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Abstract
Structural health monitoring is an essential process for ensuring the safety and serviceability of civil structures. When a 
structure suffers from damage, it is necessary to implement maintenance programs for returning the structural performance 
and integrity to its initial normal condition. An important challenge is that the structure of interest may be damaged even 
after a sophisticated maintenance program. This conveys the great necessity of performing the second level of structural 
condition assessment and damage detection of maintained structures. To achieve this aim, this article proposes a novel 
methodology using the concept of supervised learning. The main objective of the proposed methodology is to train various 
supervised learning classifiers using a training dataset that consists of features regarding both the undamaged and damaged 
states of the structure before the maintenance program in the first level. Once the classifiers have been trained, one attempts 
to predict the class labels of test samples associated with the current state of the structure after the maintenance program 
during the second level. According to the predefined class labels of the training and test samples in the first stage, it is fea-
sible to recognize the current state of the maintained structure in the second level and detect potential damage. The major 
contribution of this article is to introduce the concept of supervised learning for damage detection in an innovative manner. 
A numerical concrete beam and an experimental laboratory frame are used to demonstrate the effectiveness and applicabil-
ity of the proposed methodology. Results show that this methodology is a practical and reliable tool for structural condition 
assessment and damage detection of maintained structures.

Keywords  Structural health monitoring · Damage detection · Statistical pattern recognition · Supervised learning · 
Classification · Maintained civil structures

1  Introduction

In civil engineering communities, structural health monitor-
ing (SHM) is an essential topic due to the great importance 
of civil structures and infrastructures. This practical process 

is mainly intended to evaluate the health and safety of struc-
tural systems by condition assessment and damage detection 
(Brownjohn et al. 2011; Li et al. 2016; Rahami et al. 2018; 
Qarib and Adeli 2014). There are two general ways of SHM 
including (1) model-based and (2) data-based methods. The 
first approach is based on constructing an elaborate finite ele-
ment model and utilizing model-updating strategies for dam-
age detection, localization, and quantification (Entezami and 
Shariatmadar 2015; Sarmadi et al. 2016, 2020b; Entezami 
et al. 2017; Rezaiee-Pajand et al. 2020, 2021; Pedram and 
Esfandiari 2019; Kaveh et al. 2019). The second method 
utilizes raw measured data without any model construction 
and updating procedures. On this basis, it seems that the 
data-based methods outperform the model-based techniques 
in terms of simplicity and efficiency. Most of the data-based 
SHM strategies are based on monitoring damage-sensitive 
features extracted from measured vibration data that should 
be related and sensitive to damage and then discriminating 
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the normal (undamaged) structural condition from the cur-
rent state (the potentially damaged condition) (Amezquita-
Sanchez and Adeli 2015). To attain this aim, a data-based 
method is usually implemented in terms of statistical pat-
tern recognition paradigm that contains four main steps: (1) 
operational evaluation, (2) sensing and data acquisition, (3) 
feature extraction, and (4) statistical decision-making for 
structural condition assessment and damage detection (Far-
rar and Worden 2013).

The process of feature extraction is one of the impor-
tant steps in data-based methods because it significantly 
influences the final decision on the structural condition 
classification. The main objective of this step of the statis-
tical pattern recognition is to extract meaningful informa-
tion (damage-sensitive features) from raw measurements. 
Autoregressive (AR) modeling (Entezami and Shariatmadar 
2018; Entezami et al. 2019a; Safavi et al. 2017; Datteo et al. 
2018) and principal component analysis (PCA) (Zhong et al. 
2006; Trendafilova et al. 2008; Gharibnezhad et al. 2015) 
are two well-known approaches to extract damage-sensitive 
features. On the other hand, the statistical decision-making 
refers to applying various statistical methods in terms of 
machine learning algorithms (i.e., supervised learning and 
unsupervised learning) (Sarmadi and Karamodin 2020; Sar-
madi et al. 2020a; Sarmadi and Entezami 2020; Alamdari 
et al. 2017; Weinstein et al. 2018).

The simple idea behind the algorithms of machine learn-
ing is to learn a model (i.e., detector or classifier) using the 
information (features) of the structure known as training 
data. If the training data come from multiple classes and 
the labels for the features or measured data are known, the 
problem is multi-class or supervised learning. In the context 
of SHM, this means that the features of both the normal 
and current (damaged) structural states are used to make the 
training data. On the contrary, the training data in the unsu-
pervised learning scheme do not have known class labels 
and it is attempted to learn intrinsic relationships within the 
known features of data. In other words, the unsupervised 
learning methods suppose that the information of the current 
state is unknown, and the model (detector) of interest is only 
learned by training data, which is comprised of the features 
of the only normal condition of the structure.

Although it seems that unsupervised learning methods 
are more beneficial than supervised learning approaches 
for SHM resulting from the unavailability of information 
of the current or unknown state of the structure, one can 
also exploit the capability of supervised learning algorithms. 
Assume that a structure suffered from damage and unsuper-
vised learning methods were successfully applied to detect 
damage. In the next step, a maintenance program is imple-
mented to rehabilitate the damaged structure and enhance 
the structural safety and serviceability. Before this program, 
it is feasible to measure and retain the information of the 

damaged condition, in which case the possibility of super-
vised learning algorithms is plausible. In this regard, sup-
pose that the maintained structure suffers from damage again 
similar to the event occurred in the Tianjin Yonghe Bridge 
in China (Li et al. 2014). Under such circumstances, civil 
engineers are able to exploit supervised learning methods 
for subsequent condition assessment and damage detection 
of maintained structures.

Classification is a supervised learning approach to iden-
tify the class label of a set of samples (features). This method 
aims to learn a classifier by training data along with class 
labels and then predict the label of unseen test data (Alpay-
din 2014). The classifier refers to a mathematical function, 
implemented by a classification algorithm, which maps the 
training data to a category. For any unknown test data, each 
classification method possesses a prediction process that 
generates predictions for the new data. Worden and Manson 
(2000) employed Kernel discriminant analysis as a damage 
classifier for the classification of structural state conditions 
in a ball bearing system and then compared this method 
with a neural network classifier. Niu et al. (2007) conducted 
a research as a comparative study of various classification 
algorithms for fault diagnosis of electric motors using dif-
ferent types of signals. Gaudenzi et al. (2015) applied lin-
ear discriminant analysis as a classifier for the detection 
of delamination in composite structures with the aid of a 
wavelet packet transform-based algorithm for extracting 
damage-sensitive features. Addin et al. (2007) used a naive 
Bayes classifier as one of the most effective classification 
approaches to simulate damage detection in engineering 
materials. Sugumaran et al. (2007) applied decision tree 
as a classification algorithm to choose the best statistical 
features from a given set of samples for the purpose of clas-
sification. In the following, proximal support vector machine 
was employed to classify faults in roller bearing using the 
statistical features. Naderpour and Mirrashid (2019) utilized 
the decision tree to classify the failure modes in ductile and 
non-ductile concrete joints. They proposed two classifica-
tion strategies based on the number of classifiers for con-
crete joints to determine the types of failure mode. Despite 
the limited applications of supervised learning classifica-
tion methods, there is no comparative study on investigat-
ing them for damage detection and condition assessment of 
civil structures.

The main objective of this article is to propose a novel 
methodology by using the concept of supervised learning 
for structural condition assessment and damage detection 
of maintained civil structures. For this purpose, various 
supervised learning classifiers are trained using a train-
ing set including the damage-sensitive features of both the 
undamaged and damaged states of the structure before the 
maintenance program in the first level. Once the classifiers 
have been trained, it is attempted to predict the labels of 
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test samples associated with the current state of the struc-
ture after the maintenance program during the second level. 
Based on the predefined class labels of the training and 
testing samples (i.e., zero for the normal condition and one 
for the damaged state) in the first level, one can assess the 
current state of the structure during the second stage. The 
supervised learning classification methods introduced in this 
article are linear discriminant analysis (LDA), quadratic dis-
criminant analysis (QDA), naive Bayes (NB), and decision 
tree (DT). The procedure of feature extraction is also carried 
out by the AR model and PCA. In this regard, the coef-
ficients of the AR model and principal components (PCs) 
of the PCA are considered as the main damage-sensitive 
features. Finally, the effectiveness and performances of the 
proposed methodology are verified by numerical and experi-
mental benchmark structures. Results demonstrate that this 
methodology is an effective and practical tool for applying 
the concept of supervised learning to SHM and conduct-
ing structural condition assessment and damage detection 
of maintained civil structures. Furthermore, it is observed 
that the LDA and NB have the worst and best classification 
results.

2 � Feature Extraction Methods

2.1 � Autoregressive Time Series Model

In statistics, the AR model is a linear stationary (time-invar-
iant) representation. This is a popular and effective tool for 
feature extraction due to simplicity, sensitivity of its char-
acteristics to damage, independency to excitation loads or 
input data (Entezami and Shariatmadar 2018). Given the 
structural response y(t) at time t, the AR model is written 
as follows:

where a and Φ = [φ1…φa] represent the model order and 
coefficients, respectively. Moreover, e(t) is the model resid-
ual at time t. This statistical characteristic of the AR model 
measures the difference between the structural response 
y(t) and the predicted data (with the same dimension of the 
response) obtained from the model. In the context of SHM, 
both the model coefficients and residuals are taken into 
account as the reliable and useful damage-sensitive features 
(Entezami and Shariatmadar 2018).

2.2 � Principal Component Analysis

In statistics, PCA is an important and well-known technique 
mainly aiming at converting a set of samples (observations) 

(1)y(t) =

a
∑

i=1

�iy(t − i) + e(t)

of potentially correlated variables into a set of new samples 
of linearly uncorrelated variables named as PCs (Gharib-
nezhad et al. 2015). Despite various applications of PCA, 
this study considers it as a feature extraction approach. In 
this regard, the PCs of the structural responses collected 
into a matrix are considered as the main features for damage 
detection. Assume that Yϵℜn×m is the matrix of the struc-
tural responses, where n and m represent the numbers of 
response (time series) samples and sensors, respectively. 
The main goal is to estimate the covariance matrix of Y 
and decompose it via the eigenvalue decomposition in the 
following form:

where Σϵℜm×m stands for the mentioned covariance matrix. 
This matrix measures the degree of linear relationship within 
the original dataset between all possible pairs of variables. 
Meanwhile, the eigenvectors of Σ are the columns of 

∼

� and 
the eigenvalues are the diagonal terms of Λ (the off-diagonal 
terms are zero). Note that the eigenvector with the high-
est eigenvalue takes into account as the PC. Therefore, the 
eigenvectors corresponding to the columns of matrix 

∼

� are 
sorted on the basis of the eigenvalues in descending order. 
In this way, the new matrix P (i.e., 

∼

� sorted and reduced) 
can be called as the PCA model.

3 � Classification Methods

3.1 � Linear Discriminant Analysis

Discriminant analysis is a classification method that is 
intended to find a linear combination of features that char-
acterizes or separates two or more classes of groups. The 
basic idea behind this method is to train a linear classifier 
on the basis of Bayes theorem. In order to perform any 
classification process, it is essential to define a training set 
and then predict the classes of test samples by finding its 
class with the smallest misclassification cost (McLachlan 
2005). In the LDA, it is assumed that in a specific class, 
the probability density function of the feature vector of 
the training data is Gaussian. The classification rule in the 
LDA is based on defining a linear score function that con-
sists of a linear discriminant function and the logarithm 
of the probability of a randomly selected sample in the 
specific class. The LDA classifies a sample set into a class 
that has the largest linear score function or the posterior 
probability (McLachlan 2005). The implementation of the 
classification process via the LDA is based on some MAT-
LAB default functions (introduced in MATLAB R2014a) 
such as “fitcdiscr” for training or learning the LDA 

(2)𝚺 𝐏̃ = 𝐏̃𝚲
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classifier by using a training matrix and a vector of known 
class labels as well as “predict” for predicting the class 
labels of test samples.

3.2 � Quadratic Discriminant Analysis

The QDA is closely related to the LDA since both of them 
assume that the samples from each class have Gaussian 
distribution (McLachlan 2005). The main differences 
between these classification techniques pertain to their 
score functions and the parameters of the Gaussian matrix. 
Unlike the LDA, the QDA does not assume that the covari-
ance of each of the classes is identical. To put it another 
way, in the LDA, the trained model has the same covari-
ance matrix for each class and the mean values only vary, 
whereas in the QDA, both the mean and covariance of 
each class are different at each class. In contrast to the 
LDA, a quadratic score function is used in the QDA. The 
classification rule is to train a classifier by the training 
data and predict the class of the test data with the smallest 
misclassification cost (the largest quadratic score function 
or the posterior probability). The implementation of the 
classification process via the QDA is also based on the 
MATLAB functions “fitcdiscr” by choosing “quad-
ratic” option and “predict.”

3.3 � Naive Bayes

The NB is a supervised classification method aiming at clas-
sifying test samples on the basis of Bayes theorem (Hastie 
et al. 2009). This method classifies the mentioned samples 
using the training data, in which the classifier, developed by 
the NB, estimates the parameters of a probability distribu-
tion under the assumption that the data of interest are con-
ditionally independent. In the following, the method com-
putes the posterior probability of the features belonging to 
each class for any test data. In other words, the NB classifies 
the test samples based on the largest posterior probability. 
To perform the classification procedure, the classification 
algorithm of the NB estimates the density of the training 
data with each class and then constructs the posterior prob-
ability model on the basis of Bayes rule. Using this model, 
the algorithm classifies a sample by estimating the posterior 
probability for each class, and then allocates the observation 
to the class yielding the maximum posterior probability. The 
implementation of the classification process via the NB in 
this article is based on the MATLAB functions (introduced 
in MATLAB R2014b) “fitcnb” for learning the NB clas-
sifier by using a training matrix and a vector of known class 
labels as well as “predict” for predicting the class labels 
of test samples.

3.4 � Decision Tree

The DT is a supervised classification method applying a 
tree as a predictive model for the classification. This model 
is a decision support tool that employs a treelike graph or 
a model of decisions and their possible consequences. The 
objective is to create a model from the training data and 
predict the class of the new data by learning simple decision 
rules inferred from the data features. Tree models where 
the target variable can take a finite set of values are called 
classification trees. In these trees, the leaves represent class 
labels and the branches indicate conjunctions of features 
that lead to those class labels. The classification decision 
tree splits nodes based on either impurity or node error. The 
common method for impurity is Gini’s diversity index or the 
maximum deviance reduction (also known as cross entropy) 
(Coppersmith et al. 1999). The implementation of the clas-
sification process via the DT is based on the MATLAB func-
tions “fitctree” for learning the DT classifier through a 
training matrix and a vector of known class labels as well as 
“predict” for predicting the class labels of test samples.

4 � Proposed Methodology for SHM

The proposed methodology of using the supervised learning 
classification algorithms for structural condition assessment 
includes two main levels. Figure 1 depicts the flowchart of 
this methodology. The fundamental principle of the first 
level is to train classifiers via the LDA, QDA, NB, and DT 
classification methods in conjunction with the damage-sensi-
tive features extracted from the AR or PCA models (i.e., AR 
coefficients and PCs). In this stage, one considers that the 
structure was suffered from damage and the undamaged and 
damaged states of the structure are known. A maintenance 
program was also implemented to rehabilitate the damaged 
structure. Before this program, all information (the damage-
sensitive features) of the undamaged and damaged condi-
tions were obtained and retained to use in the second level of 
damage detection and structural condition assessment. These 
features and information are useful for producing a matrix of 
training samples and a vector of known class labels, which 
are used in the classifiers. In this article, the class labels for 
the undamaged and damaged states are set as zero and one, 
respectively.

Assume that X ∈ ℜv×m is the training matrix containing 
v-dimensional feature samples extracted from m sensors 
mounted on the structure. It is worth remarking that the 
v samples of the training matrix are the collection of the 
features of both the undamaged and damaged conditions. 
Furthermore, the vector of class labels includes v quanti-
ties of zero and one for the undamaged and damaged states, 
respectively. Using the training matrix and the label vector, 
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four different classifiers on the basis of the LDA, QDA, NB, 
and DT are trained to predict the labels of test samples in the 
second level. As explained earlier, the main objective of this 
article is to supply a new algorithm for damage detection and 
condition assessment of a structure after a maintenance and 
rehabilitation program. Therefore, it is attempted to assess 
the status of the current or unknown state of the maintained 
structure in the second level.

In the second level of damage detection, as shown in 
Fig. 1b, suppose that Z ∈ ℜu×m is the mentioned test data, 
where u denotes the features (i.e., the AR coefficients or 
PCs) of the current state of the maintained structure. The 
underlying aim is to predict the labels of u test samples (i.e., 
0 or 1) by the classifiers trained by the training matrix and 
the class label vector in the first level. Before making the 
final decision about the status of the current state in the sec-
ond level of damage detection, it is important to ensure the 
accuracy of classification. This is because it is reasonable 
that some classifiers may not be sufficiently effective for an 
accurate classification and structural condition assessment. 
Thus, the performances of the proposed classifiers are evalu-
ated by some criteria such as the classification margin and 

classification error. These criteria can be implemented by the 
MATLAB default functions “margin” and “loss.” The 
classification margin is a measure that indicates the differ-
ence between the posterior probability for the true class and 
maximal posterior probability for the false class (Allwein 
et al. 2000). A small classification error near to zero and 
a large margin value close to one are indicative of the true 
classification.

If these criteria are acceptable, one can ensure that the 
classifier of interest performs well and the predicted labels 
are correct. In such a case, the predicted class label equal to 
one means that the structure in the second level suffers from 
damage; otherwise, it still behaves as normal. If the criteria 
are not acceptable, the classifier does not consider making 
the final decision about the current state of the structure. In 
case of accurate classification results (i.e., Margin ~ 1 and 
Error ~ 0) for more than one classifier, the one that has the 
best performance in terms of the smallest classification error 
or the classification margin closer to one is chosen to imple-
ment structural condition assessment.

5 � Application to Benchmark Structures

5.1 � A Numerical Concrete Beam

To verify the performance and capability of the proposed 
methodology, a numerical benchmark model of a concrete 
beam (Kullaa et al. 2013) is initially used as shown in 
Fig. 2. The model is a simply supported beam with length 
5 m, height 0.5 m, and width 0.01 m constructed on the 
basis of Euler–Bernoulli beam theory. It was assumed that 
similar damping mechanisms were distributed through-
out the beam; hence, Rayleigh damping was applied to 
establish a full damping matrix. The numerical beam was 
modeled with 4-node linear 2D elements with reduced 
integration, and ABAQUS Explicit finite element code 
was used for the simulations. In the simulation process, 
the fifteen sensors (m = 15) were separately installed at 
the top and bottom surfaces of the beam. These sensors 
measured acceleration time histories in the vertical direc-
tion caused by a uniform random excitation applied to the 
top surface of the beam. The load histories were low-pass 

If Margin 1 or Error 0

Label=0 → Undamaged
Label=1 → Damaged

Do not consider the 
classifier

Predict the class labels of test samples using the trained classifiers 

Construct test data from the features of the current 
state in the second level of damage detection 

Evaluate the performances of the trained classifiers by 
the classification margin and classification error 

Construct training data from the features of the 
undamaged and damaged states

Assign class labels to the training samples of undamaged (0) 
and damaged (1) states

Train supervised learning classifiers using the training data and 
class labels via LDA, QDA, NB, and DT

(a)

(b)

Yes No

Fig. 1   The flowchart of the proposed methodology: a level 1, b level 
2

Fig. 2   The numerical benchmark model of the concrete beam along 
with the simulated damage scenario as a single vertical crack at the 
middle span of the beam (Kullaa et al. 2013) (Note that the red circles 
are the simulated sensors mounted on the top of the beam.)
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filtered below 1000 Hz, resulting in five active dynamic 
modes of the structure.

In order to simulate damage, a single vertical crack was 
modeled at the middle span of the beam (i.e., at the bottom 
surface of the sensor 8). This damage was the simulation 
of the breathing crack as a realistic damage scenario in 
many concrete beam elements. Table 1 lists the different 
cases of the crack length with incremental damage severi-
ties (Cases 2–7) as well as the normal condition (Case 1). 
The vibration response of each case consists of two test 
measurements with the 4001 time series points (n = 4001) 
sampled at 4 s (Entezami et al. 2019b). Noise with 30 dB 
signal-to-noise ratio was also added to the acceleration 
responses for each test measurement. For example, Fig. 3 
indicates the acceleration time histories at the sensor 8 in 
Cases 1 and 2. According to the proposed methodology, 
the first test measurement of all cases is considered in the 
first level. Hence, one adopts that the states of Cases 2–7 
are known; that is, those are indicative of the damaged 
conditions of the beam. It is assumed that a maintenance 
program is applied to rehabilitate the beam during the first 
stage. Subsequently, one supposes that the acceleration 
time histories of the second test measurement are related 
to the second level after the maintenance program. In this 
situation, one attempts to classify the labels of Cases 2–7 
by the proposed classification methods.

5.1.1 � Feature Extraction

The process of feature extraction is based on estimating the 
AR coefficients and obtaining the PCs from the PCA via the 
acceleration response of each sensor. Due to the importance 
of determining the adequate and accurate order of the AR 
model (Entezami and Shariatmadar 2018; Entezami et al. 
2019b), this article utilizes the Bayesian information crite-
rion (BIC). On this basis, the most appropriate order of the 
AR model is equal to 23. Note that this procedure is only 
implemented by using the vibration data of the undamaged 
condition or Case 1. The least-squares technique is then 
applied to estimate the 23 coefficients of the AR model at 
each sensor of Cases 1–7. As a sample, Fig. 4 illustrates 
the model coefficients regarding the sensors 1, 3, 5, and 8 
in Case 1.

For using the PCs of the PCA as the damage-sensitive 
features, it is initially necessary to perform a standardi-
zation process on the acceleration time histories so as to 
obtain standardized time series data with zero mean and unit 

Table 1   The different cases of the concrete beam

Case Structural state Description

1 Undamaged No crack
2 Damaged Crack length = 10 mm
3 Damaged Crack length = 20 mm
4 Damaged Crack length = 30 mm
5 Damaged Crack length = 50 mm
6 Damaged Crack length = 100 mm
7 Damaged Crack length = 150 mm
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Fig. 3   The acceleration time histories at the sensor 8 in the numerical beam: a Case 1, b Case 2
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Fig. 4   The coefficients of AR(23) at the sensors 1, 3, 5, and 8 in Case 
1
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variance. The standardized time series samples of all sen-
sors are collected to make the matrix of vibration responses 
Yϵℜ4001×15. Subsequently, the eigenvalue decomposition is 
used to decompose the covariance matrix of Y for each case. 
Hence, the main objective is to compute the matrix P whose 
columns are the PCs. Figure 5 shows the PCs of the response 
matrices of Cases 1, 3, 5, and 7.

5.1.2 � Classification

Once the damage-sensitive features have been obtained, 
one needs to make two kinds of the training datasets. As 
explained earlier, these sets are the matrices of the AR coef-
ficients and PCs associated with Case 1 and Cases 2–7. For 
the first type of the damage-sensitive features (i.e., the AR 
coefficients), the training set is the matrix XARϵℜ161×15, 
where v = 161 is determined by multiplying the number of 
AR coefficients (23) and the number of the undamaged and 
damaged cases (7). For the second type of the damage-sensi-
tive features (i.e., the PCs of the PCA), the training set is the 
matrix XPCAϵℜ105×15, where v = 105 is obtained from mul-
tiplying the number of PCs (15) by the number of cases (7).

The other important requirement of the classification 
methods is to prepare the vector of class labels for the fea-
ture samples of the undamaged and damaged states. Based 

on the descriptions in Sect. 4, the labels zero and one are 
allocated to the features of the undamaged and damaged 
conditions, respectively. In this regard, the first 23 and the 
remaining 138 labels for the first training matrix are set as 
zero and one, respectively. In a similar manner, the first 15 
and the remaining 90 labels concerning the second training 
matrix are identical to zero and one, respectively. Finally, the 
training matrices and the vectors of class labels are utilized 
to train the LDA, QDA, NB, and DT classifiers.

In the second level of damage detection by considering 
that the maintained beam suffered from the damage once 
again, it is attempted to predict the labels of test samples, 
which are the damage-sensitive features extracted from the 
vibration responses of the beam in Cases 2–7 for the second 
test measurement. Using the same numbers of the AR coeffi-
cients and PCs and neglecting the features of the undamaged 
state, the testing sets for the AR and PCA are the matrices 
ZARϵℜ138×15 and ZPCAϵℜ90×15, respectively. Before making 
the decisions on Cases 2–7, it is necessary to evaluate the 
performances of the proposed classifiers through the classifi-
cation margin and classification error. In this regard, Figs. 6 
and 7 demonstrate the margin values of the LDA, QDA, 
NB, and DT for the AR coefficients and PCs, respectively. 
Additionally, Table 2 presents the classification errors of 
these classifiers.
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Fig. 5   The PCs of the response matrix Y of the numerical beam: a Case 1, b Case 3, c Case 5, d Case 7
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As can be observed in Figs. 6a and 7a, the LDA fails in 
classifying Cases 2–7 as the damaged states properly due 
to numerous margin values near to zero. Both QDA and 

NB methods in Fig. 6b, c show the excellent classification 
results using the AR coefficients owing to the margin quan-
tities close to one, particularly the NB method. The same 

Fig. 6   Margin values of the 
classification methods in the 
concrete beam using the AR 
coefficients: a LDA, b QDA, c 
NB, d DT
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Fig. 7   Margin values of the 
classification methods in the 
concrete beam using the PCs: a 
LDA, b QDA, c NB, d DT
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conclusion can be observable in Fig. 7c regarding the NB 
method through the PCs, while the QDA in Fig. 7b is not 
successful in classifying Cases 2–7 resulting from its margin 
quantities near to zero. Additionally, the results of DT in 
Figs. 6d and 7d are not as good as the NB method, and there 
are some margin values close to zero implying the unreliable 
classification.

From the data listed in Table 2, one can deduce that the 
best performance of classification in terms of the smallest 
rate of error correlates with the NB method for both types 
of the damage-sensitive features. With the exception of this 
approach, the other classification techniques fail in providing 
the reliable classification decisions. The amounts of classifi-
cation errors also reveal that the AR coefficients outperform 
the PCs due to smaller errors. All the obtained results in 
Figs. 6 and 7 as well as Table 2 lead to the conclusion that 

the NB method is the only reliable and capable tool for clas-
sification and structural condition assessment in the second 
level by using both the AR coefficients and PCs.

After evaluating the performances of the proposed clas-
sifiers, Figs. 8 and 9 show the results of damage detection in 
the second level by the predicted class labels of the test sam-
ples. The predicted labels equal to zero and one are repre-
sentative of the undamaged and damaged conditions, respec-
tively. Based on the best performance of the NB method, it 
is expected that this approach accurately detects the states 
of Cases 2–7. For the comparison, the labels associated with 
the LDA, QDA, and DT are also presented in Figs. 8 and 9. 
As can be observed, all the predicted labels of the test sam-
ples of Cases 2–7 for the NB method are identical to one in 
the sense that this approach correctly detects these cases as 
the damaged conditions. In contrast, the other classification 
techniques, particularly the LDA and QDA, yield inaccurate 
predictions (i.e., labels equal to zero for the damaged state) 
of the labels of the test samples concerning Cases 2–7.

5.2 � An Experimental Laboratory Aluminum Frame

For further verification, an experimental benchmark model 
is applied to demonstrate the effectiveness and reliability 
of the proposed methodology. This model is a three-story 
laboratory aluminum frame constructed at the Engineering 
Institute of Los Alamos National Laboratory (Figueiredo 
et al. 2009). The frame schematic and sensor locations are 

Table 2   Classification errors in 
the proposed classifiers using 
the AR coefficients and PCs

Classifier Damage-sensitive 
feature

AR coef-
ficients 
(%)

PCs (%)

LDA 80.43 83.34
QDA 5.07 83.34
NB 0 0
DT 41.30 37.78

Fig. 8   Predicted class labels of 
the test samples for structural 
condition assessment in the 
concrete beam by the AR coef-
ficients: a LDA, b QDA, c NB, 
d DT
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shown in Fig. 10. A random vibration load was applied by 
means of an electrodynamics shaker to the base floor along 
the centerline of the frame. The structure was instrumented 
with four sensors (m = 4) mounted at the centerline of each 
floor on the opposite side from the excitation source to meas-
ure the acceleration time-domain response. The shaker and 
frame were mounted together on an aluminum baseplate 
and the entire system rested on rigid foam. The acceleration 
time histories were sampled at 320 Hz for 25.6 s in dura-
tion, which are discretized into 8192 time series samples 
(n = 8192) at 3.125 microsecond intervals.

To induce nonlinear damage, a center column was sus-
pended from the third floor. This column has contacted 
a bumper with an adjustable gap mounted on the second 
floor, which enabled to define diverse severities of dam-
age. The source of damage is the simulation of a breathing 
crack to produce nonlinear behavior through opening and 
closing under excitation forces. The acceleration time-
domain responses of the four sensors were measured under 
17 structural state conditions as listed in Table 3. These 
conditions were categorized into the four main groups 
including the baseline condition (State 1), the undamaged 
conditions with the operational and environmental varia-
tions (States 2–3 and 4–9), the damaged conditions (States 
10–14), and the damaged conditions with the environmen-
tal and operational variability (States 15–17). In State 1, 
there is no change in the laboratory frame implying an 

ideal condition is the SHM community. Moreover, one 
test measurement of all structural states is considered in 
the first level, for which it is known that States 1–9 and 
States 10–17 are representative of the undamaged and 
damaged conditions with the class labels zero and one, 
respectively. Another test measurement is incorporated in 
the second level of damage detection with the assumption 
that States 10–17 are the current conditions of the frame. 
Therefore, it is attempted to predict their class labels by 
the proposed methodology and two kinds of the damage-
sensitive features.

5.2.1 � Feature Extraction

Similar to the numerical beam, the process of feature 
extraction is performed by the AR and PCA models for 
extracting the AR coefficients and PCs as the damage-
sensitive features. Applying the BIC technique, the AR 
order is set as 20. Figure 11 illustrates the coefficients of 
AR(20) at all sensors of the laboratory frame in State 1. 
After the standardization of the acceleration time histories 
collected into the response matrix Yϵℜ8192×4, the covari-
ance matrix of Y for each state is estimated to obtain the 
PCs. Figure 12 shows these features associated with Sates 
1, 5, 14, and 17, respectively. 

Fig. 9   Predicted class labels of 
the test samples for structural 
condition assessment in the con-
crete beam by the PCs: a LDA, 
b QDA, c NB, d DT
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5.2.2 � Classification

Using the extracted damage-sensitive features, one needs 
to make two kinds of the training matrices by the AR coef-
ficients XARϵℜ340×4 and PCs XPCAϵℜ68×4. These matrices 
are composed of the features of both the undamaged and 
damaged states in the first level. Moreover, the labels zero 
and one are assigned to the features of the undamaged and 
damaged conditions in order to produce two label vectors 
with 340 and 68 samples, where the first 180 and the remain-
ing 160 labels of XAR and the first 36 and the remaining 32 
labels of XPCA are related to States 1–9 and 10–17, respec-
tively. Finally, the training matrices and the vectors of class 
labels are applied to train the LDA, QDA, NB, and DT clas-
sifiers. In the second level of damage detection, it is neces-
sary to predict the class labels of States 10–17 by using the 
trained classifiers and the testing matrices ZARϵℜ160×4 and 

Fig. 10   The three-story laboratory aluminum frame (Figueiredo et al. 2009)

Table 3   The structural state conditions of the laboratory frame (Figueiredo et al. 2009)

States Condition Description

1 Undamaged Baseline condition without damage and environmental and operational variability
2–3 Undamaged Simulated operational variability by adding a concentrated mass (1.2 kg) on the base and first floors
4–9 Undamaged Simulated environmental variability by decreasing structural stiffness at the first, second, and third floors
10–14 Damaged Nonlinear damage (Gap = 0.20, 0.15, 0.13, 0.10, and 0.05 mm)
15–17 Damaged Nonlinear damage (Gap = 0.20, 0.20, and 0.10 mm) with simulated operational variability at the base and first floors
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Fig. 11   The coefficients of AR(20) in State 1
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ZPCAϵℜ32×4. Figures 13 and 14 illustrate the margin values 
of the test samples of States 10–17, where each of the 20 
and 4 test samples is related to one damaged state of the 
frame. In addition, Table 4 lists the classification errors of 
the proposed classifiers in predicting the class labels of the 
test samples.  

As can be seen in Figs. 13c and 14c, the NB method pro-
vides the accurate and reliable results of the classification in 
comparison with the other techniques due to its margin val-
ues close to one. Both of the discriminant analysis methods, 
LDA and QDA, have the low margin amounts in Figs. 13a, 
b and 14a, b. In addition, the results of classification in 
Figs. 13d and 14d concerning the DT method demonstrate 
its unreliable classifications resulting from several margin 
quantities, which are far away from one. The same conclu-
sions can be reached by the classification errors in Table 4, 
where the NB method does not have any error indicating its 
excellent performance compared to the other classification 
techniques. Furthermore, one can realize that the classifica-
tion errors in the AR coefficients are roughly smaller than 
that of the PCs.

In the following, the predicted class labels of the test sam-
ples in the second level of damage detection and structural 
condition assessment are shown in Figs. 15 and 16. Accord-
ing to the excellent performance of the NB method, one 
expects that the predicted labels of the test samples regard-
ing States 10–17 are equal to one. For the comparison, the 

labels of the test samples of the other classification methods 
are also depicted in Figs. 15 and 16. As can be observed, all 
the predicted labels of the test samples concerning States 
10–17 for the NB method correspond to one, which means 
that this approach accurately detects these states as the dam-
aged conditions. On the other hand, it is seen that the other 
classification techniques do not have the best results similar 
to the NB method.

6 � Discussion

This article proposes a novel methodology for damage detec-
tion and structural condition assessment of maintained civil 
structures using the concept of supervised learning. The 
main premise behind this methodology is that the main-
tained structures may suffer from damage such as the event 
occurred in the Tianjin Yonghe Bridge in China (Li et al. 
2014). During usual inspections, some damages were found 
in the deck and cables of this bridge. A sophisticated SHM 
and sensing program was performed to measure environ-
mental and vibration data of the undamaged and damaged 
states. After the maintenance of the bridge, new damage 
scenarios were observed once again. Accordingly, the pro-
posed methodology in this article develops an effective and 
practical framework to apply supervised learning algo-
rithms, which are not usually utilized in SHM problems. 

Fig. 12   The PCs of the response 
matrix Y of the laboratory 
frame: a State 1, b State 5, c 
State 14, d State 17
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Fig. 13   Margin values of the 
classification methods in the 
laboratory frame by the AR 
coefficients: a LDA, b QDA, c 
NB, d DT

1 20 40 60 80 100 120 140 160

1 20 40 60 80 100 120 140 160

1 20 40 60 80 100 120 140160

1 20 40 60 80 100 120 140160

Test samples

-1

-0.5

0

0.5

1

M
ar

gi
ns

(a)

Test samples

-1

-0.5

0

0.5

1

M
ar

gi
ns

(b)

Test samples

0.9

0.95

1

M
ar

gi
ns

(c)

Test samples

-1

-0.5

0

0.5

1

M
ar

gi
ns

(d)

Fig. 14   Margin values of the 
classification methods in the 
laboratory frame by the PCs: a 
LDA, b QDA, c NB, d DT
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This is because these algorithms require the information of 
both the undamaged and damaged conditions for training a 
classifier. For complex and expensive civil structures, it is 
not reasonable and economical to damage them in order to 
prepare the information of the damaged state. However, this 
article indicated that it is feasible to apply the concept of 
supervised learning for structural condition assessment and 
damage detection of maintained civil structures.

On this basis, it is only necessary to prepare some infor-
mation of the structural states in the first and second levels 
before and after the maintenance programs. In the first level, 
one supposes that the information (the damage-sensitive fea-
tures) of the undamaged and damaged states is available. 
During the second level, one attempts to predict the class 
label of the current state of the maintained structure. In order 

to guarantee the reliability of classification, this article rec-
ommends applying different supervised learning classifiers 
and evaluating their performances by some classification 
criteria (i.e., the classification margin and error) so as to 
choose the best classifiers. Using the predicted class labels 
of the test samples regarding the most appropriate classifiers, 
it is possible to recognize the current state of the maintained 
structure in terms of being undamaged (label = 0) or dam-
aged (label = 1).

7 � Conclusions

In this article, a novel supervised learning methodology 
was proposed to assess the structural condition and detect 
potential damage in maintained civil structures. The LDA, 
QDA, NB, and DT classification methods in conjunction 
with two kinds of the damage-sensitive features extracted 
from the AR and PCA models were introduced to evaluate 
the effectiveness and applicability of the proposed meth-
odology. Based on the numerical concrete beam and the 
experimental laboratory frame, the following conclusions 
are drawn: (1) The proposed methodology is a reliable tool 
for structural condition assessment and damage detection of 
maintained structures using the concept of supervised learn-
ing. (2) The best performance of classification and damage 
detection is related to the NB method in both types of the 

Table 4   Classification errors in 
the proposed classifiers using 
the AR coefficients and PCs

Classifier Damage-sensitive 
feature

AR coef-
ficients 
(%)

PCs (%)

LDA 86.87 100
QDA 39.37 31.25
NB 0 0
DT 24.37 37.5

Fig. 15   Predicted class labels 
of the test samples for structural 
condition assessment in the 
laboratory frame by the AR 
coefficients: a LDA, b QDA, c 
NB, d DT

1 20 40 60 80 100 120 140 160 1 20 40 60 80 100 120 140 160

1 20 40 60 80 100 120 140 1601 20 40 60 80 100 120 140 160

Test samples

0

1

La
be

l

(a)

Test samples

0

1

La
be

l

(b)

Test samples

0

1

La
be

l

(c)

Test samples

0

1

La
be

l

(d)

Author's personal copy



S65Iranian Journal of Science and Technology, Transactions of Civil Engineering (2020) 44 (Suppl 1):S51–S66	

1 3

damage-sensitive features. (3) This method successfully pre-
dicted the class labels of the test samples of the damaged 
states. (4) The LDA and QDA were not successful in the 
classification and damage detection due to their inappropri-
ate results. (5) It was observed that the DT technique outper-
forms the LDA and QDA but not as good as the NB method. 
(6) The comparison of the classification errors revealed that 
it is better to apply the AR coefficients than the PCs as the 
damage-sensitive features.
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