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ABSTRACT 

In this paper, adjustable robust optimization with polyhedral uncertainty set is used to deal with 

uncertain demands in profit hub location problem. Hub location problem seeks to find best location for 

establishing hub facilities, as well as allocating demands nodes to them. In the proposed model, location 

decisions are taken in the first stage without revealing of uncertainty, while allocation decision is taken 

in the second stage in presence of uncertain demands. Column and constraint generation algorithm is 

used to solve proposed model more efficiency. The adjustable robust model and column and constraint 

generation algorithm analyzed using well-known AP data set with different level of conservatism. 

Computational experiments show the superiority of column and constraint generation algorithm 

comparison with Benders decomposition algorithm in the number of iterations. Also the number of hub 

facilities and objective function (profit) are decreased with increasing in uncertainty budget. 

Keywords: Adjustable robust, Hub location problem, Column and constraint generation algorithm, 

Benders decomposition algorithm, Uncertain demands. 

1. Introduction 
Hub location is an important problem in the location literature and widely used in transportation, 

telecommunications and other applications. This problem seeks to find the best location for establishing 

hub facilities and determine the optimal pathway for sending commodities. In the hub location problem, 

some facilities are considered as a connection point (hubs) between each non-hub nodes. Hence, 

commodities are transmitted through one or two hubs in this network. This may decrease total 

transportation costs because of existing of the economy of scale property.  

The first model in hub location problem was proposed by [1] that introduced the first quadratic 

mathematical model for hub location problem. In this model, only one hub is used in each pathway, 

While in the model proposed by [2] the number of hubs between each origin destination nodes are 

determined based on hub establishment and routing costs. [3] proposed a two-stage stochastic 

programming model for multiple allocation hub location problem by considering uncertain demands 

and transportation cost. [4] introduced robust optimization for multi-objective capacitated p-hub 

location problem which demands and time required for process of commodity are uncertain. [5] 

considered a hub location problem with uncertain demands and hub establishment fixed cost, also 

robust-stochastic model presented to deal with uncertain demands and hub establishment fixed cost. 

Also they proposed a two-stage stochastic programming model, where demands are defined as uncertain 

parameters. [6] proposed robust optimization for single and multiple allocation hub location problems 

with uncertain demands. They introduced a nonlinear programming formulation that is transfer to mixed 

integer conic quadratic problem. [7] proposed a robust optimization for intermodal multiple allocation 

p-hub location problem. They used Benders decomposition algorithm for large-scale instances and 

examine the effects of considering uncertainty in the model. [8] presented robust optimization model 

for single and multiple allocation hub location problem with uncertain hub establishment fixed cost and 

capacity of hub facilities. They showed that the costs are increased when uncertainties are not 

considered in the model. [9] presented robust optimization for hub location problems with uncertain 



 

demands, hub establishment cost and inter hub flow discount factor. [10] introduced robust optimization 

for uncapacitated multiple allocation hub location problem with considering uncertain demands and 

transportation cost. The proposed model with considering uncertain demands and transportation cost 

together is solved using branch and cut algorithm. [11] proposed robust optimization for multiple 

allocation hub location problem with uncertain demands and hub establishment fixed cost. Also, 

Benders decomposition algorithm and hybrid heuristic approach are used for solving large scale 

problems. 

In this paper, adjustable robust optimization is applied to uncapacitated multiple allocation profit hub 

location problem which demands are considered as uncertain parameters and captured by intervals. Also 

column and constraint generation algorithm is used to solve proposed model. 

The remainder of this paper is organized as follows: Section 2, introduces the deterministic model of 

uncapacitated profit hub location problem, section 3 introduces the adjustable robust optimization 

applied to the proposed model, section 4 presents column and constraint generation algorithm. In section 

5, computational experiments are done for analyzing the performance of column and constraint 

generation algorithm to solve the proposed model, finally section 6 concludes the paper and suggest 

future studies. 

2. Multiple allocation profit hub location problem 

In this section, the deterministic model of multiple allocation profit hub location problem is introduced.  

𝑁 and 𝐻 are the set of nodes and potential hubs, respectively. 𝑤𝑖𝑗 is the demands that transferred from 

node 𝑖 ∈ 𝑁  to node 𝑗 ∈ 𝑁 and 𝑓𝑘  is the hub establishment cost for potential hub 𝑘 ∈ 𝐻 . 𝑑𝑖𝑗  is the 

distance or transportation cost between node 𝑖 ∈ 𝑁 and node 𝑗 ∈ 𝑁. 𝑐𝑖 denotes the setup cost for serving 

node 𝑖 ∈ 𝑁, it is assumed that it will be possible to serve commodities originated (or with destination) 

at 𝑖 ∈ 𝑁 without activating node 𝑖 ∈ 𝑁 as a servicing node. That is, there is no need to incur in the setup 

cost 𝑐𝑖 for serving node 𝑖 ∈ 𝑁 if it becomes a hub. 𝑟𝑖𝑗 is the revenue that earned by transferring flows 

from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁.  𝜒, 𝛼 and 𝛿 are collection cost per unit, inter hub flow discount factor 

and transfer cost per unit, respectively. Transportation cost is calculated by 𝑐𝑖𝑗
𝑘𝑙 = 𝜒𝑑𝑖𝑘 + 𝛼𝑑𝑘𝑙 + 𝛿𝑑𝑙𝑗 

equation and for economic of scale property it is assumed that 𝛼 ≤ 𝜒 and 𝛼 ≤  𝛿. 𝑧𝑘 is a binary variable 

and is equal to 1 if and only if a hub is established at node 𝑘 ∈ 𝐻. 𝑥𝑖𝑗
𝑘𝑙 is the fraction of flows originated 

from node 𝑖 ∈ 𝑁 and destined to node 𝑗 ∈ 𝑁 routed through hub 𝑘 ∈ 𝐻 and 𝑙 ∈ 𝐻. 𝑠𝑖 is defined as a 

binary variable and equal to 1 if and only if node i is served (i.e. activated as a non-hub node). 𝑦𝑘𝑙 is 

defined as a binary variable and equal to 1 if and only if hub edge (arc 𝑘 ∈ 𝐻 and 𝑙 ∈ 𝐻) is activated. 

The mathematical model of multiple allocation profit hub location problem that was proposed by [12] 

with a little change is as follows: 

𝑀𝑎𝑥 ∑ ∑ ∑ ∑ 𝑤𝑖𝑗

𝑙∈𝐻𝑘∈𝐻𝑗∈𝑁𝑖∈𝑁

(𝑅𝑖𝑗 − 𝑐𝑖𝑗
𝑘𝑙)𝑥𝑖𝑗

𝑘𝑙 − ∑ 𝑓𝑘

𝑘∈𝐻

𝑧𝑘 − ∑ 𝑐𝑖

𝑖∈𝑁

𝑠𝑖 − ∑ ∑ 𝑟𝑘𝑙

𝑙∈𝐻𝑘∈𝐻

𝑦𝑘𝑙 
 (1) 

Subjected to:   

𝑠𝑘 + 𝑧𝑘 = 1 ∀𝑘 ∈ 𝐻 (2) 

∑ ∑ 𝑥𝑖𝑗
𝑘𝑙 = 1

𝑙∈𝐻𝑘∈𝐻

 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (3) 



 

𝑦𝑘𝑙 ≤ 𝑧𝑘 ∀𝑘 ∈ 𝐻, 𝑙 ∈ 𝐻, 𝑘 ≠ 𝑙 (4) 

∑ 𝑥𝑖𝑗
𝑘𝑙 + ∑ 𝑥𝑖𝑗

𝑙𝑘 ≤ 𝑧𝑘

𝑙∈𝐻,𝑙≠𝑘𝑙∈𝐻

 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻 (5) 

𝑥𝑖𝑗
𝑘𝑙 + 𝑥𝑖𝑗

𝑙𝑘 ≤ 𝑦𝑘𝑙 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻, 𝑙 ∈ 𝐻 (6) 

𝑧𝑘 , 𝑠𝑖, 𝑦𝑘𝑙 ∈ {0,1}  (7) 

𝑥𝑖𝑗
𝑘𝑙 ≥ 0  (8) 

The first term of the objective function represents the net profit for routing the commodities. The other 

terms represent the total setup costs of the hubs that are chosen, the non-hub nodes that are selected to 

be served, and the hub edges that are used, respectively. Constraints (2) represent that a node is selected 

as a hub or non-hub node. Constraints (3) ensures that demands are fully transmitted. Constraints (4) 

represent that the arc between two nodes can be selected if and only if two edges selected as hubs. 

Constraints (5) not allowed direct connection created between non hub nodes. According to the 

constraints (6), flows can be routed via hubs if and only if the arc between hub nodes is created. 

Constraints (7) and (8) are the standard integrality and non-negativity constraints. 

3. Proposed adjustable robust profit hub location problem 

In the previous model, its assumed that all parameters are known in the planning time. While, in the 

real world some parameters have uncertain nature. Adjustable robust optimization is used to cope with 

uncertain demands in proposed model. In adjustable robust optimization, decisions are divided into two 

separate states ([13]). The location decisions are taken in the first stage without revealing of uncertainty 

and allocation decisions are taken in the second stage in presence of uncertainties. Polyhedral 

uncertainty set is used in this paper and the level of conservatism is controlled by an uncertainty budget 

([14]). Demands is assumed taken a value in interval of [𝑤𝑖𝑗
𝑛 − 𝑤𝑖𝑗

𝑑 , 𝑤𝑖𝑗
𝑛 + 𝑤𝑖𝑗

𝑑]  . 𝑤𝑖𝑗
𝑛  and 𝑤𝑖𝑗

𝑑  are 

nominal and deviation values of demands, respectively. Γ𝑤  is a parameter that denotes the level of 

conservatism. The mathematical model of the adjustable robust profit hub location problem with 

uncertain demands is as follows: 

max
𝑧,𝑠,𝑦

(− ∑ 𝑓𝑘

𝑘∈𝐻

𝑧𝑘 − ∑ 𝑐𝑖

𝑖∈𝑁

𝑠𝑖 − ∑ ∑ 𝑟𝑘𝑙

𝑙∈𝐻𝑘∈𝐻

𝑦𝑘𝑙) 

+ max
𝑥∈𝛾(𝑧,𝑠,𝑦,𝑤)

   min
𝑤𝑖𝑗∈𝑊

(∑ ∑ ∑ ∑ 𝑤𝑖𝑗

𝑙∈𝐻𝑘∈𝐻𝑗∈𝑁𝑖∈𝑁

(𝑅𝑖𝑗 − 𝑐𝑖𝑗
𝑘𝑙)𝑥𝑖𝑗

𝑘𝑙) 

(9) 

Subjected to:   

(2), (4), (7)   

Where 𝛾(𝑧, 𝑠, 𝑦, 𝑤) = {𝑥: (3), (5), (6), (8) }. In this model, 𝑧𝑘 , 𝑠𝑖  and 𝑦𝑘𝑙  are the first stage decision 

variables, while second stage decision variable consist of 𝑥𝑖𝑗
𝑘𝑙 . First stage decision variables are 

maximized according to the worst-case of second stage decision variables.  

The objective function of the proposed model is non-linear and have max max-min terms that makes 

problem hard to solve. Hence a decomposition algorithm should be used to solved proposed model. 

Column and constraint generation algorithm is applied to solve proposed model. 



 

4. Column and constraint generation algorithm   

Column and constrain generation algorithm was proposed by [15]. In this algorithm, model is divided 

into two separate problems named as master and sub problems. First stage and second stage decision 

variables exist in master and sub problems, respectively. The sub problem is as follows: 

 Max
𝑥∈𝛾(𝑧,𝑠,𝑦,𝑤)

   Min
𝑤𝑖𝑗∈𝑊

(∑ ∑ ∑ ∑ 𝑤𝑖𝑗

𝑙∈𝐻𝑘∈𝐻𝑗∈𝑁𝑖∈𝑁

(𝑅𝑖𝑗 − 𝑐𝑖𝑗
𝑘𝑙)𝑥𝑖𝑗

𝑘𝑙) 
 (10) 

Subjected to:   

∑ ∑ 𝑥𝑖𝑗
𝑘𝑙 = 1

𝑙∈𝐻𝑘∈𝐻

 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (11) 

∑ 𝑥𝑖𝑗
𝑘𝑙 + ∑ 𝑥𝑖𝑗

𝑙𝑘 ≤ 𝑧�̅�

𝑙∈𝐻,𝑙≠𝑘𝑙∈𝐻

 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻 (12) 

𝑥𝑖𝑗
𝑘𝑙 + 𝑥𝑖𝑗

𝑙𝑘 ≤ �̅�𝑘𝑙 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻, 𝑙 ∈ 𝐻 (13) 

𝑥𝑖𝑗
𝑘𝑙 ≥ 0  (14) 

With duality property, max-min term in the objective function (10) can transform max form to min 

form. 𝑞𝑖𝑗, 𝑢𝑖𝑗𝑘 and 𝑝𝑖𝑗
𝑘𝑙 are dual multiplier of constraints (11), (12) and (13) respectively. The dual of 

sub problem with considering uncertain demands interval is as follows: 

𝑀𝑖𝑛 ∑ ∑ 𝑞𝑖𝑗

𝑗∈𝑁𝑖∈N

+ ∑ ∑ ∑ 𝑧�̅�𝑢𝑖𝑗
𝑘

𝑘∈𝐻𝑗∈𝑁𝑖∈N

+ ∑ ∑ ∑ ∑ �̅�𝑘𝑙

𝑙∈𝐻𝑘∈𝐻𝑗∈𝑁𝑖∈N

𝑝𝑖𝑗
𝑘𝑙 

 (15) 

Subjected to:   

𝑞𝑖𝑗 + 𝑢𝑖𝑗
𝑘 + 𝑢𝑖𝑗

𝑙 + 𝑝𝑖𝑗
𝑘𝑙 + 𝑝𝑖𝑗

𝑙𝑘 ≥ (�̅�𝑖𝑗 − �̂�𝑖𝑗𝜃𝑖𝑗)(𝑅𝑖𝑗 − 𝑐𝑖𝑗
𝑘𝑙) ∀𝑖, 𝑗, 𝑘, 𝑙 (16) 

𝑞𝑖𝑗 + 𝑢𝑖𝑗
𝑘 ≥ (�̅�𝑖𝑗 − �̂�𝑖𝑗𝜃𝑖𝑗)(𝑅𝑖𝑗 − (𝜒𝑑𝑖𝑘 + 𝛿𝑑𝑘𝑗)) ∀𝑖, 𝑗, 𝑘 (17) 

∑ ∑ 𝜃𝑖𝑗

𝑗∈𝑁𝑖∈N

≤ Γ𝑤 
 (18) 

0 ≤ 𝜃𝑖𝑗 ≤ 1 ∀𝑖, 𝑗 (19) 

𝑢𝑖𝑗
𝑘 , 𝑝𝑖𝑗

𝑘𝑙 ≥ 0  (20) 

Master problem with first stage decision variables is as follows: 

𝑀𝑎𝑥 (− ∑ 𝑓𝑘

𝑘∈𝐻

𝑧𝑘 − ∑ 𝑐𝑖

𝑖∈𝑁

𝑠𝑖 − ∑ ∑ 𝑟𝑘𝑙

𝑙∈𝐻𝑘∈𝐻

𝑦𝑘𝑙) + 𝜂  
(21) 

Subjected to:   

𝜂 ≤ (�̅�𝑖𝑗 − �̂�𝑖𝑗𝜃𝑖𝑗
𝑖𝑡𝑒𝑟)(𝑅𝑖𝑗 − 𝑐𝑖𝑗

𝑘𝑙)𝑥𝑖𝑗𝑘𝑙
𝑖𝑡𝑒𝑟) ∀𝑖𝑡𝑒𝑟 (22) 



 

∑ ∑ 𝑥𝑖𝑗𝑘𝑙
𝑖𝑡𝑒𝑟 = 1

𝑙∈𝐻𝑘∈𝐻

 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖𝑡𝑒𝑟 (23) 

∑ 𝑥𝑖𝑗𝑘𝑙
𝑖𝑡𝑒𝑟 + ∑ 𝑥𝑖𝑗𝑙𝑘

 𝑖𝑡𝑒𝑟 ≤ 𝑧𝑘

𝑙∈𝐻,𝑙≠𝑘𝑙∈𝐻

 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻, 𝑖𝑡𝑒𝑟 (24) 

𝑥𝑖𝑗𝑘𝑙
𝑖𝑡𝑒𝑟 + 𝑥𝑖𝑗𝑙𝑘

 𝑖𝑡𝑒𝑟 ≤ 𝑦𝑘𝑙 ∀𝑖, 𝑗 ∈ 𝑁, 𝑘, 𝑙 ∈ 𝐻, 𝑖𝑡𝑒𝑟 (25) 

𝑥𝑖𝑗𝑘𝑙
𝑖𝑡𝑒𝑟 ≥ 0 ∀𝑖, 𝑗 ∈ 𝑁, 𝑘, 𝑙 ∈ 𝐻, 𝑖𝑡𝑒𝑟 (26) 

𝑧𝑘 , 𝑠𝑖, 𝑦𝑘𝑙 ∈ {0,1}  (27) 

Constraints (22) is the optimality cut that is added in each iteration to the master problem. Also 

constraints (23) - (26) are added in each iteration to the master problem. In other words, in each iteration 

new constraints and variables are added to the master problem. Algorithm 1 shows the pseudo code of 

the column and constraints generation algorithm. 

Algorithm 1: Column and constraint generation algorithm 

Data: 𝐿𝐵 = −∞, 𝑈𝐵 = +∞  

While 𝑈𝐵 − 𝐿𝐵 ≤ 휀 

   Step 1: Solve master problem 

𝐿𝐵 = ∑ 𝑓𝑘

𝑘∈𝐻

𝑧�̅� + ∑ 𝑐𝑖�̅�𝑖 + ∑ ∑ 𝑟𝑘𝑙

𝑙∈𝐻𝑘∈𝐻𝑖∈𝑁

�̅�𝑘𝑙 − 𝜂 

   Step 2: Solve dual of sub problem 

𝑈𝐵 = − ∑ ∑ �̅�𝑖𝑗

𝑗∈𝑁𝑖∈N

− ∑ ∑ ∑ 𝑧�̅�

𝑘∈𝐻𝑗∈𝑁𝑖∈N

�̅�𝑖𝑗
𝑘 − ∑ ∑ ∑ ∑ �̅�𝑘𝑙

𝑙∈𝐻𝑘∈𝐻𝑗∈𝑁𝑖∈N

�̅�𝑖𝑗
𝑘𝑙 + ∑ 𝑓𝑘

𝑘∈𝐻

𝑧�̅� + ∑ 𝑐𝑖�̅�𝑖 + ∑ ∑ 𝑟𝑘𝑙

𝑙∈𝐻𝑘∈𝐻𝑖∈𝑁

�̅�𝑘𝑙 

    Step 3: Add optimality cut and new constraints and variables to the master problem  

 End while 

 

5. Computational experiment  

In this section, the performance of the proposed model and column and constraint generation algorithm 

is analyzed. The well-known set of instances such as the AP data set (Australian Post) is used in this 

paper for analyzing, that used widely in hub location problems. The proposed mathematical model is 

solved by using GAMS software, and run in an Intel Core i5 with 2.5 GHz CPU and 6 GB of RAM. 

Figure 1 and table 1 shows the convergence trend for Benders decomposition and column and constraint 

generation algorithms, respectively, in a case of uncertainty budget equals to 0.1.  



 

 

Figure 1. Convergence trend of Benders decomposition algorithm for AP 10-node instance, 𝚪𝒘 = 𝟎. 𝟏 

 

Comparing figure 1 and table 1 confirms the rapid convergence of the column and constraint generation 

algorithm to solve the proposed model compared with Benders decomposition algorithm. In other 

words, column and constraint generation algorithm needs few iterations to converging optimal solution.  

 

Table 1. Convergence of column and constraint generation algorithm for AP 10-node instance, 𝚪𝒘 = 𝟎. 𝟏 

Iteration LB UB 

1 4676522 

 

7059836 

 2 4676522 

 

4676522 

  

The impacts of uncertainty budget (Γ𝑤) on the hub network configuration and its objective function is 

analyzed and reported in table 2 for AP 10-node instance. In case of high value for uncertainty budget, 

objective function (profit) decreased with less established hub facilities. 

Table 2. Performance of model with different 𝚪𝒘 for AP 10-node instance 

𝚪𝒘 # Iterations CPU time (s) OBJ Hub configuration 

0.1 

 

 

2 

 

 

 

 

2.328 4676520 

 

3, 8, 10 

0.2 2 2.296 3583400 

2724420 

 

1, 9, 10 

0.3 2 2.251 2724420 

 

9, 10 

0.4 2 2.64 2015190 

 

9, 10 

0.5 2 1.97 1434530 

 

9, 10 

0.6 2 1.953 1010000 

 

10 

0.7 2 1.812 652138 

 

10 

0.8 2 2.421 350201 

 

10 

0.9 2 1.89 131532 

 

10 

1 2 1.204 -29762 

 

10 

 

6. Conclusion 

In this paper, adjustable robust optimization is used to deal with uncertain demands in multiple 

allocation profit hub location problem. The location decisions (hub nodes, non-hub nodes and arcs) are 

taken in the first stage without revealing of uncertainties and allocation decisions are taken in the second 
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stage in presence of uncertainty. Polyhedral uncertainty set is used in this paper and the level of 

conservatism is controlled by an uncertainty budget parameter. Column and constraint generation 

algorithm is used to solve proposed model more efficiently. Computational experiments showed that 

the column and constraint generation algorithm had less iterations comparing with Benders 

decomposition algorithm. Also number of hub facilities and objective function are decreased when 

uncertainty is high. It is interesting for future research to considering hub location problem with more 

applications. Also mathhuristic two-phase algorithm can used to solve such model in large scale 

instances. 
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