p
t
b
a
g
e
o

a
p
a
s
i
d
t
e

t
p
i
a
a
t
a

2

a
p
o
n
c{

J
j
m
l
o
n
c
c
o
I

erminals where trucks are capable of both picking and delivering
roducts. They also assumed that the terminal has two separate
tations for the process of loading and unloading trucks. Arabani
t al. [12] analyzed a multi-objective cross-docking problem in
hich items are unloaded in a single receiving gate and loaded
nto one available shipping gate. Moreover, defining a scheduling
roblem at a transshipment terminal where products should be
icked up by trucks immediately after unloading, Boysen [13]
eveloped a dynamic programming algorithm in conjunction
ith a metaheuristic approach based on the simulated annealing
lgorithm. Yu and Egbelu [14] assumed a temporary storage area
t the front of the shipping dock in order to store the finished
roducts shortly. As a result, some of these products may wait in
he temporary storage area until an appropriate outbound truck
ecomes available. Forouharfard and Zandieh [15] also studied
similar problem and developed an imperialist competitive al-
orithm (ICA). Considering no temporary storage area, Vahdani
t al. [16] let the trucks to return to their corresponding dock in
rder to end their task.
The contributions of this paper are twofold: (1) we develop
mixed linear integer programming model for the introduced
roblem and solve it using the ILOG CPLEX; and (2) we develop
metaheuristic algorithm based on the variable neighborhood

earch (VNS) algorithm which benefits from efficient moves in
ts local search procedure. To evaluate the performance of our
eveloped VNS, we modify the genetic algorithm (GA) and par-
icle swarm optimization (PSO) algorithm developed by Bazgosh
t al. [4] and present extensive comparative results.
The remainder of this paper is organized as follows. In Sec-

ion 2, problem description and formulation as a linear integer
rogramming model is presented. In Section 3, a VNS algorithm
s developed and GA and PSO algorithms of Bazgosh et al. [4]
re modified to solve our problem. The developed model and
lgorithms are evaluated using extensive comparative computa-
ional experiments in Section 4. Finally, conclusions are drawn,
nd future research directions are discussed in Section 5.

. Problem description and modeling

We consider a transshipment scheduling problem in which
set of jobs J must be processed at a single station that can
rocess only one job at a time. Each job should be either loaded
r unloaded at the station. We suppose that there is unlimited
umber of trucks, and each has a fixed capacity V and a constant
ost F . There are two types of jobs, i.e. unloading jobs J+ =

j+1 , . . . , j+
|J+|

}
and loading jobs J− =

{
j−1 , . . . , j−

|J−|

}
. We also

assume that there are pt types of products and Kk; k = 1, . . . , pt
indicates the set of (unloading and loading) job type k where⋃pt

k=1 Kk = J . Each inbound truck contains an unloading batch
Bb. Each batch includes a given set of unloading jobs that each
consists of a predetermined number of a particular product type.
Furthermore, each outbound truck contains a loading batch. A
loading batch includes a set of loading jobs that each consists
of a given number of a product type. We show all unloading
and loading batches by means of B+

=

{
B+

1 , . . . , B+

|B+|

}
(B+

=

+) and B−
=

{
B−

1 , . . . , B−

|J−|

}
(B−

= J−), respectively. Each
ob j is associated with a processing time pj and an inventory
odification δjk. For each product type k, the initial inventory

evel I inik and the inventory capacity ICk , specified by a number
f item unit, are given. We assume that preemption of jobs is
ot allowed, and jobs of an unloading batch should be processed
onsecutively. In other words, processing of an unloading batch
annot be interrupted with a loading job, whereas the processing
f a loading batch may be interrupted by an unloading batch.
n addition to this, for each unloading batch B , we are given a
b

2

release date rb indicating the release date of all including jobs.
Moreover, requiring a capacity vj to be stored in a truck, a loading
job j has a due date dj and a delay cost wj calculated per time unit.
Each loading job must be delivered to a customer. We assume
that all customers are placed in the vicinity of the transshipment
terminal such that we can dismiss the delivering times.

In the developed model, first, we have to decide which loading
jobs should be included in a loading batch b; b = 1, . . . , |J−|. Sec-
ondly, we must determine a schedule establishing the sequence
of unloading and loading batches so as to minimize the cost of
trucks and delays of loading jobs. This should be noted that the
maximum number of loading batches is |J−| and each loading
batch includes only one job. We also consider a limited planning
horizon as T = {1, . . . , |T |} where |T | = maxb=1,...,|B+| {rb} +∑

j∈J pj.
The following decision variables are utilized to model the

described problem.

XLjt =

{
1; If loading job j finishes at time t
0;Otherwise

XUbt =

{
1; If unloading batch b finishes at time t
0;Otherwise

Yjb =

{
1; If loading job j is placed in batch b
0;Otherwise

Zb =

{
1; If loading batch b is not empty
0;Otherwise

Cb = Completion time of loading batchb
Tj = Tardiness of loading job j
Ikt = Inventory level of product type k at time t
M = abig number

We present the mathematical formulation of the problem as
follows.

Min F
|J− |∑
b=1

Zb +

|J− |∑
j=1

wjTj (1)

Subject to:∑
∀t∈T

XLjt = 1 ∀j ∈ J− (2)

∑
∀t∈T

XUjb = 1 ∀b: B+

b ⊆ B+ (3)

∑
∀j∈J−

XLjt +

∑
∀b:B+

b ⊆B+

XUbt ≤ 1 ∀t ∈ T (4)

t∑
τ=t−pj+1

∑
j′∈J−\j

XLj′τ ≤ M
(
1 − XLjt

)
∀j ∈ J−; ∀t ∈ T (5)

t∑
τ=t−pj+1

∑
B+

b ⊆B+

XUbτ ≤ M
(
1 − XLjt

)
∀j ∈ J−; ∀t ∈ T (6)

t∑
τ=t−

∑
j∈B+b

pj+1

∑
B+

b′
⊆B+ b′ ̸=b

XUb′τ ≤ M (1 − XUbt) ∀b: B+

b ⊆ B+
; ∀t ∈ T (7)

t∑
τ=t−

∑
j∈B+b

pj+1

∑
j∈J−

XLjτ ≤ M (1 − XUbt) ∀b: B+

b ⊆ B+
; ∀t ∈ T (8)

∑
t∈T

tXLjt ≥ pj ∀j ∈ J− (9)

∑
t∈T

tXUbt − rb ≥

∑
j∈B+

b

pj ∀b: B+

b ⊆ B+ (10)

Z ≥

∑
j∈B−

b
Yjb

∀b: B−
⊆ B− (11)
b M b

M. Ranjbar and R.G. Saber Applied Soft Computing Journal 98 (2021) 106736

C

T

I

I

I

X

X

C

t
t
g
c
C
b
d
r
e
e
p
o
d
n
F
u
i
T
C
o
(
f
d
n

3

o
e
n
d
m
h
a
t
e
r
t
a
o

3

s

s

A
a

3

h
p
t
i
s
t
V
i

b ≥ tXLjt + M
(
Yjb − 1

)
∀j ∈ J−; ∀t ∈ T ; ∀b: B−

b ⊆ B−

(12)

b ≥ Cb − dj + M
(
Yjb − 1

)
∀j ∈ J−; ∀b: B−

b ⊆ B− (13)∑
j∈J−

vjYjb ≤ V ∀b: B−

b ⊆ B− (14)

k0 = I inik k = 1, . . . , pt (15)

kt = Ik,(t−1) +

∑
j∈(Kk∩J−)

δjkXLjt +

∑
∀b:B+

b ⊆B+

∑
j∈(Kk∩B+

b)

δjkXUbt

∀t ∈ T ; k = 1, . . . , pt (16)

kt ≤ ICk ∀t ∈ T ; k = 1, . . . , pt (17)

Ujb ∈ {0, 1} ∀j ∈ J+; ∀b: B+

b ⊆ B+ (18)

Ljt , Yjb, Zb ∈ {0, 1}
∀j ∈ J− ∀t ∈ T ;

∀b: B−

b ⊆ B−

b, Tj, Ikt ∈ Z+ ∀j ∈ J−; ∀t ∈ T ;

∀b: B−

b ⊆ B−
; k = 1, . . . , pt

(19)

The objective function (1) minimizes the total fixed cost of
rucks and tardiness cost of loading jobs. Constraints (2) ensure
hat each job finishes at only one time slot, and Constraints (3)
uarantee this issue for each unloading batch. Constraints (4)
onfirm that at most one job can be completed at any time slot.
onstraints (5)–(8) assure that if a loading job or an unloading
atch finishes at time slot t, another job cannot be processed
uring that. In other words, these constraints consider the single
esource of the problem as a machine and preclude from pre-
mption of loading jobs and unloading batches. Constraints (9)
xplain that completion time of a loading job is not less than its
rocessing time and Constraints (10) guarantee that start time
f an unloading batch must be equal or greater than its release
ate. Number of loading batches is calculated using

∑
|J−|

b=1 Zb and
on-empty loading batches are determined with Constraints (11).
inish times and tardiness values of loading jobs are specified
sing Constraints (12) and (13), respectively. Constraints (14)
mpose the capacity constraint of trucks for loading batches.
he initial inventory level of each product type is given using
onstraints (15), and inventory level of each product type at
ther time units t > 0 are determined through Constraints
16). Constraints (17) consider the inventory capacity constraint
or each product type. Finally, the last two sets of constraints
escribe the type of variables in which Z+ represents the set of
on-negative integers.

. A VNS algorithm

The problem at hand is NP-hard because it is a generalization
f 1|inv|Lmax which has been proved to be NP-hard by Briskorn
t al. [3]. Since our developed model, described in Section, is
ot capable of solving large-sized instances in a reasonable time,
esigning metaheuristic solution approaches is highly recom-
ended. In this section, we develop a VNS algorithm to find
igh-quality solutions for the problem. VNS is a metaheuristic
lgorithm that changes the size and type of neighborhood struc-
ure during the search process in a systematic fashion so as to
scape from local optima. In the following, we show the solution
epresentation and our VNS description. To evaluate compara-
ively the performance of our develop VNS, we modify the GA
nd PSO metaheuristics proposed by Bazgosh et al. [4] to solve
ur problem.
3

.1. Solution representation

We represent a solution s of the problem utilizing a double list
= {σ , β}. The list σ =

(
σ1, . . . , σ|J−|+|B+|

)
indicates a sequence

of unloading batches and loading jobs where σj ∈ J− ∪ B+. More-
over, the list β =

(
β1, . . . , β|J−|

)
shows batch numbers of loading

jobs where β1 represents batch number of the loading job j−1 .
Different permutations of the first list result in various sequences
of job processing at the single station, and different measures of
each element in the second list classify loading jobs into different
groups. This should be noted that the maxim number of loading
batches, which is |J−|, is obtained when each loading job is placed
individually in a separate batch. Furthermore, we assume that
all unloading jobs of a batch must be processed continuously. In
other words, we deal with unloading batches instead of unloading
jobs.

As an example, consider an instance including two unloading
batches where B+

1 =
{
j+1 , j+2

}
and B+

2 =
{
j+3

}
and four loading

jobs
{
j−1 , . . . , j−4

}
. Apart from inventory constraints, the solution

=
{(

j−1 , B+

1 , j−4 , B+

2 , j−3 , j−2
)
, (1, 2, 2, 1)

}
indicates that job j−1 is

processed first and then jobs of batch B+

1 are unloaded (in an
arbitrary sequence). Subsequently, j−4 is loaded, next batch B+

2
is unloaded and then jobs j−3 and j−2 are loaded. The last four
numbers in the solution s show that jobs j−1 and j−4 are grouped
into a batch B−

1 and are delivered at the completion time of j−4 .
lso, two jobs j−2 and j−3 are loaded simultaneously as batch B−

2
nd are delivered as soon as j−2 finishes.

.2. Sketch of the VNS

VNS, proposed by Mladenović and Hansen [17], is a meta-
euristic method for solving a set of combinatorial optimization
roblems. It explores distant neighborhoods of the current solu-
ion and moves to a new solution if and only if an improvement
s made. The first step of a VNS is definition of solution repre-
entation. Afterward, neighborhood structures are designed on
he basis of the proposed solution representation. Our developed
NS, presented in Algorithm 1, includes three main procedures,
.e. shaking, local search and repairing procedures.

M. Ranjbar and R.G. Saber Applied Soft Computing Journal 98 (2021) 106736

1
l
g
σ

σ

b
β

w
l
a

Shaking procure is designed to avoid getting trapped in local
optima and is performed using two efficient moves, i.e. λ-reverse
and γ -insert. The local search procedure aims to intensify the
search process in some areas of the search space of the prob-
lem. We choose a variable neighborhood descent (VND) as the
local search algorithm. This explores systematically several neigh-
borhood structures using λ-opt, λ-reverse, γ -swap and γ -insert
moves, which are described in Section 3.5. Besides, we develop
a repairing procedure, described in Section 3.6, to convert each
infeasible solution to a feasible one.

Our developed VNS gets the two following parameters as
inputs: the maximum number of moves in the shaking procedure
(Shmax) and the time limit of the algorithm (TL). Next, an initial
solution s is generated randomly. Since this solution might be
infeasible, it has to be repaired with the repairing procedure.
Afterward, a While loop is performed until the given time limit
is met. At each iteration of the VNS algorithm, a shaking proce-
dure is first applied to the current solution and the local search
procedure is performed afterward.

3.3. Neighborhood structures

To construct a set of neighbors for a solution, we need to
introduce different kinds of moves for two lists σ and β . For
a list σ , we consider two types of moves, named λ-opt and λ-
reverse. The λ-opt move extracts λ; λ = 1, . . . ,

⏐⏐J−⏐⏐ +
⏐⏐B+

⏐⏐ − 1
consecutive elements from the current list σ and inserts them
in a new random position. Let us consider the example of Sec-
tion 3.1 where σ =

(
j−1 , B+

1 , j−4 , B+

2 , j−3 , j−2
)
. If we assume that

λ = 2 and elements of B+

1 in conjunction with j−4 are inserted
immediately after j−3 , the new list σ ′

=
(
j−1 , B+

2 , j−3 , B+

1 , j−4 , j−2
)
is

obtained. On the other hand, the λ-reverse move selects λ; λ =

, . . . ,
⏐⏐J−⏐⏐ +

⏐⏐B+
⏐⏐ − 1 consecutive elements from the current

ist σ and reverses their relative order. If λ = 2 and we are
oing to select again elements B+

1 along with j−4 , the new list
′′

=
(
j−1 , j−4 , B+

1 , B+

2 , j−3 , j−2
)
is attained. If the newly obtained list

is infeasible because of inventory constraints violation, it will
e repaired using the repairing procedure. Besides, for each list
, we consider two sorts of move named γ -swap and γ -insert
here γ = 1, . . . , |J−|

2 . The 1-swap move selects one pair of
oading jobs casually, and if capacity and inventory constraints
re not violated, it exchanges their batch numbers. The γ -swap

is a random replication of 1-swap for γ times. For instance, if
we let β = (1, 2, 2, 1) in the example, swap batch numbers
of jobs j−1 and j−2 and ignore the truck capacity constraints, the
new list β ′

= (2, 1, 2, 1) is acquired. Furthermore, the 1-insert
move selects a loading job and inserts it in a new batch if both
inventory and capacity constraints are satisfied. If we consider
β = (1, 2, 2, 1) and insert job j−2 into the first batch, the new list
β ′′

= (1, 1, 2, 1) is attained. In other words, the γ -insert move is
a random replication of 1-insert for γ -times.

3.4. A shaking procedure

Shaking procedure is proposed to escape from local optimal
solutions and is a diversification strategy that is utilized when no
improvement is reached. This procedure uses parameter sh as the
number of shaking operations applied to lists σ and β . In other
words, it performs sh times 2-reverse and 2-insert moves to lists
σ and β , respectively.

3.5. A local search procedure

Our local search procedure is a variable neighborhood descent
(VND) procedure that searches in the developed neighborhood
4

structures based upon the first improvement strategy. This pro-
cedure completely explores one neighborhood structure and ex-
tends its search to the next neighborhood structure in the case of
reaching no better solution (Todosijević et al. [18]).

The general structure of our developed VND is shown in Algo-
rithm 2.

In this procedure, the three following parameters are consid-
ered as inputs: maximum number of λ (λmax

=
⏐⏐J−⏐⏐ +

⏐⏐B+
⏐⏐ − 1),

the maximum number of γ (γmax
=

|J−|

2) and binary variable imp
which indicates whether improvement has been obtained (imp
= true) or not (imp = false). It replaces the current solution s
with a new better one and restarts from the first neighborhood
structure when an improvement is achieved. In other words, the
VND procedure starts with λ = γ = 1 and applies the λ − opt
move. If no improvement is found, then the λ − reverse move is
applied. Subsequently, the γ -swap and γ -insert are performed,
respectively. In the next step, if the current solution is not im-
proved, the VND procedure initializes the parameters λ and γ as
λ = γ = 2 and then implements the λ − opt , λ − reverse, γ -
swap and γ -insert moves alternatively until an improvement is
attained. This procedure is stopped whenever no improvement is
found in all of the neighborhood structures. In each step of the
local search procedure we may find an infeasible that must be
converted to a feasible one using the repairing procedure.

M. Ranjbar and R.G. Saber Applied Soft Computing Journal 98 (2021) 106736

3

i
h
t
a
i
t
o
a
a
i
σ

u
t
b
t

.6. A repairing procedure

This procedure takes an infeasible solution and transforms
t into a feasible one. An infeasible solution to the problem at
and may have different reasons for infeasibility, where one of
hem is violation of the inventory constraint. In this case, if
n unloading batch cannot be unloaded due to violation of the
nventory capacity for some product types, this batch is shifted
o the right side in the list σ . We consider the minimum number
f shifts such that some loading jobs from those product types
re placed before this batch and inventory capacity is satisfied. In
ddition to this, if a loading job cannot be processed because of
nventory shortage, this job is shifted to the right side in the list
. We choose the minimum number of shifts in such a way that
nloading batches which include enough inventory of the product
ype encountered shortage are placed before that job. This should
e noted that each infeasible list σ is repaired from the left side
o the right side.

A list β might be infeasible because a loading batch may
violate the truck capacity. In this case, we remove the minimum
number of jobs with the smallest values of vj from that batch
so that the truck capacity constraint is satisfied. This is worth
mentioning that loading batch numbers should be consecutive
and if this condition is not held in a solution, we must renumber
all batches.

3.7. Modified GA and PSO

In this section, we modify the GA and PSO solution approaches
developed by Bazgosha et al. [4] to perform them for our prob-
lem. We chose these two algorithms because they have been
developed for a loading and unloading scheduling problem in
a multi-station transshipment terminal. To do so, we need to
modify these two algorithms due to the following reasons.

(I) They considered only one product type instead of several
types

(II) They considered multi docks instead of one station
(III) They did not consider any due date for the loading jobs
(IV) Their objective function is different from ours
(V) They did not define batches as we do

GA is a population-based metaheuristic developed by Hol-
land [19] including two main operators called cross-over and
mutation. This solution approach has been used widely to solve
complex optimization problems in the field of cross-docking
scheduling (See Boloori et al. [20], Molavi et al. [21] and Taman-
naeib et al. [22]). Following Bazgosh et al. [4], we employed
the well-known two-point crossover operator and a permutation
operator, described by them. The crossover operator is applied to
all newly generated solutions while permutation operator is used
with a probability of pmut . Moreover, the generated infeasible
solutions are repaired using our developed repairing procedure.
All other settings are copied from Bazgosha et al. [4] and only
our solution representation and objective function are different
from theirs. This algorithm includes parameters pmut and |Pop|
(population size) which will be tuned in Section 4.1.

PSO is also a population-based search algorithm developed by
Eberhart and Kennedy [23], inspired by the flocking behavior of
birds. There are several papers that have utilized PSO algorithm
to solve cross-docking scheduling problems (See Mohtashami and
Tavana [24] and Wisittipanich and Hengmeechai [25]). For PSO,
we choose to work with our developed solution representation
instead of binary representation. We implement Algorithm 4 of
Bazgosha et al. [4] as our PSO approach and just replace our
objective function instead of theirs. Moreover, we use the same
velocity equations but we apply it to both lists σ and β . Besides,
5

we convert new generated infeasible solutions to infeasible ones
using the repairing procedure. This algorithm includes parame-
ters c1, c2, Vmax(maximum velocity) and |Pop| (population size)
which will be tuned in Section 4.1.

4. Computational experiments

We coded all developed algorithms including the VNS, GA and
PSO in Visual C++ 2015 and performed all computational results
on a computer with an Intel Core i5 and 8GB of RAM. In addition,
we used the IBM CPLEX 12.7.1 as a solver for the linear integer
programming model.

4.1. Test set generation and parameters setting

We generated instances with n = 10, 20, 30, 40 and 50 jobs
and pt = 2, 3 and 4 product types. Since the processing times
may influence the performance of the developed model, we chose
them randomly from the discrete uniform distribution {1, . . . , π}

where π ∈ {10, 30}. The integer release dates were chosen from
the discrete uniform distribution {1, . . . , ρ

∑
j∈J pj} where ρ ∈

{1, 1.5, 2} and inventory modifications were drawn randomly
from the discrete uniform distribution {1, . . . , 10}. We considered
V = 10 for all inbound and outbound trucks and vj; ∀j ∈ J−
is an integer quantity randomly taken from discrete uniform
distribution 1, . . . , 5. We supposed that all inbound trucks are
filled as many as possible and each may include various types
of products. Moreover, we assumed that F = 500 cost unit
and wj; ∀j ∈ J− is an integer value randomly selected from the
discrete uniform distribution {200,. . . ,400}. The processing time of
each job

(
pj

)
and the release date of each batch (rb) were taken

from the discrete uniform distributions {1, . . . , 10} and {0,. . . ,∑
∀j pj}, respectively.
Jobs were assigned to sets J = J+ ∪ J− and Kk; k = 1, . . . , pt

with equal probabilities. Finally, we generated amounts of I inik and
ICk for k = 1, . . . , pt randomly from the discrete uniform dis-
tributions

{
max

(
0, −

∑
j∈Kk

δj

)
, . . . ,−

∑
j∈(Kk∩J−) δj

}
and

{
I inik +

max
(
0,

∑
j∈Kk

δj

)
, . . . , I inik +

∑
j∈(Kk∩J+) δj

}
, respectively. For each

combination of parameters n, pt, π and ρ, we generated 10
random instances resulting in 900 test instances.

We also set parameter sh of VNS algorithm using fine-tuning
as sh =

|J−|+|B+|
2 and presents the results of VNS for time limits

TL = 1, 10, 30, 60 and 180 s. Likewise, we set parameters of the
GA as pmut = 0.05 and |pop| = 150 and parameters of the PSO as
Vmax = 4, c1 = c2 = 2 and |pop| = 150.

4.2. Comparative results

In this section, we compare the results of the developed
model, VNS algorithm, GA and PSO algorithm. Table 1 indicates
the average runtimes with TL = 3600 seconds as well as the
number of problems solved optimally using the CPLEX, shown
inside parentheses. Since the runtimes of the model for the
test instances with n > 30 is intractable, this model was not
implemented for those.

The results of Table 1 indicate that the runtime of our devel-
oped model is highly dependent on the parameter pj. The larger
the size of an instance is, the more runtime the instance needs.
This is due to the fact that the variables of the model are directly
dependent on the time indices. A similar trend is also observed for
the parameter rj. Furthermore, the runtimes seem to be increased
by escalation the parameters n and pt . However, 485 out of 540
test instances, which is around 90%, for n ≤ 30 were optimally
solved by the CPLEX. We call this set of instances as Set1 and

M. Ranjbar and R.G. Saber Applied Soft Computing Journal 98 (2021) 106736

t
d
t
b
i
o
s
s
r
h
t
1
9
p
P
a

4

p
M

Table 1
The average runtimes (in seconds) of the developed model.

ρ = 1, π = 10 ρ = 1, π = 30 ρ = 1.5, π = 10 ρ = 1.5, π = 30 ρ = 2, π = 10 ρ = 2, π = 30

n = 10, pt=2 8.1(10) 218.9(10) 6.3(10) 114.8(10) 5.8(10) 109.6(10)
n = 10, pt=3 11.3(10) 293.3(10) 7.5(10) 200.8(10) 7.0(10) 168.8(10)
n = 10, pt=4 18.4(10) 354.7(10) 12.2(10) 288.4(10) 11.9(10) 212.5(10)
n = 20, pt=2 20.1(10) 318.9(10) 15.3(10) 224.6(10) 12.8(10) 1194.7(9)
n = 20, pt=3 29.7(10) 427.7(10) 21.1(10) 257.1(10) 20.2(10) 1631.2(9)
n = 20, pt=4 43.0(10) 561.1(10) 27.0(10) 39.4(10) 27.3(10) 2847.7(8)
n = 30, pt=2 192.5(10) 2347.7(10) 314.5(10) 3327.8(8) 547.9(10) 3489.1(8)
n = 30, pt=3 144.6(10) 3413.0(9) 397.9(10) 3527.4(7) 742.8(9) 3542.9(8)
n = 30, pt=4 185.8(10) 3584.4(9) 455.5(10) 3591.0(6) 1413.1(8) 3595.5(7)
Table 2
Comparative results based on APD.
TL (seconds) 1 10 30 60 180

n, pt Algorithm

GA PSO VNS GA PSO VNS GA PSO VNS GA PSO VNS GA PSO VNS

n = 10, pt = 2 2.5 2.0 2.3 1.7 1.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
n = 10, pt = 3 4.1 3.5 3.7 1.8 1.5 1.2 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
n = 10, pt = 4 4.7 4.5 4.5 2.2 2.2 1.8 0.9 0.3 0.1 0.2 0.0 0.0 0.0 0.0 0.0
n = 20, pt = 2 14.1 13.4 12.8 8.8 7.6 8.6 3.5 3.0 3.4 1.6 1.4 1.5 0.0 0.0 0.0
n = 20, pt = 3 16.6 16.8 15.6 9.5 9.6 9.9 4.7 4.8 5.1 2.1 1.8 1.7 0.3 0.0 0.0
n = 20, pt = 4 18.6 18.7 18.9 10.7 10.5 10.8 7.8 7.3 7.0 2.7 2.2 1.8 0.1 0.1 0.0
n = 30, pt = 2 19.6 19.5 19.4 12.1 11.9 11.7 9.0 8.5 8.1 8.3 7.3 6.5 6.5 6.2 6.3
n = 30, pt = 3 22.4 21.8 21.2 14.3 13.8 13.1 10.1 9.3 8.9 9.5 8.8 7.5 7.3 7.4 7.1
n = 30, pt = 4 26.1 25.7 24.3 18.0 17.8 18.6 14.1 13.4 12.7 10.5 10.3 9.2 9.8 9.1 8.5
n = 40, pt = 2 38.8 37.1 35.8 34.0 33.1 32.6 31.8 30.4 28.4 32.6 30.4 27.3 29.2 28.0 26.9
n = 40, pt = 3 42.3 39.7 36.7 35.9 35.0 33.4 33.0 31.7 29.3 33.7 31.3 28.2 32.0 30.0 27.0
n = 40, pt = 4 44.2 42.5 40.1 39.9 38.5 36.9 36.4 35.7 33.8 34.6 33.0 31.8 33.8 32.3 30.1
n = 50, pt = 2 48.5 46.0 41.4 42.5 40.0 38.4 38.1 36.3 34.3 36.1 33.9 32.5 35.5 33.4 32.1
n = 50, pt = 3 51.3 48.4 43.2 47.3 42.4 39.3 40.5 38.3 35.6 38.0 35.3 33.7 36.9 34.6 33.4
n = 50, pt = 4 53.7 51.2 44.9 49.8 45.7 41.0 44.0 41.2 38.7 40.1 37.1 35.4 38.0 35.8 33.9
Average APD 27.2 26.1 24.3 21.9 20.7 19.9 18.3 17.4 16.4 16.7 15.5 14.5 15.3 14.5 13.7
address the other 415 instances by Set2. The average runtimes for
test instances with n = 10, 20 and 30 are 113.9, 428.8 and 1934 s,
respectively. Furthermore, the average runtimes for test instances
with pt = 2, 3 and 4 are 629.7, 824.7 and 959.4 s, respectively.
Considering the runtimes trend, we conclude that the number of
activities seems has more impact on them rather than the number
of product types.

Table 2 indicates the comparative results of three metaheuris-
tic algorithms, i.e. the VNS, the GA and the PSO algorithm. In this
table, the results of Set1 are shown based on the average percent
deviation (APD) where
PD =

obtained solution by the algorithm−best−found solution
best−found solution × 100 indicates

he percent deviation. In this equation, for each algorithm, the
ifference between the obtained solution by the algorithm and
he best-found solution is calculated and then divided by the
est-found solution. The latter is the optimal solution of each
nstance of Set1, while it is the best-found solution by all devel-
ped solution approaches for each instance of Set2. Moreover, we
how APD for Set2 based on the difference between the obtained
olution by metaheuristic algorithms and the solution found from
elaxed version of the mathematical model. The given results
ighlight the efficiency of our developed VNS such that it is able
o find optimal solutions for all instances of Set1 in less than
80 s. In addition to this, it could find optimal solutions for nearly
5% of Set1 within 60 s. In majority of combinations of n and
t , we observe that the VNS performs better than the GA and
SO algorithm. Besides this, these results indicate that the PSO
lgorithm has better performance than the GA.

.3. Statistical analyses

To analyze statistically the comparative performance of each
air of developed metaheuristics, we utilize the non-parametric
ann–Whitney U test. To this end, we consider the APD of each
6

Table 3
U-values of Mann–Whitney U test.
Comparison TL(seconds)

1 10 30 60 180

VNS vs GA 28 36 21 18 17
VNS vs PSO 48 45 18 17 14
GA vs PSO 22 16 14 14 17

algorithm obtained based on each combination of n and pt as
a sample. For each statistical test, the null hypothesis is that
there is no significant difference between performances of the
two considered algorithms. Table 3 shows the U-values of Mann–
Whitney U test for each paired comparison in each time limit.
Since the sample size is 15 for each algorithm, the critical U-
values are 64 and 51 for α = 0.05 and 0.01, respectively (α
indicates the value of type-I error). If U-value is less than the
critical U-value, the null hypothesis is rejected. As can be seen,
based upon α = 0.05 and 0.01, there are significant differences
between performances of algorithms where the VNS shows the
best performance while the GA has the poorest one.

One of the most important factors which highly likely influ-
ences the performance of metaheuristic algorithms is the seed
of random number generator. Some algorithms are very sensi-
tive to random numbers while some others are almost robust.
Therefore, in our experiment, we have selected randomly 10
different instances, namely five instances from Set1 and others
from Set2. We perform 30 independent runs in such a way that
each run has a unique seed. We measure the runtimes of each
algorithm spent solving each instance until the optimal or best-
found solution is not reached. The average runtimes (Avg) and
their standard deviations (Stdev) are reported in Table 4. In order
to analyze these numerical results statistically, we again use
the Mann–Whitney U test to compare two algorithms based on

M. Ranjbar and R.G. Saber Applied Soft Computing Journal 98 (2021) 106736

1
Z
L
α

n
t

4

o
r
t
f
i
λ

s
i
f
a
a
i

Table 4
Average and standard deviation of runtimes.
Algorithm Instance #

1 2 3 4 5 6 7 8 9 10

VNS Avg 17.68 18.72 65.17 70.88 118.42 131.48 131.61 164.54 167.07 177.27
Stdev 1.55 1.25 9.42 10.55 41.44 29.01 32.76 24.45 24.71 20.23

PSO Avg 18.46 19.95 71.25 78.31 124.58 137.17 147.91 167.36 189.16 196.31
Stdev 1.56 1.11 8.43 11.04 35.51 32.58 32.12 30.58 22.68 19.75

GA Avg 20.31 21.11 72.61 82.66 115.13 146.97 160.17 187.12 184.07 227.93
Stdev 1.24 1.06 8.32 10.00 25.04 24.14 28.69 31.16 25.91 24.30
Table 5
Z-values corresponding to Mann–Whitney U tests.
Comparison Instance #

1 2 3 4 5 6 7 8 9 10

VNS vs GA 5.90 6.12 2.77 4.83 3.25 2.59 3.14 3.06 2.76 5.43
VNS vs PSO 3.62 2.17 2.54 1.67 2.23 1.39 1.18 2.08 1.72 4.13
GA vs PSO 4.30 5.39 0.13 1.05 3.07 1.27 2.08 1.31 0.84 4.54

each instance. Since there are 30 replications (samples) for each
algorithm in each test and the critical U-values are available up
to 20 samples, we use the corresponding Z-values. It is worth
mentioning that the critical Z-values for α = 0.05 and 0.01 are
.95 and 2.58, respectively. According to Table 5 in which the
-values are shown, VNS beats GA significantly in all instances.
ikewise, VNS outperforms PSO in 5 out of 10 instances when
= 0.05, but it is not apparent for α = 0.01. Furthermore, in

early half instances PSO had substantial outperformance rather
han GA.

.4. Impact of moves

In this section, we assess the impact of developed moves
n the performance of the VNS algorithm. For this purpose, we
emove a special move from the algorithm and perform it again
o obtain new solutions in the given time limits. Since the best-
ound solutions for most instances were obtained within 60 s,
n this section we consider TL = 60 seconds. The impacts of
− opt , λ − reverse, γ − swap and γ − insert on the APD are

ummarized in Table 6. The APD of the VNS algorithm for all
nstances with TL = 60 seconds is 14.47 while the similar values
or the algorithms VNS\{λ-opt}, VNS\{λ-reverse}, VNS\{γ -swap}
nd VNS\{λ-insert} are 23.5, 19.6, 19.5 and 17.3, respectively. As
result, it seems that the λ-opt move has the most improving

mpact on the performance of the VNS algorithm.
7

5. Conclusions and future research directions

In this paper, we considered a scheduling problem for a set
of loading and unloading jobs with several types of products at
a transshipment terminal, where the jobs arrive and leave the
terminal in a set of batches. Furthermore, an inventory capacity
for each type of product is considered. We developed a linear
integer programming model and proposed an efficient VNS algo-
rithm. For instances with n ≤ 30, the VNS algorithm was able to
find optimal solutions for 95% of test instances in less than one
minute, and also it was capable of finding all within 180 s where
the average and standard deviation of runtimes were 53 and
37 s, respectively. Moreover, we modified two previously devel-
oped metaheuristic algorithms, i.e. a GA and a PSO algorithm, to
solve our problem. Comparative computational experiments and
statistical analyses indicate that our developed VNS algorithm
outperforms others.

For future research, we suggest considering the problem at
hand with multi loading/unloading stations. In addition to this,
developing exact solution approaches or other metaheuristic al-
gorithms are interesting research topics.

CRediT authorship contribution statement

Mohammad Ranjbar: Supervision, Problem definition, Prob-
lem modelling, Developing algorithm, Computational analyses,
Statistical Analyses, Writing - review & editing. Reza Ghorbani
Saber: Model implementation, Developing algorithm, Implemen-
tation of algorithms, Computational results, Computational anal-
yses, Statistical Analyses, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Table 6
Impact of the moves on the VNS algorithm within TL = 60 s.
n, pt Algorithm

VNS VNS\{λ-opt} VNS\{λ-reverse} VNS\{γ -swap} VNS\{γ -insert}

n = 10, pt = 2 0.0 0.1 0.0 0.0 0.0
n = 10, pt = 3 0.0 0.3 0.0 0.1 0.0
n = 10, pt = 4 0.0 0.8 0.2 0.2 0.1
n = 20, pt = 2 1.5 3.5 2.6 2.5 2.1
n = 20, pt = 3 1.7 3.3 2.6 2.6 2.2
n = 20, pt = 4 1.8 3.5 3.1 2.9 2.5
n = 30, pt = 2 6.5 12.4 8.8 8.7 7.3
n = 30, pt = 3 7.5 12.7 9.1 9.2 8.5
n = 30, pt = 4 9.2 15.9 13.8 13.0 11.4
n = 40, pt = 2 27.3 41.2 35.4 36.7 31.2
n = 40, pt = 3 28.2 42.8 37.9 38.1 33.0
n = 40, pt = 4 31.8 50.0 40.8 39.5 36.7
n = 50, pt = 2 32.5 51.9 42.1 41.9 38.9
n = 50, pt = 3 33.7 55.3 45.8 46.7 41.1
n = 50, pt = 4 35.4 58.6 51.8 50.5 44.6

M. Ranjbar and R.G. Saber Applied Soft Computing Journal 98 (2021) 106736

A

a

R

cknowledgment

This work is supported by Ferdowsi University of Mashhad as
research project with number 45149 and date 22-10-2017.

eferences

[1] D. Briskorn, J.Y. Leung, Minimizing maximum lateness of jobs in inventory
constrained scheduling, J. Oper. Res. Soc. 64 (2013) 1851–1864.

[2] R. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and
approxmimation in deterministic sequencing and scheduling: A Survey,
Ann. Discrete Math. 5 (1979) 287–326.

[3] d. Briskorn, B.C. Choi, K. Lee, J. Leung, M. Pinedo, Complexity of single
machine scheduling subject to nonnegative inventory constraints, Eur. J.
Oper. Res. 207 (2010) 605–619.

[4] A. Bazgosha, M. Ranjbar, N. Jamili, Scheduling of loading and unloading
operations in a multi stations transshipment terminal with release date
and inventory constraints, Comput. Ind. Eng. 106 (2017) 20–31.

[5] C. Schwindt, N. Trautmann, Batch scheduling in process industries: an
application of resource–constrained project scheduling, OR Spektrum 22
(2000) 501–524.

[6] K. Neumann, C. Schwindt, Project scheduling with inventory constraints,
Math. Methods Oper. Res. 56 (2003) 513–533.

[7] K. Neumann, C. Schwindt, N. Trautmann, Scheduling of continuous and
discontinuous material flows with intermediate storage restrictions, Eur. J.
Oper. Res. 165 (2005) 495–509.

[8] J.H. Bartels, J. Zimmermann, Scheduling tests in automotive R & D projects,
Eur. J. Oper. Res. 193 (2009) 805–819.

[9] P. Buijs, I.F. Vis, H.J. Carlo, Synchronization in cross-docking networks:
A research classification and framework, Eur. J. Oper. Res. 239 (2014)
593–608.

[10] N. Boysen, M. Fliedner, Cross dock scheduling: Classification, literature
review and research agenda, Omega 38 (2010) 413–422.

[11] N. Boysen, M. Fliedner, A. Scholl, Scheduling inbound and outbound trucks
at cross docking terminals, OR Spectrum 32 (2010) 135–161.

[12] A.B. Arabani, M. Zandieh, S.M.F. Ghomi, Multi-objective genetic-based
algorithms for a cross-docking scheduling problem, Appl. Soft Comput. 11
(2011) 4954–4970.
8

[13] N. Boysen, Truck scheduling at zero-inventory cross docking terminals,
Comput. Oper. Res. 37 (2010) 32–41.

[14] W. Yu, P.J. Egbelu, Scheduling of inbound and outbound trucks in cross
docking systems with temporary storage, Eur. J. Oper. Res. 184 (2008)
377–396.

[15] S. Forouharfard, M. Zandieh, An imperialist competitive algorithm to
schedule of receiving and shipping trucks in cross-docking systems, Int.
J. Adv. Manuf. Technol. 51 (2010) 1179–1193.

[16] B. Vahdani, R. Soltani, M. Zandieh, Scheduling the truck holdover recurrent
dock cross-dock problem using robust meta-heuristics, Int. J. Adv. Manuf.
Technol. 46 (2010) 769–783.

[17] N. Mladenović, P. Hansen, Variable neighborhood search, Comput. Oper.
Res. 24 (1997) 1097–1100.

[18] R. Todosijević, A. Mjirda, M. Mladenović, S. Hanafi, B. Gendron, A general
variable neighborhood search variants for the travelling salesman problem
with draft limits, Optim. Lett. 11 (2017) 1047–1056.

[19] J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence,
University of Michingan Press, Ann Arbor, MI, 1975.

[20] A. Boloori Arabani, M. Zandieh, S.M.T. Fatemi Ghomi, Multi-objective
genetic-based algorithms for a cross-docking scheduling problem, Appl.
Soft Comput. 11 (8) (2011) 4954–4970.

[21] D. Molavi, A. Shahmardan, M.S. Sajadieh, Truck scheduling in a cross
docking systems with fixed due dates and shipment sorting, Comput. Ind.
Eng. 117 (2018) 29–40.

[22] M. Tamannaeib, M. Rasti-Barzoki, Mathematical programming and solution
approaches for minimizing tardiness and transportation costs in the supply
chain scheduling problem, Comput. Ind. Eng. 127 (2019) 643–656.

[23] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in:
Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, Vol. 1, 1995, pp. 39–43.

[24] A. Mohtashami, M. Tavana, F.J. Santos-Arteaga, A. Fallahian-Najafabadi,
A novel multi-objective meta-heuristic model for solving cross-docking
scheduling problems, Appl. Soft Comput. 31 (2015) 30–47.

[25] W. Wisittipanich, P. Hengmeechai, Truck scheduling in multi-door cross-
docking terminal by modified particle swarm optimization, Comput. Ind.
Eng. 113 (2017) 793–802.

http://refhub.elsevier.com/S1568-4946(20)30674-8/sb1
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb1
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb1
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb2
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb2
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb2
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb2
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb2
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb3
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb3
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb3
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb3
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb3
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb4
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb4
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb4
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb4
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb4
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb5
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb5
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb5
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb5
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb5
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb6
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb6
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb6
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb7
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb7
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb7
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb7
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb7
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb8
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb8
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb8
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb9
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb9
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb9
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb9
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb9
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb10
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb10
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb10
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb11
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb11
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb11
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb12
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb12
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb12
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb12
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb12
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb13
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb13
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb13
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb14
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb14
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb14
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb14
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb14
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb15
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb15
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb15
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb15
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb15
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb16
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb16
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb16
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb16
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb16
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb17
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb17
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb17
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb18
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb18
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb18
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb18
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb18
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb19
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb19
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb19
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb19
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb19
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb20
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb20
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb20
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb20
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb20
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb21
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb21
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb21
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb21
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb21
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb22
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb22
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb22
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb22
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb22
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb24
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb24
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb24
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb24
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb24
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb25
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb25
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb25
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb25
http://refhub.elsevier.com/S1568-4946(20)30674-8/sb25

	A variable neighborhood search algorithm for transshipment scheduling of multi products at a single station
	Introduction
	Problem description and modeling
	A VNS algorithm
	Solution representation
	Sketch of the VNS
	Neighborhood structures
	A shaking procedure
	A local search procedure
	A repairing procedure
	Modified GA and PSO

	Computational experiments
	Test set generation and parameters setting
	Comparative results
	Statistical analyses
	Impact of moves

	Conclusions and future research directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

