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a b s t r a c t

In this paper we propose a new projection method to solve both large-scale continuous-
time matrix Riccati equations and differential matrix Riccati equations. The new ap-
proach projects the problem onto an extended block Krylov subspace and gets a
low-dimensional equation. We use the block Golub–Kahan procedure to construct the
orthonormal bases for the extended Krylov subspaces. For matrix Riccati equations, the
reduced problem is then solved by means of a direct Riccati scheme such as the Schur
method. When we solve differential matrix Riccati equations, the reduced problem is
solved by the Backward Differentiation Formula (BDF) method and the obtained solution
is used to build the low rank approximate solution of the original problem. Finally, we
give some theoretical results and present numerical experiments.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the large continuous-time algebraic Riccati equation (CARE) of the form

ATX + XA − XBBTX + CTC = 0, (1)

and the continuous-time differential matrix Riccati equation (DRE) on the time in the interval [0, Tf ] of the form{
Ẋ(t) = ATX(t) + X(t)A − X(t)BBTX(t) + CTC,

X(0) = X0,
(2)

where A ∈ Rn×n is assumed to be large, sparse, and nonsingular, B ∈ Rn×s and C ∈ Rp×n are assumed to be full rank
matrices with p, s ≪ n, X0 is some given n × n low rank matrix, X is unknown matrix for Eq. (1) and unknown matrix
function for Eq. (2).

Continuous-time algebraic Riccati equation (1) and differential matrix Riccati equation (2) play the fundamental roles
in many areas such as control, model reduction problems and many others; see, e.g., [1–10] and references therein. In
the last decades, some numerical methods have been proposed for approximating solution of large scale algebraic Riccati
equations [11–15]. For continuous-time differential matrix Riccati equation, only a few attempts have been made for large
problems, see [16,17].
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In this paper we present a new projection method that projects the initial problem onto an extended block Krylov
subspace. The new projection method builds the orthonormal bases of enriched block Krylov subspaces and allows us to
compute low rank approximations to the stabilizing solution of (1) and to obtain a low-dimensional differential matrix
Riccati equation. The extended block Krylov subspaces are generated by means of the new extended block Golub and
Kahan procedure. In addition, we provide new theoretical analysis of the method and the norm of the residual.

We mention that the Golub and Kahan process first introduced in [18]. In [19], the authors defined the block
bidiagonalization based on Golub and Kahan procedure. In the present paper, for given matrices A ∈ Rn×n and C ∈ Rn×p,
we use the block bidiagonalization procedure of Golub and Kahan and generate the orthonormal bases for the following
extended Krylov subspaces:

Ke
k+1,m(AA

T , C) = span{(AAT )−kC, . . . , (AAT )−1C, C, (AAT )C, . . . , (AAT )m−1C},

Ke
k,m+1(A

TA, ATC) = span{(ATA)−k+1ATC, . . . , (ATA)−1ATC, ATC, (ATA)ATC, . . . , (ATA)mATC},

where k,m ≥ 1, dim Ke
k+1,m(AA

T , C) ≤ (k + m)p, and dim Ke
k,m+1(A

TA, ATC) ≤ (k + m)p.
Evidently, Ke

k+1,m(AA
T , C) and Ke

k,m+1(A
TA, ATC) can be treated as the usual Krylov subspaces, but with other starting

matrices (AAT )−kC and (ATA)−k+1ATC , respectively. We do not wish to calculate the matrices (AAT )−kC and (ATA)−k+1ATC
(they would be numerically unstable), but instead we are interested in developing a special procedure to obtain the
orthonormal bases of the extended Krylov subspaces Ke

k+1,m(AA
T , C) and Ke

k,m+1(A
TA, ATC). The use of the extended

subspaces is justified by the fact that they contain more information than the classical Krylov subspaces since they are
enriched by (AAT )−1 and (ATA)−1.

Throughout this paper, we use the following notations. For two n× s matrices X and Y, we define the following inner
product: ⟨X, Y ⟩F = tr(XTY ), where tr(Z) denotes the trace of the square matrix Z. The associated norm is the Frobenius
norm denoted by ∥.∥F . We will use the notation ⟨., .⟩2 for the usual inner product in Rn and the associated norm denoted
by ∥.∥2. Finally, 0s×l will denote the zero matrix in Rs×l, 0s and Is will denote the zero and the identity matrix in Rs×s,
respectively.

The outline of this paper is as follows. In Section 2, we give a quick overview of the block Golub–Kahan procedure
and its properties. In Section 3, we present the extended version of block Golub–Kahan procedure and its properties. In
Section 4, we show how to apply the extended block Golub–Kahan procedure to obtain low rank approximate solutions
to the continuous-time algebraic equation (1). We give some theoretical results for the residual at each step which
does not require the computation of products of large matrices. In Section 5, we use the extended block Golub–Kahan
procedure for the numerical resolution of the differential Riccati equation (2). The initial differential Riccati equation is
projected onto a block extended Krylov subspace to get a low dimensional differential Riccati equation that is solved
by the backward differentiation formula (BDF) method. Section 6 is devoted to some numerical experiments. Finally, we
make some concluding remarks in Section 7.

2. The block Golub–Kahan procedure

In this section, we present a brief of the block Bidiag 1 algorithm [19]. This algorithm is the basis for the extended
block Golub–Kahan procedure.

The block Bidiag 1 procedure constructs the sets of the n× p block vectors V1, V2, . . . , Vk and U1,U2, . . . ,Uk such that
V T
i Vj = 0p,UT

i Uj = 0p, for i ̸= j, and V T
i Vi = Ip,UT

i Ui = Ip and after k steps they form the orthonormal bases of Rn×kp.
Block Bidiag 1 (Starting matrix B; reduction to block lower bidiagonal form)

U1B1 = B, V1A1 = ATU1, (3)

Ui+1Bi+1 = AVi − UiAT
i ,

Vi+1Ai+1 = ATUi+1 − ViBT
i+1,

}
i = 1, 2, . . . , k, (4)

where Ui, Vi ∈ Rn×p, Bi, Ai ∈ Rp×p and U1B1, V1A1,Ui+1Bi+1, Vi+1Ai+1 are the QR decompositions of the matrices
B, ATU1, AVi − UiAT

i , A
TUi+1 − ViBT

i+1, respectively. With the definitions

Uk ≡ [U1,U2, . . . ,Uk], V k ≡ [V1, V2, . . . , Vk], Tk ≡

⎡⎢⎢⎢⎢⎣
AT
1

B2 AT
2

. . .
. . .

Bk AT
k

Bk+1

⎤⎥⎥⎥⎥⎦ , (5)

the recurrence relations (3) and (4) may be rewritten as:

Uk+1E1B1 = B,
AV k = Uk+1Tk,

ATUk+1 = V kT T
k + Vk+1Ak+1ET

k+1,

ATUk = V kT
T
k ,

(6)
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where T k obtained from Tk by deleting its p last rows and Ei is the (k + 1)p × p matrix which is zero except for the ith p
rows, which are the p × p identity matrix. We have also V

T
kV k = Ikp and U

T
k+1Uk+1 = I(k+1)p, where Il is the l × l identity

matrix. More details about the block Golub–Kahan process can be found in [19].

3. The extended block Golub–Kahan algorithm

The algorithm proceeds by first running k steps of the block Golub–Kahan process with A−T , and then continuing with
m iterations of the block Golub–Kahan process with A, while maintaining orthogonalization among all generated vectors
in the sequence. Given a matrix C ∈ Rn×p, by performing k steps of the Golub–Kahan procedure to the pair (A−T , C), we
have

U1B1 = C, V1A1 = A−1U1, (7)

Ui+1Bi+1 = A−TVi − UiAT
i ,

Vi+1Ai+1 = A−1Ui+1 − ViBT
i+1,

}
i = 1, 2, . . . , k, (8)

where Ui, Vi ∈ Rn×p, Bi, Ai ∈ Rp×p, and U1B1, V1A1,Ui+1Bi+1, Vi+1Ai+1 are the QR decomposition of the matrices
C, A−1U1, A−TVi − UiAT

i , A
−1Ui+1 − ViBT

i+1, respectively. By defining Uk, V k and Tk as in (5), the recurrence relations (7)
and (8) may be rewritten as:

Uk+1E1B1 = C,

A−TV k = Uk+1Tk,
A−1Uk+1 = V kT T

k + Vk+1Ak+1ET
k+1,

A−1Uk = V kT
T
k ,

(9)

where, as in (6), T k obtained from Tk by deleting its p last rows and Ej is the (k+1)p×p matrix which is zero except for the
jth p rows, which is the p × p identity matrix. We have also U

T
k+1Uk+1 = I(k+1)p and V

T
kV k = Ikp. We can easily show that

[U1,U2, . . . ,Uk] and [V1, V2, . . . , Vk] are the orthonormal basis of the subspaces Kk((AAT )−1, C) and Kk((ATA)−1, A−1C), re-
spectively. Now we again use the block Golub and Kahan bidiagonalization applied to the pair (A,U1) in order to construct
the matrices Q1,Q2, . . . ,Qm and P1, P2, . . . , Pm+1 such that Uk+1,m = [U1,U2, . . . ,Uk+1,Q1,Q2, . . . ,Qm] and Vk,m+1 =

[V1, V2, . . . , Vk, P1, P2, . . . , Pm+1] form the orthonormal basis of the subspaces Ke
k+1,m(AA

T , C) and Ke
k,m+1(A

TA, ATC), re-
spectively. In order to have the orthonormal basis Uk+1,m,Vk,m+1, first we orthogonal the matrix ATU1 against V1, V2, . . . , Vk
and we generate the matrix P1 satisfying:

P1Ã1 = ATU1 −

k∑
i=1

ViHi1, (10)

where P1Ã1 is the QR decomposition of the matrix ATU1 −
∑k

i=1 ViHi1. Then, we orthogonal the matrix AP1 −U1ÃT
1 against

U2,U3, . . . ,Uk+1 and we generate the matrix Q1 satisfying

Q1B̃1 = AP1 − U1ÃT
1 −

k+1∑
i=2

UiGi1, (11)

where Q1B̃1 is the QR decomposition of the matrix AP1 − U1ÃT
1 −

∑k+1
i=2 UiGi1. Now we construct Q2,Q3, . . . ,Qm+1 and

P2, P3, . . . , Pm+1 with the recurrence relations:

PiÃi = ATQi−1 − Pi−1B̃T
i−1,

QiB̃i = APi − Qi−1ÃT
i ,

}
i = 2, 3, . . . ,m + 1. (12)

With the definitions G11 = ÃT
1 and

Qm ≡ [Q1,Q2, . . . ,Qm], Pm ≡ [P1, P2, . . . , Pm], T̃m ≡

⎡⎢⎢⎢⎢⎢⎣
B̃T
1

Ã2 B̃T
2

. . .
. . .

Ãm B̃T
m

Ãm+1

⎤⎥⎥⎥⎥⎥⎦ ,

the recurrence relations (12) may be rewritten as

ATQm = Pm+1T̃m,

APm = QmT̃
T

m + (
∑k+1

i=1 UiGi1)ET
1 .

(13)
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where T̃m is the matrix obtained from T̃m by deleting p last rows and E1 is the mp× p matrix which is zero except for the

first p rows.

The main steps of the extended block Golub–Kahan algorithm to generate Uk+1,m and Vk,m+1 may be summarized as

follows.

Algorithm 1 The extended block Golub–Kahan algorithm

1. Inputs: A ∈ Rn×n, C ∈ Rn×p, k, and m.
2. U1B1 = C, V1A1 = A−1U1 (QR decomposition of C and A−1U1),
3. For i = 1, . . . , k

W = A−TVi − UiAT
i ,

Ui+1Bi+1 = W (QR decomposition of W ),
W = A−1Ui+1 − ViBT

i+1,

Vi+1Ai+1 = W (QR decomposition of W ),
end for.

4. W = ATU1,

For i = 1, . . . , k
Hi1 = V T

i W ,

W = W − ViHi1,
end for.
P1Ã1 = W (QR decomposition of W ),

5. W = AP1 − U1ÃT
1 ,

For i = 2, . . . , k + 1
Gi1 = UT

i W ,

W = W − UiGi1,

end for.
Q1B̃1 = W (QR decomposition of W ),

6. For i = 2, . . . ,m + 1
W = ATQi−1 − Pi−1B̃T

i−1,
PiÃi = W (QR decomposition of W ),
W = APi − Qi−1ÃT

i ,

QiB̃i = W (QR decomposition of W ),
end for.

The extended block Golub–Kahan algorithm will be breakdown if one of the matrices Bi+1 (at step i of part 3), Ã1 ( in
the computation of matrix P1), and Ãi (at step i of part 6) of Algorithm 1 is singular. So the Algorithm 1 will not breakdown
if all the matrices Bi, i = 1, . . . , k+1 and Ãi, i = 1, . . . ,m+1 are nonsingular. We will not treat the problem of breakdown
in this paper and we assume that all the matrices Bi’s and Ãi’s produced by the extended block Golub–Kahan algorithm

are nonsingular.

For the extended block Golub–Kahan Algorithm, we have the following propositions.

Proposition 1. Suppose that (k,m) steps of the extended block Golub–Kahan Algorithm have been taken, then the matrices

Uk+1,m = [U1,U2 . . . ,Uk+1,Q1,Q2, . . . ,Qm] and Vk,m+1 = [V1, V2 . . . , Vk, P1, P2, . . . , Pm+1] are the orthonormal bases of the

extended block Krylov subspaces Ke
k+1,m(AA

T , C) and Ke
k,m+1(A

TA, ATC), respectively.

Proof. The proof of this proposition is similar to that given in [20] for the classical Arnoldi process. □

Proposition 2. Suppose that (k,m) steps of Algorithm 1 have been carried out. Let

Fk+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ip AT
1B

−1
2

Ip AT
2B

−1
3

Ip
. . .

. . . AT
kB

−1
k+1

Ip

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Jk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
H11 B−1

2

H21 B−1
3

...
. . .

Hk1 B−1
k+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (14)
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Then we have

ATUk+1,m = Vk,m+1Fk+1,m, with Fk+1,m =

⎡⎢⎢⎢⎢⎣
JkF−1

k+1 | 0kp×mp
− − − − −− − − − − −

Ã1ET
1 F

−1
k+1 | B̃T

1E
T
1

− − − − −− − − − − −

0mp×(k+1)p | T̃m

⎤⎥⎥⎥⎥⎦ , (15)

where T̃m is the matrix obtained from T̃m by deleting its p first row and ET
1 = [Ip, 0p, . . . , 0p] ∈ Rp×mp.

Proof. From (8) and (10), we have

ATU1 = P1Ã1 +

k∑
i=1

ViHi1,

ATUi+1 + ATUiAT
i B

−1
i+1 = ViB−1

i+1, for i = 1, . . . , k.

By using the definition of matrices Fk+1 and Jk, these equations can be written as follows:

ATUk+1Fk+1 = [V k, P1]
[

Jk
Ã1ET

1

]
,

where ET
1 = [Ip, 0p, . . . , 0p] ∈ Rp×(k+1)p. This together with the first relation of (13) implies the desired relation (15). □

4. Low rank approximate solution to the continuous-time algebraic Riccati equation

Eq. (1) arises from the continuous-time linear-quadratic optimal control problem:

Minimize J(x0, u) =
1
2

∫
+∞

0
(y(t)Ty(t) + u(t)Tu(t))dt, (16)

subject to the dynamics constraints{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t), x(0) = x0,

(17)

where x(t) is the state vector of dimension n, u(t) is a control vector of Rs, and y(t) is the output of length p. Under the
hypotheses [21]: the pair (A, B) is c-stabilizable (i.e., there is a matrix S such that A − BS is stable) and the pair (C, A) is
c-detectable (i.e., the pair (AT , CT ) c-stabilizable), then J(x0, u) is minimized by u(t) = −BTXx(t), where X ∈ Rn×n is the
unique symmetric positive semidefinite and stabilizing solution (Re(λ(A − BBTX) < 0)) of the algebraic Riccati equation
(1).

Many numerical methods have been proposed for the solution of (1), such as Newton type methods, eigenvector
approaches; see, e.g., [8,9,11,22–24]. Most of the proposed methods are effective for relatively small problems. For
large and sparse problems, projection methods onto block Krylov subspaces have been applied to compute low rank
approximate solutions CAREs [13,14,25]. These methods usually require large projection subspaces and this increases
considerably the CPU time and the memory requirements. To remedy the drawback of the projection methods based on
the block or global Arnoldi algorithms, Heyouni and Jbilou in [12] introduced extended block Arnoldi process for solving
approximate solution to (1).

The aim of this section is to show how to use the extended block Golub–Kahan algorithm described in Section 3
to extract low rank approximate solution to the continuous-time algebraic Riccati equation (1). This will be done by
projecting the initial problem onto the extended block Krylov subspace Ke

k+1,m(AA
T , CT ). Applying the extended block

Golub–Kahan Algorithm 1 to the pair (A, CT ) gives us the orthonormal basis Uk+1,m = [U1, . . . ,Uk+1,Q1, . . . ,Qm] and
Vk,m+1 = [V1, . . . , Vk, P1, . . . , Pm+1] of the extended block Krylov subspaces Ke

k+1,m(AA
T , CT ) and Ke

k,m+1(A
TA, ATCT ),

respectively. In addition, by using Proposition 2, we can define the matrix

Tk+1,m = UT
k+1,mA

TUk+1,m = UT
k+1,mVk,m+1Fk+1,m, (18)

where the matrix Fk+1,m can be obtained through the algorithm. Using the orthonormal basis Uk+1,m, as in [13,26], we
look for low-rank approximate solution that have the form

Xk+1,m = Uk+1,mYk+1,mUT
k+1,m, (19)

where Yk+1,m ∈ R(k+1+m)p×(k+1+m)p. Using the expression (19) in Eq. (1), multiplying on the left by UT
k+1,m and on the right

by Uk+1,m, we get the low-dimensional continuous-time algebraic Riccati equation

Tk+1,mYk+1,m + Yk+1,mT T
k+1,m − Yk+1,mB̄k+1,mB̄T

k+1,mYk+1,m + C̄T
k+1,mC̄k+1,m = 0, (20)
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with B̄k+1,m = UT
k+1,mB and C̄T

k+1,m = UT
k+1,mC

T . We assume that the low-dimensional continuous-time algebraic Riccati
equation (20) has a unique symmetric positive semidefinite and stabilizing solution Yk+1,m. The low-dimensional equation
(20) can be solved by a standard direct method such as the Schur method [27].

Let Rk+1,m = ATXk+1,m + Xk+1,mA − Xk+1,mBBTXk+1,m + CTC , be the residual associated with the approximate solution
Xk+1,m. To stop the iterations, one has to test whether ∥Rk+1,m∥F ≤ tol, where tol is some fixed tolerance. The computation
of Xk+1,m (and of Rk+1,m) becomes expensive as the pair (k,m) increases. The next result shows that how to compute the
residual without computing the approximation Xk+1,m which is calculated only when convergence is achieved.

Theorem 3. Let CT
= U1B1 and Yk+1,m be the exact solution of (20) and Xk+1,m = Uk+1,mYk+1,mUT

k+1,m be the approximate
solution to the continuous-time algebraic Riccati equation (1) obtained after (k,m) iterations of the extended block Golub–Kahan
method. Then the residual Rk+1,m associated to Xk+1,m satisfies

Rk+1,m = Rk+1,m + R
T
k+1,m, (21)

where Rk+1,m = (Vk,m+1Fk+1,m − Uk+1,mTk+1,m)Yk+1,mUT
k+1,m.

Proof. Starting from Rk+1,m = ATXk+1,m + Xk+1,mA − Xk+1,mBBTXk+1,m + CTC and using (15), we have

Rk+1,m = Vk,m+1Fk+1,mYk+1,mUT
k+1,m + Uk+1,mYk+1,mFT

k+1,mV
T
k,m+1

− Uk+1,mYk+1,mB̄k+1,mB̄T
k+1,mYk+1,mUT

k+1,m + CTC .

From C̄T
k+1,m = UT

k+1,mC
T

= E1B1, where E1 ∈ R(k+1+m)p×p is the matrix of the first p columns of the (k+1+m)p×(k+1+m)p
identity matrix, we have

CTC = U1B1BT
1U

T
1 = Uk+1,mE1B1BT

1E
T
1U

T
k+1,m = Uk+1,mC̄T

k+1,mC̄k+1,mUT
k+1,m

So, we get

Rk+1,m = Vk,m+1Fk+1,mYk+1,mUT
k+1,m + Uk+1,mYk+1,mFT

k+1,mV
T
k,m+1

+ Uk+1,m(−Yk+1,mB̄k+1,mB̄T
k+1,mYk+1,m + C̄T

k+1,mC̄k+1,m)UT
k+1,m.

Since Yk+1,m is the symmetric solution of reduced CARE (20), this relation can be written as

Rk+1,m = Vk,m+1Fk+1,mYk+1,mUT
k+1,m + Uk+1,mYk+1,mFT

k+1,mV
T
k,m+1

− Uk+1,m(Tk+1,mYk+1,m + Yk+1,mT T
k+1,m)U

T
k+1,m,

which yields the relation (21). □

We mention that the matrix Fk+1,m and Tk+1,m can be easily updated in each iteration. So, the norm of residual in each
iteration can be computed cheaply without computing Xk+1,m.

By the experiments, we observe that, it is appropriate to take the size k for Uk (Golub–Kahan basis for the Krylov
subspace Kk(AAT , (AAT )−k+1CT )) small such as k = 10. For some fixed k, the extended block Golub–Kahan algorithm for
the continuous-time algebraic Riccati equation (1) is summarized as follows.

Algorithm 2 The extended block Golub–Kahan algorithm for continuous-time algebraic Riccati equations

1. Inputs: A ∈ Rn×n, B ∈ Rn×s, C ∈ Rp×n, the integers k, mmax, and a tolerance tol.
2. Generate the matrices Uk+1 = [U1,U2, . . . ,Uk+1], V k+1 = [V1, V2, . . . , Vk+1], Tk, Q1, and P1 using the steps 1–5 of Algorithm 1 with
(A, CT ).
Compute JkF−1

k+1, Ã1ET
1 F

−1
k+1 using Eq. (14).

3. For m = 2, . . . ,mmax
W = ATQi−1 − Pi−1B̃T

i−1,
PiÃi = W (QR decomposition of W ),
W = APi − Qi−1ÃT

i ,

QiB̃i = W (QR decomposition of W ),
Set Uk+1,m = [U1, · · · ,Uk+1,Q1, · · · ,Qm] and Vk,m+1 = [V1, · · · , Vk, P1, · · · , Pm+1].

Compute Fk+1,m using Eq. (15).
Compute B̄k+1,m = UT

k+1,mB, C̄
T
k+1,m = UT

k+1,mC
T , and Tk+1,m = UT

k+1,mVk,m+1Fk+1,m.

Solve by a direct method (the Schur method) the low-order Riccati equation

Tk+1,mYk+1,m + Yk+1,mT T
k+1,m − Yk+1,mB̄k+1,mB̄T

k+1,mYk+1,m + C̄T
k+1,mC̄k+1,m = 0.

Compute Rk+1,m using Eq. (21). If ∥Rk+1,m∥F < tol, then compute the obtained approximation
Xk+1,m = Uk+1,mYk+1,mUT

k+1,m and stop.
End.
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5. Low rank approximate solution to the differential matrix Riccati equations

We first recall the following theoretical result which gives under some assumptions on the coefficient matrices A, B,
and C , an expression of the exact solution of (2), see [1] for more details.

Theorem 4. Assuming that (A, B) is stabilizable and (C, A) is observable that X(0) > 0, the differential Riccati equation (2)
admits a unique solution X given by

X(t) = X̃ + etÃ
T
[etÃ

T
Z̃etÃ

T
+ (X0 − X̃)−1

− Z̃]
−1etÃ

T
, (22)

where X̃ is the positive definite solution of algebraic Riccati equation

AT X̃ + X̃A − X̃BBT X̃ + CTC = 0, Ã = A − BBT X̃, (23)

and Z̃ is the positive definite solution of the Lyapunov equation

ÃZ + ZÃT
− BBT

= 0.

The formula (22) is not suitable for large scale problems as it requires the computation of a matrix exponential, of an
inverse matrix, and various products of matrices.

In this section, we show how to obtain low rank approximate solutions to the differential matrix Riccati equations (2)
by projecting directly the initial problem onto small extended block Krylov subspace Ke

k+1,m(AA
T , CT ). As in Section 4, we

look for low-rank approximate solution that have the form

Xk+1,m(t) = Uk+1,mYk+1,m(t)UT
k+1,m, t ∈ [t0, Tf ], (24)

and satisfying the Petrov–Galerkin orthogonality condition

UT
k+1,mRk+1,m(t)Uk+1,m = 0, t ∈ [t0, Tf ], (25)

where Rk+1,m(t) is the residual Rk+1,m(t) = Ẋk+1,m(t) − ATXk+1,m(t) − Xk+1,m(t)A + Xk+1,m(t)BBTXk+1,m(t) − CTC . From (24)
and (25), we obtain the low dimensional differential matrix Riccati equation

Ẏk+1,m(t) − Tk+1,mYk+1,m(t) − Yk+1,m(t)T T
k+1,m + Yk+1,m(t)B̄k+1,mB̄T

k+1,mYk+1,m(t) − C̄T
k+1,mC̄k+1,m = 0, (26)

with B̄k+1,m = UT
k+1,mB and C̄T

k+1,m = UT
k+1,mC

T . The latter low dimensional differential matrix Riccati equation is solved
by using the well known Backward Differentiation Formula (BDF) method described in Section 5.1.

We assume that at each time tl the approximate solution Xk+1,m(tl) can be given as a product of two low rank matrices.
Consider the eigen-decomposition of the symmetric and positive definite matrix Yk+1,m(tl) = ÛDÛT , where D is the
diagonal matrix of the eigenvalues of Yk+1,m(tl) sorted in decreasing order. Let Ûml be the (m+ k+ 1)p×ml matrix of the
first ml columns of Û corresponding to the ml eigenvalues of magnitude greater than some tolerance dtol. We obtain the
truncated eigen-decomposition Yk+1,m(tl) ≈ ÛmlDml Û

T
ml
, where Dml = diag[λ1, . . . , λml ]. Setting Z̃(k+1,m),l = ÛmlD

1/2
ml and

Z(k+1,m),l = Uk+1,mZ̃(k+1,m),l, it follows that

Xk+1,m(tl) ≈ Z(k+1,m),lZT
(k+1,m),l. (27)

The computation of Xk+1,m(t) (and of Rk+1,m(t)) becomes expensive as k and m increase. So, in order to stop the
iterations, one has to test if ∥Rk+1,m(t)∥ < ϵ without having to compute extra products involving the matrix A. The
next result shows how to compute the residual norm of Rk+1,m(t) without forming the approximation Xk+1,m(t) which is
computed in a factored form only when convergence is achieved.

Theorem 5. Let CT
= U1B1 and Yk+1,m(t) be the exact solution of (26) and Xk+1,m(t) = Uk+1,mYk+1,m(t)UT

k+1,m be the
approximate solution to the differential matrix Riccati equation (2) obtained after (k,m) iterations of the extended block
Golub–Kahan method. Then the residual Rk+1,m(t) associated to Xk+1,m(t) satisfies

Rk+1,m(t) = Rk+1,m(t) + Rk+1,m(t)T , (28)

where Rk+1,m(t) = (Vk,m+1Fk+1,m − Uk+1,mTk+1,m)Yk+1,m(t)UT
k+1,m.

Proof. The proof is similar to that of Theorem 3. □

5.1. BDF for solving the low order differential matrix Riccati equation (26)

We use the Backward Differentiation Formula (BDF) method [28] for solving, at each step (k,m) of the extended block
Golub–Kahan Algorithm 1, the low dimensional differential matrix Riccati equation (26). At each time tl, let Y(k+1,m),l be
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Table 1
Coefficients of p step BDF method with p ≤ 3.
p β α0 α1 α2

1 1 1
2 2/3 4/3 −1/3
3 6/11 18/11 −9/11 2/11

the approximation of Yk+1,m(tl), where Yk+1,m is a solution of (26). Then, the new approximation Y(k+1,m),l+1 of Yk+1,m(tl+1)
obtained at step l + 1 by BDF is defined by the implicit relation

Y(k+1,m),l+1 =

p−1∑
i=0

αiY(k+1,m),l−i + hβF(Y(k+1,m),l+1), (29)

where h = tl+1 − tl is the step size, αi and β are the coefficients of the BDF method as listed in Table 1 and F(Y ) is given
by

F(Y ) = Tk+1,mY + YT T
k+1,m − Y B̄k+1,mB̄T

k+1,mY + C̄T
k+1,mC̄k+1,m.

The approximate Y(k+1,m),l+1 solves the following matrix equation

−Y(k+1,m),l+1 + hβ(Tk+1,mY(k+1,m),l+1 + Y(k+1,m),l+1T T
k+1,m

− Y(k+1,m),l+1B̄k+1,mB̄T
k+1,mY(k+1,m),l+1 + C̄T

k+1,mC̄k+1,m) +

p−1∑
i=0

αiY(k+1,m),l−i = 0.

which can be written as the following continuous-time algebraic Riccati equation

Tk+1,mY(k+1,m),l+1 + Y(k+1,m),l+1TT
k+1,m − Y(k+1,m),l+1Bk+1,mBT

k+1,mY(k+1,m),l+1 + CT
(k+1,m),l+1C(k+1,m),l+1 = 0. (30)

By using the low rank product Y(k+1,m),l ≈ Z̃(k+1,m),l̃ZT
(k+1,m),l, Z̃(k+1,m),l ∈ R(k+m+1)p×ml , with ml < (k + m + 1)p (which

described in the previous section), the coefficient matrices appearing in (30) are given by

Tk+1,m = hβTk+1,m −
1
2 I,

Bk+1,m =
√
hβB̄k+1,m,

C(k+1,m),l+1 = [
√
hβC̄k+1,m,

√
α0ZT

(k+1,m),l, . . . ,
√

αp−1Z̃T
(k+1,m),l+1−p]

T .

The continuous-time algebraic Riccati equation (30) can be solved by applying direct methods based on Schur decom-
position or based on generalized eigenvalues of the Hamiltonian in the small dimensional cases [9,22,24] or matrix sign
function methods [29–31].

In order to initialize the BDF(p) integration scheme, the p−1 approximates X1, . . . , Xp−1 are computed by lower-order
integration schemes. In our tests, we chose p = 2 and X1 was computed as a product of low-rank factors (X1 ≈ Z1ZT

1 ) by
the Implicit Euler method BDF(1).

We summarize the steps of our proposed approach (using the extended block Golub–Kahan procedure) in Algorithm 3.

Remark. In the next section we compare the results obtained by the extended block Golub–Kahan and the block
Golub–Kahan procedures. For the latter procedure, by defining

Xm = UmYmU
T
m, (31)

and using

Tm = U
T
mA

TUm = U
T
mVmT

T
m, (32)

which obtained from the last relation of (6), we have the following low-dimensional equation

TmYm + YmT T
m − YmB̄mB̄T

mYm + C̄T
mC̄m = 0, (33)

with B̄m = U
T
mB and C̄T

m = U
T
mC

T . The residual Rm associated to Xm is as follows:

Rm = Rm + R
T
m, (34)

where Rm = (VmT
T
m − UmTm)YmU

T
m.
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For the differential matrix Riccati equation, using the block Golub–Kahan procedure, the similar results can be given.

Algorithm 3 The extended block Golub–Kahan algorithm for differential continuous-time algebraic Riccati equations

1. Inputs: A ∈ Rn×n, B ∈ Rn×s, C ∈ Rp×n, the integers k, mmax, and a tolerance tol.
2. Generate the matrices Uk+1 = [U1,U2, . . . ,Uk+1], V k+1 = [V1, V2, . . . , Vk+1], Tk and vectors Q1, P1 using the steps 1–5 of Algorithm 1
with (A, CT ).
Compute JkF−1

k+1, Ã1ET
1 F

−1
k+1 using Eq. (14).

Compute X1, . . . , Xp−1 as low-rank products Xj ≈ ZjZT
j .

3. For i = 2, . . . ,mmax
W = ATQi−1 − Pi−1B̃T

i−1,
PiÃi = W (QR decomposition of W ),
W = APi − Qi−1ÃT

i ,

QiB̃i = W (QR decomposition of W ),
Set Uk+1,m = [U1, · · · ,Uk+1,Q1, · · · ,Qm] and Vk,m+1 = [V1, · · · , Vk, P1, · · · , Pm+1].

Compute Fk+1,m using Eq. (15).
Compute B̄k+1,m = UT

k+1,mB, C̄
T
k+1,m = UT

k+1,mC
T , and Tk+1,m = UT

k+1,mVk,m+1Fk+1,m.

Use the BDF method to solve the low dimensional differential Riccati equation

Ẏk+1,m − Tk+1,mYk+1,m − Yk+1,mT T
k+1,m + Yk+1,mB̄k+1,mB̄T

k+1,mYk+1,m − C̄T
k+1,mC̄k+1,m = 0, t ∈ [t0, Tf ].

If ∥Rk+1,m∥F < tol, stop and compute the approximate solution Xk+1,m(t) in the factored form given by
the relation (27).

End.

6. Numerical experiments

In this section, we report some experimental results. All the numerical experiments have been coded in MATLAB 2014a
with windows 8 (64 bit) PC-Intel(R) Core(TM) i7-7700 CPU 3.60 GHz, 16 GB of RAM. The projected low-dimensional
problem (20) was solved by using MATLAB functions care.m from MATLAB Toolbox. For Examples 1 and 2, we compare
the performance of the extended block Golub–Kahan (EBGK-CARE) and the block Golub–Kahan (BGK-CARE) methods with
equal-sized approximation spaces. In Tables 1 and 2, we give the number of iterations (Iter), the residual norm (Res. norm),
and the CPU time in seconds (CPU time) required for convergence. For Example 3, we compare the performance of these
methods by using the Krylov subspace Km(AAT , CT ) and the extended Krylov subspace Ke

k+1,m(AA
T , CT ) with the same size

subspace m.

Example 1. The matrix A is generated from the five-point discretization of the operator

L(u) = ∆u − sin(x + 2y)
∂u
∂x

− ey
∂u
∂y

− xy,

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions [14]. The number of inner grid points
in each direction is n0 and the dimension of the matrix A is n = n2

0. For this experiment we set n0 = 50, s = 3, and
p = 3. The entries of the matrix B are random values uniformly distributed on the interval [0, 1] and C = Ip×n is the
identity p× n matrix. The results are shown in Table 2. The BGK-CARE (using m = 50) is compared to EBGK-CARE (using
m = 40, k + 1 = 10 and m = 44, k + 1 = 6). Thus, the same size subspaces are used. These results indicate that the
EBGK-CARE method is effective for this problem and it is better than BGK-CARE method with corresponding size subspace,
in terms of the residual norm and the CPU time.

Example 2. This example is taken from [13]. The matrix A is of size n = 1000 and is given by:

A = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0.5 0 . . . 0 1
1.5 4 0.5 0 . . . 0

0
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . . 0.5

1 0 . . . 0 1.5 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The entries of the matrix B have random values uniformly distributed on [0, 1] and the number of the columns in B is
s = 2 and the matrix C = Ip×n is the identity p × n matrix, where p = 2. Using the BGK-CARE, the EBGK-CARE, and
the EBA-CARE (Extended Block Arnoldi [12]) methods with the same size subspaces m1 = 16, we obtained the results
presented in Table 3. The results in Table 3 illustrate that the EBGK-CARE method clearly outperforms the BGK-CARE
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Table 2
Numerical results for Example 1.
Method Iter. Res. norm CPU time

BGK-CARE m = 50 8.7646e − 04 5.73
EBGK-CARE m = 40, k + 1 = 10 2.5193e − 05 4.31

m = 44, k + 1 = 6 8.0725e − 05 4.71

Table 3
Numerical results for Example 2.
Method Iter. Res. norm CPU time

BGK-CARE m = 16 2.1604e − 08 0.32
EBGK-CARE m = 10, k + 1 = 6 1.4115e − 12 0.30

(m1 = m + k + 1 = 16)
EBA-CARE m = 8 5.9065e − 12 0.15

(m1 = 2m = 16)

Table 4
Numerical results for Example 3.
Size (A) Method Iter. Res. norm CPU time

49 × 49 BGK-BDF(2) m = 14 1.9297e − 06 0.05
EBGK-BDF(2) m = 14, k + 1 = 7 1.3086e − 10 0.15

81 × 81 BGK-BDF(2) m = 15 4.9565e − 06 0.04
EBGK-BDF(2) m = 15, k + 1 = 10 4.0781e − 09 0.17

100 × 100 BGK-BDF(2) m = 15 1.1833e − 05 0.03
EBGK-BDF(2) m = 15, k + 1 = 10 5.1146e − 08 0.17

method in terms of residual norm and computation time. The EBA-CARE method needs less CPU time than EBGK-CARE
method and they reach the same accuracy in terms of the residual norm.

Example 3. This example was taken from [32] and comes from the autonomous linear-quadratic optimal control problem
of one dimensional heat flow

∂

∂t
x(t, γ ) =

∂2

∂γ 2 x(t, γ ) + b(γ )u(t),

x(t, 0) = x(t, 1) = 0, t > 0,
x(0, γ ) = x0, γ ∈ [0, 1],
y(x) =

∫ 1
0 c(γ )x(t, γ )dγ , x > 0.

Using a standard finite element approach based on the first order B-splines, we obtain the following ordinary differential
equation{

MẊ(t) = KX(t) + FU(t),
y(t) = CX(t),

where the matrices M and K are given by:

M =
1
6n

⎡⎢⎢⎢⎢⎣
4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4

⎤⎥⎥⎥⎥⎦ , K = −αn

⎡⎢⎢⎢⎢⎣
2 −1

−1 2 −1
. . .

. . .
. . .

− 1 2 −1
−1 2

⎤⎥⎥⎥⎥⎦ .

Using the semi-implicit Euler method, we get the following discrete dynamical system

(M − ∆tK )ẋ = Mx(t) + ∆tFUk.

We set A = −(M −∆tK )−1M and B = ∆t(M −∆tK )−1F . The entries of the n×p matrix F and the p×n matrix C are given
random values uniformly distributed on [0, 1]. We chose the initial condition as X0 = 0n×n = Z0ZT

0 , where Z0 = 0n×2 and
we set p = 2, α = 0.05, and ∆t = 0.01. In Table 4, we reported the number of iterations, residual norms, and the run
times for various sizes of A. In this table, the parameter m presents the dimension of the Krylov subspace Km(AAT , CT )
which can be used in the BGK-BDF(2) method for obtaining the most accurate approximate solution for this example.
Table 4 shows that, by using the EBGK-BDF(2) method, we can obtain more accurate approximate solution than the one
obtained by the BGK-BDF(2) method at little extra cost.
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7. Conclusion

In the present paper, we have described the extended version of block Golub–Kahan procedure and its properties. By
using the extended block Golub–Kahan procedure, we have presented a new projection method for computing low rank
approximate solutions for large-scale algebraic and differential matrix Riccati equations. We gave some theoretical results
for the residual at each step which does not require the computation of products of large matrices. Finally, some numerical
experiments were given in order to compare the block Golub–Kahan and extended block Golub–Kahan procedures.
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