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It has been speculated that the metric, B-field, and dilaton couplings in the low energy effective action of
string theory at any order of α0 may be found by imposing the gauge symmetries and the T duality on the
effective action. This proposal can be extended to include the Ramond-Ramond (R-R) couplings as well. In
this paper, we first find the dimensional reduction of the R-R fields and then perform explicitly the T duality
constraint on the R-R couplings at the supergravity level. Up to an overall factor, it reproduces the
democratic form of the R-R couplings.
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One of the most exciting discoveries in perturbative string
theory is T duality [1–3], which appears when one compac-
tifies theory on a torus. It has been speculated that the
invariance of the effective action of bosonic string theory
under the standard gauge transformations and under non-
standard T duality transformations which receive α0 correc-
tions, may be used as constraints to construct the low energy
effective action of the string theory [4]. In this approach, using
the field redefinitions freedom [5], one first constructs the
minimum number of gauge invariant couplings. Then one
reduces themonacircle.The reducedactionsmust be invariant
under the standardBuscher rules [6,7] plus their α0 corrections
[8–11]. Using this approach, the effective actions of the
bosonic string theory up to order α03 have been found in
Refs. [11,12]. The NS-NS part of the effective action of the
superstring theory on a manifold with boundary at the leading
order of α0 has been also found inRef. [13] by imposing gauge
symmetries, the T duality and by imposing the S duality,
another duality which exists in the superstring theory [3]. In
particular, the well known Gibbons-Hawking-York term
[14,15] has been dictated by the string dualities [13].
Another T duality based approach for constructing the

D-dimensional effective action is the double field theory
[16–20] in which the effective action in 2D space is
constrained to be invariant under T duality and under
gauge transformations. The T duality in this case, however,
is the standard OðD;DÞ transformation without α0 correc-
tions, whereas the gauge transformation is nonstandard,
which receives α0 corrections [20–23]. This approach has

been extended in Ref. [24] to type II superstring theories.
These T duality approaches for constructing the effective
actions are based on the observation made by Sen in the
context of closed string field theory [25] that the effective
action of string theory should be invariant under T duality
to all orders in α0.
In this paper we would like to extend the first approach to

the couplings in type II superstring theories. The type II
string theories have NS-NS fields which are the same as the
fields in the bosonic string theory, as well as some R-R fields
which are also bosonic fields. TheDp-branes in type II string
theories carry the R-R charges [26]. These theories have also
NS-R and R-NS femionic fields in which we are not
interested. The odd-form R-R potentials appear in type IIA
and even-forms appear in type IIB. It is known that the
compactification of type IIA theory on a circle transforms to
the compactification of type IIB theory on another circle
under the T duality transformations. To study the effective
action of the bosonic fields in these theories, it is convenient
to collect the two theories to one theory which is called
type II theory. It has both odd- and even-formR-R potentials.
When compactifying this theory on a circle, the effective
action then is expected to be invariant under the T duality
transformations, as in the bosonic string theory.
When compactifying string theory on a circle with unit

radius and with the killing coordinate y, the T duality
transformations for the NS-NS fields are the Buscher rules
[6,7], i.e.,

e2ϕ
0 ¼ e2ϕ

Gyy
; G0

yy ¼
1

Gyy
;

G0
μy ¼

Bμy

Gyy
; G0

μν ¼ Gμν −
GμyGνy − BμyBνy

Gyy
;

B0
μy ¼

Gμy

Gyy
; B0

μν ¼ Bμν −
BμyGνy − GμyBνy

Gyy
; ð1Þ
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where μ, ν denote any direction other than y. In above
transformations the metric is in the string frame. If one
assumes fields are transformed covariantly under the
coordinate transformations, then the above transformations
receive α0 corrections [8–11]. The T duality transforma-
tions of the R-R fields at the leading order of α0 have been
found in Ref. [27], i.e.,

C0ðnÞ
μ���ναy ¼ Cðn−1Þ

μ���να −
Cðn−1Þ
½μ���νjyGjα�y
Gyy

;

C0ðnÞ
μ���ναβ ¼ Cðnþ1Þ

μ���ναβy þ Cðn−1Þ
½μ���ναBβ�y þ

Cðn−1Þ
½μ���νjyBjαjyGjβ�y

Gyy
: ð2Þ

They may also have α0 corrections in which we are not
interested in this paper. Our notation for making anti-

symmetry is such that, e.g., Cð2Þ
½μ1μ2Bμ3�y ¼ Cð2Þ

μ1μ2Bμ3yþ
Cð2Þ
μ2μ3Bμ1y − Cð2Þ

μ1μ3Bμ2y. The T duality transformations (1)
and (2) are such that they are consistent with the fact that
Dp-brane in type II theory transform to Dp−1-brane or
Dpþ1-brane depending on whether the brane is along or
orthogonal to the circle on which the T duality is imposed.
In fact the R-R fields couple to the Dp-brane as

Z
Mpþ1

eBC; ð3Þ

where C ¼ P
8
n¼0 C

ðnÞ. It is invariant under the R-R gauge
transformation δC ¼ dΛþHΛ, where Λ ¼ P

7
n¼0 ΛðnÞ.

The T duality transformations (1) and (2) produce the
following transformations:

ðeBCÞ0���y ¼ ðeBCÞ���; ðeBCÞ0��� ¼ ðeBCÞ���y; ð4Þ

where dots represent some world-volume indices. In other
words, the coupling (3) is covariant under the T duality
transformations.
The effective action of type II string theory on the closed

manifolds at the leading order of α0 is the well-known
type II supergravity (see, e.g., Ref. [3]). The first higher
derivative corrections to this action is at order α03. The
Riemann curvature couplings at this order are known in the
literature [28–30]. There are many other couplings involv-
ing B-field, dilaton, and R-R fields at this order. Some of
them have been found in Refs. [31–33]. There are also
boundary terms at this order when manifolds have boun-
daries which are not known in the literature. We expect all
these couplings might be found by imposing the appro-
priate gauge transformations and string duality constraints
on the effective action. In fact, the known Riemann
curvature couplings are reproduced by this method in
Ref. [34]. In this paper we present the technical details
for imposing the T duality constraint to reproduce the R-R

couplings at the supergravity level and leave the calcu-
lations at order α03 for the future works. The NS-NS
couplings at the leading order of α0 are the same as the
corresponding couplings in the bosonic theory.
The R-R couplings, as in Eq. (3), should be invariant

under the R-R gauge transformations. The R-R couplings
in the effective action should be in terms of the R-R field
strength, i.e.,

FðnÞ ¼ dCðn−1Þ þH ∧ Cðn−3Þ; ð5Þ

which is invariant under the R-R gauge transformations.1

Since FðnÞ is not the exterior derivative of an (n − 1) form
for n > 2, it satisfies the following anomalous Bianchi
identity:

dFðnÞ ¼ −H ∧ Fðn−2Þ: ð6Þ

At the two-derivative level, the gauge invariance constraint
then requires the following couplings in the string frame:

SR-R
0 ¼−

2

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p X9
n¼1

anjFðnÞj2G

¼−
2

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p X9
n¼1

an
n!
Ga1b1 � � �GanbnFðnÞ

a1���anF
ðnÞ
b1���bn ;

ð7Þ

where a1; a2;…; a9 are 9 parameters that the R-R gauge
symmetry cannot fix. Since the R-R field strengths (5) are
nonlinear for n > 2, these constants cannot be absorbed by
the normalization of the R-R potentials. We are going
to show that they all can be written in terms of a1 by
imposing on them the T duality constraint as well. We did
not include Fð0Þ and Fð10Þ terms in the above couplings
because they do not include dynamical fields. In writing the
above couplings we assume the R-R fields are all inde-
pendent. The on-shell physics, however, requires not all
components of Cð4Þ to be independent. Moreover, the fields
Cð5Þ; Cð6Þ; Cð7Þ; Cð8Þ are not independent. That means in the
equations of motion one has to impose some extra con-
straints on the R-R field strengths to have physical fields in
the equations of motion.
To impose the T duality constraint on the effective

action (7), we have to consider the Kaluza-Klein reduction
of the 10-dimensional metric, i.e.,

1The definition of the R-R field strength for n ¼ 5 is slightly
different from the common definition in the supergravity
literature (see, e.g., Ref. [3]). However, the field redefinition
of the R-R potentials Cð4Þ → Cð4Þ þ 1

2
B ∧ Cð2Þ and Cð2Þ → −Cð2Þ

transforms the above Fð5Þ to the standard form of Fð5Þ ¼
dCð4Þ − 1

2
H ∧ Cð2Þ þ 1

2
B ∧ dCð2Þ.
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ds2 ¼ ḡμνdxμdxν þ eφðdyþ gμdxμÞ2; ð8Þ

which is invariant under y-coordinate transformation y →
y − λðxÞ and the gauge transformation gμ → gμ þ ∂μλ.
Apart from this Uð1Þ isometry gauge symmetry, the
reduced theory should have another Uð1Þ gauge symmetry
corresponding to the Kalb-Ramond form B ¼ 1

2
Bμνdxμ ∧

dxν þ Bμydxμ ∧ dy. The reduction of any theory contain-
ing the B field is manifestly the Uð1Þ ×Uð1Þ gauge
invariant if one uses the following reduction for the B
field and dilaton as well [35]:

Gab ¼
�
ḡμν þ eφgμgν eφgμ

eφgν eφ

�
;

Bab ¼
�
b̄μν þ 1

2
b½μgν� bμ

−bν 0

�
;

Φ ¼ ϕ̄þ φ=4; ð9Þ

where ḡμν; b̄μν; ϕ̄ are the metric, a two-form, and the
dilaton, respectively, in the base space, and gμ, bμ are
two vectors in this space. The inverse of the above
10-dimensional metric is

Gab ¼
�

ḡμν −gμ

−gν e−φ þ gαgα

�
; ð10Þ

where ḡμν is the inverse of the base space metric which
raises the index of the vectors. The Buscher rules (1) in
the parametrizations (9) become the following linear
transformations:

φ0 ¼ −φ; g0μ ¼ bμ; b0μ ¼ gμ;

ḡ0αβ ¼ ḡαβ; b̄0αβ ¼ b̄αβ; ϕ̄0 ¼ ϕ̄: ð11Þ

They form a Z2 group, i.e., ðx0Þ0 ¼ x, where x is any field
in the base space. These transformations receive higher
derivative corrections in which we are not interested in
this paper.
The reduction of field strength of the B field in the

parametrizations (9) becomes

Hμνα ¼ H̄μνα þ g½μWνα�;

Hμνy ¼ Wμν; ð12Þ

where W is field strength of the Uð1Þ gauge field bμ, i.e.,
W ¼ db, and the three-form H̄ which is torsion in the base
space, is defined as

H̄μνα ≡ Ĥμνα −
1

2
g½μWνα� −

1

2
b½μVνα�; ð13Þ

where Ĥ is field strength of the two-form b̄μν and V is
field strength of the Uð1Þ gauge field gμ, i.e., V ¼ dg. The
three-form H̄ is invariant under the T duality and under
various gauge transformations, e.g., under the Uð1Þ isom-
etry gauge transformation, the Bμν components of the B
field transform as Bμν → Bμν þ bμ∂νλ − bν∂μλ. Hence,
Hμνα → Hμνα þ ∂ ½μλWνα�. The anomalous term is canceled
with the transformation of the last term in the first line of
Eq. (12). Hence, H̄μνα remains invariant. It is also obvious
from Eq. (12) that H̄ is invariant under the B-field gauge
transformation Bab → Bab þ ∂aωb − ∂bωa. Since H̄ is not
the exterior derivative of a two form, it satisfies the
following anomalous Bianchi identity:

∂ ½μH̄ναβ� ¼ −V ½μνWαβ�: ð14Þ

Using the reduction (9), one finds that the reduction of any
10-dimensional gauge invariant coupling can be written in
terms of gauge invariant tensors R̄; H̄; V;W; ϕ̄;φ and their
derivatives. Hence, the reduction is consistent with the
Uð1Þ ×Uð1Þ gauge symmetry [35]. In this paper, among
other things, we are going to find such reduction for the
R-R fields.
To find such reduction for the R-R fields, we first note

that in the parametrization (9) the nonlinear T duality
transformations of the R-R fields (2) become

C0ðnÞ
μ���ναy ¼ Cðn−1Þ

μ���να − Cðn−1Þ
½μ���νjygα�;

C0ðnÞ
μ���ναβ ¼ Cðnþ1Þ

μ���ναβy þ Cðn−1Þ
½μ���ναbβ� þ Cðn−1Þ

½μ���νjybαgβ�; ð15Þ

which are still nonlinear. On the right-hand side the
R-R fields are 10-dimensional whereas the bα, gα are
9-dimensional fields. To proceed further then one has to
reduce the R-R fields as well. The reduction should be
consistent with the Uð1Þ ×Uð1Þ gauge symmetry.
We consider the following reductions for the R-R fields:

CðnÞ
μ1���μn ¼ c̄ðnÞμ1���μn þ c̄ðn−1Þ½μ1���μn−1gμn�;

Cðnþ1Þ
μ1���μny ¼ c̄ðnÞμ1���μn ; ð16Þ

where c̄ðnÞ are R-R potentials in the 9-dimensional base
space. The nonlinear T duality transformations (2) in
the above parametrizations become the following linear
transformations:

c̄0ðnÞμ1���μn ¼ c̄ðnÞμ1���μn : ð17Þ

It is remarkable that in the parametrizations (16), the
9-dimensional R-R fields become invariant under the T
duality transformation. They may, however, receive cor-
rections at the higher order of α0 in which we are not
interested in this paper.
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The reduction of the 10-dimensional R-R field strength
in the parametrizations (16) becomes

FðnÞ
μ1…μn ¼ FV ðnÞ

μ1…μn þ g½μ1F
Wðn−1Þ
μ2���μn� ;

FðnÞ
μ1…μn−1y ¼ FW ðn−1Þ

μ1…μn−1 : ð18Þ

The forms FW ðnÞ and FV ðnÞ are defined as

FW ðnÞ ≡ F̄ðnÞ þ H̄ ∧ c̄ðn−3Þ þ ð−1Þðn−2Þc̄ðn−2Þ ∧ W;

FV ðnÞ ≡ F̄ðnÞ þ H̄ ∧ c̄ðn−3Þ þ ð−1Þðn−2Þc̄ðn−2Þ ∧ V; ð19Þ

where F̄ðnÞ is field strength of the 9-dimensional R-R
potential c̄ðn−1Þ, i.e., F̄ðnÞ ¼ dc̄ðn−1Þ. These forms are
invariant under various gauge transformations, e.g., under

the Uð1Þ isometry gauge transformation, the CðnÞ
μ1���μn

components of the R-R n-form potential CðnÞ ¼
1
n C

ðnÞ
μ1���μndxμ1 � � � ∧ dxμn þ CðnÞ

μ1���μn−1ydx
μ1 � � � ∧ dxμn−1 ∧ dy

transform as CðnÞ
μ1���μn → CðnÞ

μ1���μn þ Cðn−1Þ
½μ1���μn−1∂μn�λ. Then one

can show that FðnÞ
μ1���μn → FðnÞ

μ1���μn þ ∂ ½μ1λF
Wðn−1Þ
μ2���μn� where we

have used the fact that g ∧ g and its gauge transformation
are zero. The anomalous term is canceled with the trans-
formation of the last term in the first line of Eq. (18).
Therefore, FV is invariant under the Uð1Þ isometry gauge

transformation. Since CðnÞ
μ1���μn−1y components of the R-R

potential are invariant under the Uð1Þ gauge transforma-
tion, the second relation in (18) indicates that FW is also
invariant. It is also obvious from Eq. (18) that FV , FW are
invariant under the R-R gauge transformations because the
left-hand sides are invariant. Since the gauge invariant
n forms FVðnÞ; FWðnÞ are not exterior derivative of any
(n − 1)-form, their corresponding Bianchi identities are
anomalous. The anomalous Bianchi identities are

dFVðnÞ ¼ ð−1Þðn−2ÞFWðn−1Þ ∧ V − H̄ ∧ FVðn−2Þ;

dFWðnÞ ¼ ð−1Þðn−2ÞFVðn−1Þ ∧ W − H̄ ∧ FWðn−2Þ; ð20Þ

where we have also used the anomalous Bianchi identity
(14) and the fact that H̄ ∧ H̄ ¼ 0. Under the T duality, the
gauge invariant forms (19) transform as

FW ðnÞ ↔ FV ðnÞ: ð21Þ

One expects the reduction of any 10-dimensional coupling
involving the R-R field strength and its higher derivatives
should be written in terms of 9-dimensional gauge invariant
fields R̄; H̄; V;W; FVðnÞ; FWðnÞ; ϕ̄;φ and their covariant
derivatives.
Using the reductions (9), (10), and (16), it is straightfor-

ward to reduce different terms in Eq. (7). The reduction offfiffiffiffiffiffiffi
−G

p
and the R-R coupling jFð1Þj2G, jFð2Þj2G, and jFð3Þj2G are

the following:

ffiffiffiffiffiffiffi
−G

p
¼ eφ=2

ffiffiffiffiffiffi
−ḡ

p
;

jFð1Þj2G ¼ e−φ=2ðeφ=2jF̄ð1Þj2ḡÞ;
jFð2Þj2G ¼ e−φ=2ðe−φ=2jF̄ð1Þj2ḡ þ eφ=2jF̄ð2Þ þ c̄ð0ÞVÞj2ḡÞ;
jFð3Þj2G ¼ e−φ=2ðe−φ=2jF̄ð2Þ þ c̄ð0ÞWj2ḡ þ eφ=2jF̄ð3Þ

þ H̄c̄ð0Þ − c̄ð1Þ ∧ Vj2ḡÞ: ð22Þ

The subscript ḡ in j � � � j2ḡ indicates that the indices are
contracted with the base space metric ḡμν. The reduction of
jFðnÞj2G for n > 3 can be written as

jFðnÞj2G ¼ e−φ=2ðe−φ=2jFWðn−1Þj2ḡ þ eφ=2jFVðnÞj2ḡÞ: ð23Þ

As expected, the nongauge invariant term in Eq. (18) is
canceled in the reduction of 10-dimensional couplings
involving the R-R field strength. However, it has gauge
invariant contribution to the reduction of couplings which
involve derivatives of the R-R field strength in which we
are not interested in this paper.
Using the fact that the nondynamical field strength Fð10Þ

in the 10-dimensional spacetime has been ignored, one
should also ignore the nondynamical fields in the
9-dimensional base space. Hence the reduction of jFð9Þj2G
becomes

jFð9Þj2G ¼ e−φjFWð8Þj2ḡ : ð24Þ

Having found the reduction of the R-R fields, we now
impose the T duality constraint on the effective action (7) to
fix the parameters a1;…; a9. According to this proposal,
the effective action should satisfy the following relation:

SeffðψÞ − Seffðψ 0Þ ¼ TD; ð25Þ

where Seff is the reduction of the 10-dimensional action on
the circle, ψ represents all massless fields in the base space,
and ψ 0 represents their transformations under the T duality
transformations (11) and (17). On the right-hand side, TD
represents some total derivative terms in the base space,
which become zero if the base space has no boundary. They
should be reproduced by the boundary action if the base
space has boundary [13].
Using the reduction (23), one finds the reduction of the

effective action (7) becomes

SR-Reff ðψÞ ¼ −
4π

κ2

Z
d9x

ffiffiffiffiffiffi
−ḡ

p �X8
n¼1

an
eφ=2

n!
jFV ðnÞj2ḡ

þ
X8
n¼1

anþ1

e−φ=2

n!
jFW ðnÞj2ḡ

�
: ð26Þ

Under the T duality transformations (11) and (21), it
becomes
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SR-Reff ðψ 0Þ ¼ −
4π

κ2

Z
d9x

ffiffiffiffiffiffi
−ḡ

p �X8
n¼1

an
e−φ=2

n!
jFW ðnÞj2ḡ

þ
X8
n¼1

anþ1

eφ=2

n!
jFV ðnÞj2ḡ

�
: ð27Þ

One can easily observe that the effective action (7) satisfies
the constraint (25) with zero total derivative terms on the
right-hand side provided that there is the following recur-
sion relation between the parameters:

an ¼ anþ1: ð28Þ
Hence the T duality constraint fixes all 9 parameters in
Eq. (7) in terms of one normalization parameter a1. Since
there is no total derivative terms on the right-hand side of
the T duality constraint (25) in this case, the boundary
action has no R-R couplings at the leading order of α0, as
expected. The T duality constraint on the NS-NS couplings,
however, satisfies the relation (25) with some total deriva-
tive terms on the right-hand side which can be canceled
by the Gibbons-Hawking-York boundary term as well as
another boundary term which is not consistent with the S
duality [13]. The duality constraints on the NS-NS cou-
plings also reproduce the standard bulk couplings [13].

Therefore, the gauge symmetry and the T duality fix the
low energy effective action of type II string theory in closed
spacetime manifold to be

S0 ¼ −
2

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
e−2Φ

�
Rþ 4∇aΦ∇aΦ −

1

12
H2

�

þ a1
X9
n¼1

jFðnÞj2G
�
: ð29Þ

Up to the overall factor a1, the R-R couplings are the
democratic R-R couplings that have been found in
Refs. [24,36]. The parameter a1 can be absorbed by the
normalization of the R-R potentials. When spacetime has
boundary, the duality constraint dictates that the Gibbons-
Hawking-York boundary term must be also added to the
above action. We expect the α03 corrections to the action
(29) can also be found by imposing on the effective action
the gauge symmetries as well as the string dualities. We
leave the details of these calculations for future works.
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