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1. Introduction

Time delay can be obtained from organic, chemical, electronic and trans-
portation systems [17]. It is crucial and complicated to obtain the analytic
solution of the optimal control for delay systems, so it is intriguing to work
with numerical approaches to solving optimal control with time delay systems.
During the past decade, enormous effort has been spent on the development
of computational methods for generating solutions of delay systems. Wu. et al
introduced a method for solving optimal control of switched systems with time
delay [27]. Kharatishvili [18] approached this issue by extending the Pontrya-
gin’s maximum principle to time delay systems. With [20] authors presented
a technique for solving time delay optimal control problems based on Block
plus function and Legendre polynomials. Also, Wang [25] solved delay optimal
control with the same procedure. Palanisamy and Rao [24], solved this issue
using Walsh functions. The least square method based on Bezier curves is
used in solving linear optimal control with time delay systems [14]. Recently,
a number of articles have considered operational matrices for optimal control
problems such as [6, 8, 9, 10, 11].

The pantograph systems are one of the most sorts of delay differential equa-
tions as well as performs a crucial role in describing various different phenom-
ena such as electrodynamics [4]. The pantograph equation studied by using
the Adomian decomposition method [5]. The stableness of the Runge Kutta
procedure was considered for a class of pantograph equations of the neutral
form [29]. Taylor polynomials were employed for the approximate solution of a
linear Pantograph equation [23]. In [12] Chebyshev wavelets presented to un-
ravel the linear quadratic optimal control problem with pantograph systems.
Furthermore, the solving of multi-pantograph equation systems via spectral tau
method is studied in [7], and a new Legendre operational technique for delay
fractional optimal control problems is presented in [3].

In the recent years, Bernstein polynomials are employed in many articles,
for instance, having [16] authors have used them to unravel fractional optimal
control problems. Besides within [1], they are presented for solving optimal
control problem of time-varying Singular Systems. Specified methods in these
articles are based on Lagrangian method, in the point of fact for solving the
problems according to these papers we must solve nonlinear algebraic systems
which need more computation and time, but with the proposed method in this
paper, it is only needed to solve quadratic programming problems(QPP). In-
deed in this paper, Bernstein polynomials are used to solve optimal control
with constant and pantograph delay systems. We derive an operational matrix
of pantograph, an operational matrix of delay, a constant operational matrix
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of integration and an operational matrix of differentiation for Bernstein poly-
nomials. These matrices are used to reduce the pre-mentioned optimal control
systems to a QPP.

2. Properties of Bernstein polynomials

The Bernstein polynomials of mth degree are defined on the interval [0, tf ]
as follows: [2]

Bi,m(t) =

(
m

i

)
1

(tf − t0)m
ti(tf − t)m−i, i = 0, 1, . . . ,m. (2.1)

By utilizing binomial expansion of (tf − t)m−i, we have now

Bi,m(t) =

(
m

i

)(
1

(tf )m

)
ti(tf − t)m−i,

=

(
1

(tf )m

)
ti
(
m

i

)(m−i∑
k=0

(−1)k
(
m− i

k

)
tktm−i−k

f

)
, (2.2)

=

(
1

(tf )m

)m−i∑
k=0

(−1)k
(
m

i

)(
m− i

k

)
ti+ktm−i−k

f , i = 0, 1, . . . ,m.

one may define vector Ai+1 as:

Ai+1 =
1

(tf )m

[ i times︷ ︸︸ ︷
0 0 · · · 0 (−1)0

(
m

i

)
tm−i
f (−1)1

(
m

i

)(
m− i

1

)
tm−i−1
f . . .

(−1)m−i−1

(
m

i

)(
m− i

m− i− 1

)
tf (−1)m−i

(
m

i

)(
m− i

m− i

)]
1×(m+1)

and

ϕ(t) = [B0,m(t) B1,m(t) . . . Bm,m(t)]
T
, (2.3)

Then we can write

ϕ(t) = ATm(t), (2.4)

where

Tm(t) =


1

t
...
tm

 , A =


A1

A2

...
Am+1

 . (2.5)

Thus A is an (m+ 1)× (m+ 1) matrix which Ai+1 is i+ 1 row of A.
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3. Function Approximation

Let H = L2[0, tf ] is Hilbert space with the inner product which is described
by ⟨f, g⟩ =

∫ tf
0

fg dt. Also Y = span {B0,m, B1,m, · · · , Bm,m} is a finite di-
mensional and closed subspace. As a result Y a is complete subspace of H.
Suppose f is an arbitrary element in H, now f has a unique best approximation
out of Y , such as y0 ∈ Y , that is:

∃ y0 ∈ Y, s.t. ∀ y ∈ Y, ∥f − y0∥2 ⩽ ∥f − y∥2, (3.1)

where ∥f∥22 = ⟨f, f⟩, (For details see [26])
Since y0 ∈ Y , so there exist the unique coefficients c0, c1, . . . , cm such that

f(t) ≃ y0 =

m∑
i=0

ciBi,m = cTϕ(t), (3.2)

where ϕ(t) is defined in (2.3) and cT = [c0, c1, . . . , cm]. Thus vector cT can be
obtained by:

cT ⟨ϕ, ϕ⟩ = ⟨f, ϕ⟩, (3.3)
where

⟨f, ϕ⟩ =
∫ tf

0

fϕ dt = [⟨f,B0,m⟩ ⟨f,B1,m⟩ . . . ⟨f,Bm,m⟩], (3.4)

and ⟨ϕ, ϕ⟩ is an (m + 1) × (m + 1) matrix and is called as dual matrix of ϕ,
where is denoted by Q, so

cT = (

∫ tf

0

f(t)ϕ(t)T dt)Q−1. (3.5)

By exerting (2.4), we have:

Q = ⟨ϕ, ϕ⟩ =
∫ tf

0

ϕ(t)ϕ(t)T dt =

∫ tf

0

(ATm(t))(ATm(t))T dt

= A[

∫ tf

0

Tm(t)Tm(t)T dt]AT = AHAT , (3.6)

where

H =


tf

t2f
2

t3f
3 . . .

tm+1
f

m+1
t2f
2

t3f
3

t4f
4 . . .

tm+2
f

m+2
...

...
...

...
tm+1
f

m+1

tm+2
f

m+2

tm+3
f

m+3 . . .
t2m+1
f

2m+1

 . (3.7)

Lemma 3.1. Consider the real-valued function g, where g ∈ Cm+1[0, tf ], as
well as Y = span {B0,m, B1,m, · · · , Bm,m}. If cTϕ(t) be the best approximation
g out of Y then the mean error bound is presented as follows:

∥g − cTϕ(t)∥2 ⩽
Mt

2m+3
2

f

(m+ 1)!
√
2m+ 3

, (3.8)
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where

M = max | gm+1(η) |, η ∈ [0, tf ],

Proof. We consider the Taylor polynomial of order m for function g at t0 = 0,
and denote it by y1(t), so

y1(t) = g(t0) + g′(t0)(t− t0) + · · ·+ gm(t0)
(t− t0)

m

m!
.

We know that

|g(t)− y1(t)| ⩽| gm+1(η) | (t− t0)
m+1

(m+ 1)!
, (3.9)

η ∈ [t0, tf ].

Since cTϕ(t) is the best approximation to g from Y, and y1 ∈ Y , by using (3.9)
we obtain:

∥g − cTϕ(t)∥22 ⩽ ∥g − y1∥22 =

∫ tf

0

| g(t)− y1(t) |2 dt,

⩽
∫ tf

0

[
gm+1(η)

tm+1

(m+ 1)!

]2
dt ⩽ M2

(m+ 1)!2

∫ tf

0

t2m+2dt,

⩽
M2t2m+3

f

(m+ 1)!2(2m+ 3)
.

Therefore by taking the square root we obtain the bound indicated in (3.8). □

This lemma shows that the error reduces to zero as m increases. In other
words this, lemma expresses that the approximated solution is obtained by the
presented method convergences to the exact solution when, m tends to infinity.

4. Operational Matrices

In this section, we describe obtaining some operational matrices on Bernstein
polynomials that can reduce the basic dynamical systems to QPP.

4.1. Operational matrix of differentiation. Suppose D is an (m+1)×(m+

1) differentiation operational matrix of mth-degree Bernstein polynomials over
[0, tf ], then

d

dt
ϕ(t) = AΛB ϕ(t) = Dϕ(t), 0 ⩽ t ⩽ tf . (4.1)

where D = AΛB, while A is the matrix defined in (2.5) and Λ is the following
(m+ 1)× (m) matrix

Λ =


0 0 0 . . . 0

1 0 0 . . . 0

0 2 0 · · · 0
...

...
...

...
0 0 0 · · · m

 ,
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and B is an (m) × (m + 1) matrix can be expressed by Bk+1 = A−1
k+1 for

k = 0, 1, . . . ,m, where A−1
k+1 is k+1 row of A−1. For more information see [28]

4.2. Operational matrix of integral. Assume∫ t

0

ϕ(x) dx = Pϕ(t), 0 ⩽ t ⩽ 1, (4.2)

then P is the operational matrix of integral and P = AΛ
′
B

′ , where A is the
matrix defined in (2.4) when tf = 1, also B

′ and Λ
′ defined as follows:

Λ
′
=


1 0 0 . . . 0

0 1
2 0 . . . 0

...
...

...
...

0 0 0 · · · 1
m+1

 , B
′
=


A−1

2

A−1
3
...

A−1
m+1

cTm+1

 .

where

cm+1 =
Q−1

2m+ 2



(
m
0

)(
2m+1
m+1

)(
m
1

)(
2m+1
m+2

)
...(
m
m

)(
2m+1
2m+1

)


.

While Q−1 is the inverse of Q defined in (3.6), when tf = 1. For more infor-
mation see [28]

4.3. Operational matrix of pantograph delay. We derive the operational
matrix of pantograph Dp(τ), that is given by

ϕ(
t

τ
) = Dp(τ)ϕ(t), 0 ⩽ t ⩽ tf , (4.3)

The (i, j)-th entry of Dp(τ) is

[Dp(τ)](i, j) =


(

j
j−i

) (τ − 1)j−i

τ j
j ⩾ i

0 j < i.
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For i = 0, 1, . . . ,m and j = 0, 1, . . . ,m, the matrix of Dp(τ) is an upper trian-
gular matrix and defined as:

Dp(τ) =



1
(τ − 1)

τ

(τ − 1)2

τ2
. . .

(τ − 1)m

τm

0
1

τ

2(τ − 1)

τ2
. . .

m(τ − 1)(m−1)

τm...
...

...
...

0 0 0 . . .
1

τm


. (4.4)

4.4. Operational matrix of constant delay. The operational matrix of de-
lay D(τ) is given by

ϕ(t− τ) = D(τ) ϕ(t), 0 ⩽ t ⩽ 1, (4.5)

Let the (m+ 1)× (m+ 1) matrix of D(τ) is

D(τ) =


D0,0(τ) D0,1(τ) D0,2(τ) . . . D0,m(τ)

D1,0(τ) D1,1(τ) D2,2(τ) . . . D1,m(τ)
...

...
...

...
Dm,0(τ) Dm,1(τ) Dm,2(τ) . . . Dm,m(τ)

 . (4.6)

The (i, j)-th element of delay operational matrix, where is:

Di,j(τ) = (−1)i

[
i∑

k=0

(−1)i+k

(
j

j − i+ k

)
(m− i+ k)!

k!(m− i)!
τ2k

]
(τ + 1)m−i−jτ j−i,

For

i = 0, 1, . . . ,m and j = 0, 1, . . . ,m.

4.5. Operational matrix of constant integral. Define∫ τ

0

ϕ(t) dt = Zϕ(t), 0 ⩽ t ⩽ 1,

the matrix Z is called the constant operational matrix of integral, i+ 1 th row
of Z is

Zi = Ki [

m+1 times︷ ︸︸ ︷
1 1 · · · 1], i = 1, 2 . . . ,m+ 1.

where

Ki =
1

m+ 1
τ i

m−i+1∑
j=0

(−1)j
(
m+ 1

i+ j

)(
i+ j − 1

j

)
τ j

 , i = 1, 2 . . . ,m+ 1
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Thus the (m+ 1)× (m+ 1) matrix Z is

Z =


Z1

Z2

...
Zm+1

 . (4.7)

5. The Approximated Solution of Delays Optimal Control
Systems

5.1. Constant delay. Consider the following time-invariant delay approxi-
mated system,

ẋ(t) = Ax(t) +Bu(t) + Cx(t− τ), 0 ⩽ t ⩽ 1, (5.1)
x(0) = x0, (5.2)
x(t) = θ(t), −τ ⩽ t ⩽ 0, (5.3)

where x(t) is a l vector state function, u(t) is a q vector control function, A, B
and C are matrices of appropriate dimensions, x0 is a constant specified vector,
and θ is arbitrary known function. The problem is to find the pair of optimal
solution (x∗(.), u∗(.)) which satisfies (5.1), (5.2) and (5.3) and minimizes the
following quadratic objective functional

J =
1

2

∫ tf

0

[
xT (t)Px(t) + uT (t)Ru(t)

]
dt, (5.4)

where P and R are matrices of appropriate dimensions, and they are respec-
tively the symmetric semi positive and positive definite matrices.
We approximate x(t) and u(t) by X(t) and U(t), respectively. Let

X(t) = [X1(t) X2(t) · · · Xl(t)]
T
, (5.5)

U(t) = [U1(t) U2(t) · · · Uq(t)]
T
. (5.6)

Each Xi(t) and Uj(t) where i = 1, · · · , l and j = 1, · · · , q can be written in
term of Bernstein polynomials as follows:

Xi(t) = XT
i ϕ(t),

Uj(t) = UT
j ϕ(t),

where ϕ(t) = [B0,m(t) B1,m(t) . . . Bm,m(t)]
T and XT

i = [α0i α1i . . . αmi].
Similarly, we have

x(0) ≃ X(0) = cTϕ(t),

θ(t− τ) ≃ θ(t) = θTϕ(t),
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where c and θ are (m+ 1)× l matrices, thus

Xi(0) = cTi ϕ(t),

θi(t− τ) = θTi ϕ(t), i = 1, 2, . . . , l

where

ci = [c0i c1i · · · cmi]
T
,

θi = [θ0i θ1i · · · θmi]
T
,

We can also write Xi(t− τ) in term of Bernstein polynomials as follows:

Xi(t− τ) =

{
θi(t− τ) = θTi ϕ(t), 0 ⩽ t ⩽ τ,

XT
i ϕ(t− τ) = XT

i D(τ)ϕ(t), τ ⩽ t ⩽ 1, i = 1, 2, . . . , l

where D(τ) is delay operational matrix given in (4.6), also we have:∫ t

0

Xi(t
′
)dt

′
=

∫ t

0

XT
i ϕ(t

′
)dt

′
= XT

i Pϕ(t), (5.7)∫ t

0

Uj(t
′
)dt

′
=

∫ t

0

UT
j ϕ(t

′
)dt

′
= UT

j Pϕ(t), (5.8)∫ τ

0

ϕ(t)dt = Zϕ(t), (5.9)∫ t

0

Xi(t
′
− τ)dt

′
=

∫ τ

0

Xi(t
′
− τ)dt

′
+

∫ t

τ

Xi(t
′
− τ)dt

′
, i = 1, 2, . . . , l

(5.10)
one can show that∫ τ

0

Xi(t
′
− τ)dt

′
=

∫ τ

0

θTi ϕ(t
′
)dt

′
= θTi

∫ τ

0

ϕ(t
′
)dt

′
= θTi Zϕ(t), (5.11)∫ t

τ

Xi(t
′
− τ)dt

′
=

∫ t

τ

XT
i D(τ)ϕ(t

′
)dt

′
=

∫ t

0

XT
i D(τ)ϕ(t

′
)dt

′
−
∫ τ

0

XT
i D(τ)ϕ(t

′
)dt

′

= XT
i D(τ)Pϕ(t)−XT

i D(τ)Zϕ(t), i = 1, 2, . . . , l

(5.12)
Thus∫ t

0

Xi(t
′
− τ)dt

′
= θTi Zϕ(t) +XT

i D(τ)Pϕ(t)−XT
i D(τ)Zϕ(t). i = 1, 2, . . . , l.

(5.13)
Now back to the optimal control problem (5.1)-(5.4). By integrating (5.1) from
0 to t, and using (5.7)-(5.13) we obtain:

Xi(t)−Xi(0) =

∫ t

0

Ẋi(t
′
)dt

′
= A

∫ t

0

Xi(t
′
)dt

′
+B

∫ t

0

Uj(t
′
)dt

′
+ C

∫ t

0

Xi(t
′
− τ)dt

′

Then,

XT
i ϕ(t)− cTi ϕ(t) = AXT

i Pϕ(t) +BUT
j Pϕ(t) + CθTi Zϕ(t) + CXT

i D(τ)Pϕ(t)− CXT
i D(τ)Zϕ(t).
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With eliminating ϕ and putting whole of terms on the left-hand side of equal-
ization, we obtain:

Ri
1 =XT

i − cTi −AXT
i P −BUT

j P − CθTi Z−

CXT
i D(τ)P + CXT

i D(τ)Z = 0, i = 1, 2, . . . , l. (5.14)

It is clear Ri
1 is m+ 1 vector for i = 1, 2, . . . , l. Finally, we approximate of the

objective function (5.4) as follows:

xT (t)Px(t) =

l∑
i=1

piix
2
i + 2

l∑
i=1

l−i∑
j=i+1

pijxixj ,

=

l∑
i=1

piiX
T
i ϕ(t)ϕ(t)

TXi + 2

l∑
i=1

l−i∑
j=i+1

pijX
T
i ϕ(t)ϕ(t)

TXj ,

uT (t)Ru(t) =

q∑
i=1

riiu
2
i + 2

l∑
i=1

q−i∑
j=i+1

rijuiuj ,

=

q∑
i=1

riiU
T
i ϕ(t)ϕ(t)TUi + 2

l∑
i=1

q−i∑
j=i+1

rijU
T
i ϕ(t)ϕ(t)TUj ,

(5.15)

By substituting (5.15) into (5.4), we obtain:

R2 =
1

2

l∑
i=1

piiX
T
i

[∫ 1

0

ϕ(t)ϕT (t)dt

]
Xi +

l∑
i=1

l−i∑
j=i+1

pijX
T
i

[∫ 1

0

ϕ(t)ϕT (t)dt

]
Xj

+
1

2

q∑
i=1

riiU
T
i

[∫ 1

0

ϕ(t)ϕT (t)dt

]
Ui +

q∑
i=1

q−i∑
j=i+1

rijU
T
i

[∫ 1

0

ϕ(t)ϕT (t)dt

]
Uj

(5.16)

Then (5.4) can be rewritten as follows:

R2 =
1

2

l∑
i=1

piiX
T
i QXi+

l∑
i=1

l−i∑
j=i+1

pijX
T
i QXj+

1

2

q∑
i=1

riiU
T
i QUi+

q∑
i=1

q−i∑
j=i+1

rijU
T
i QUj

(5.17)
where ∫ 1

0

ϕ(t)ϕT (t)dt = Q,

we may recall that Q is the same at (3.6) when tf = 1. Also, we may recall
that Q and P are positive definite matrices, so R2 is a non-negative quadratic
form. Now the delay optimal control problem (5.1)- (5.4) can be reduced to
the following quadratic programming problem (QPP).

min M

l∑
i=1

∥Ri
1∥2 +R2,

s.t. XT
i ϕ(0) = x0i. i = 1, 2, . . . , l

(5.18)
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Since the equation on Ri
1 is linear equality, the original problem can be refor-

mulated as the quadratic programming problem. The new problem consists
only the entries of the vectors X and U . The norm we used in this optimiza-
tion problem is the Euclidean norm, and M is a penalty parameter. The QPP
(5.18) can be solved by many software, in this paper we used the package of
Mathematica 10 to solve this problem. The more articles about solving opti-
mal control problem with approximated method utilize Lagrangian approach,
however, we approximate the main problem with QPP that can be solved by
many subroutine algorithms and software. In other words by exerting of this
method the main problem transfer to a QPP which applying it is easy and
interesting with more accurate and less computation.

5.2. Pantograph delay. Now consider the following linear time-varying pan-
tograph system

ẋ(t) = E(t)x(t) +G(t)u(t) + F (t)x(
t

τ
) +H(t), 0 ⩽ t ⩽ tf , (5.19)

x(0) = x0, (5.20)

where x(t), u(t) ∈ R, and x0 is a known constant, and F (t), G(t), E(t) and
H(t) are specified functions and are given. The propose is to find the pair of
optimal solution (x∗(.), u∗(.)) where satisfies (5.19) and (5.20) while minimizes
the following quadratic objective functional,

J =
1

2

∫ tf

0

xT (t)Px(t) + uT (t)Ru(t) dt, (5.21)

where P and R are appropriate given constants.
We approximate x(t) and u(t) by X(t) and U(t), respectively. We assume

X(t) = XTϕ(t),

U(t) = UTϕ(t),

E(t) ≃ ETϕ(t), (5.22)
F (t) ≃ FTϕ(t),

H(t) ≃ HTϕ(t),

where X and U are unknown vectors but E, F and H are specified known
vectors. With the operational matrix of pantograph (4.4) we have

X(
t

τ
) = XTϕ(

t

τ
) = XTDp(τ)ϕ(t),

also with the operational matrix of differentiation (4.1) over [0, tf ] we have

Ẋ(t) = XTDϕ(t), 0 ⩽ t ⩽ tf . (5.23)
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So, we obtain

E(t)X(t) ≃ ETϕ(t)ϕT (t)X = ET X̂ϕ(t), (5.24)

G(t)U(t) ≃ GTϕ(t)ϕT (t)U = GT Ûϕ(t), (5.25)

F (t)X(
t

τ
) ≃ FTϕ(t)ϕT (t)(XDp(τ))

T
= FT X̂1, (5.26)

where in the last expression X1 = (XDp(τ))
T . We need to mention that X̂,

Û and X̂1 are product operational matrix given in [28], then by substituting
(5.23)-(5.26) into (5.19) we can obtain

XTDϕ(t) = ET X̂ϕ(t) +GT Ûϕ(t) + FT X̂1ϕ(t) +HTϕ(t),

Similarly, with eliminating ϕ and putting whole of terms on the left-hand side
of equalization, we have

R1 = XTD − ET X̂ −GT Û − FT X̂1 −HT = 0, (5.27)

since P and R are constant, similarly for the objective function, we have:

R2 = P XTQX +R UTQU, (5.28)

where the matrix Q is given by (3.6). Finally, the optimal control problem is
reduced to the following QPP.

min M∥R1∥2 +R2
2

s.t. XTϕ(0) = x0, (5.29)

while ∥.∥ is the Euclidean norm and M is a penalty parameter.

6. Illustrative Examples

6.1. Constant delay.

Example 6.1. Consider the following delay differential equation [5].
d3x(t)

dt = −x(t)− x(t− 0.3) + e−t+0.3, 0 ⩽ t ⩽ 1, (6.1)

x(0) = 1, dx(0)
dt = −1, d2x(0)

dt = 1, x(t) = e−t.

With the exact solution x(t) = e−t.
By choosing m = 8, we obtain the following solution

x(t) = (1− t)8 + 7(1− t)7t+ 21.5(1− t)6t2 + 37.8325(1− t)5t3 + 41.7063(1− t)4t4 +

29.4889(1− t)3t5 + 13.0572(1− t)2t6 + 3.30991(1− t)t7 + 0.36787t8,

In Table 1, exact and approximated solution and also absolute error between
them are shown
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Table 1. Exact, estimated values and error of x(t) for Exam-
ple 6.1

t approximated exact error
0 1 1 0

0.2 0.818727 0.818731 0.000004

0.4 0.670299 0.670320 0.000021

0.6 0.548759 0.548812 0.000053

0.8 0.44925 0.449329 0.000079

1 0.36787 0.367879 0.000009

Example 6.2. Consider the following optimal control systems with constant
delay [25].

min J =
1

2

∫ 1

0

[x1(t) + x2(t)]
2
+ u2(t)dt, (6.2)

ẋ1(t) = x1(t) + x2(t−
1

4
),

ẋ2(t) = x2(t)− 5x1(t−
1

4
)− x2(t−

1

4
) + u(t),

x1(t) = 1, x2(t) = 1, −1

4
⩽ t ⩽ 0.

By choosing m = 8, the approximate solutions of x1(t) and x2(t) with presented
method are

x1(t) = (1− t)8 + 9.29662(1− t)7t+ 43.8422(1− t)6t2 + 111.199(1− t)5t3 + 145.896(1− t)4t4+

139.172(1− t)3t5 + 74.011(1− t)2t6 + 21.5528(1− t)t7 + 2.48454t8,

and
x2(t) = (1− t)8 + 4.49747(1− t)7t− 7.43068(1− t)6t2 − 34.3441(1− t)5t3 − 45.1487(1− t)4t4−

177.469(1− t)3t5 − 99.1169(1− t)2t6 − 46.3591(1− t)t7 − 7.72589t8,

The approximated objective function is J = 2.74573 and the value of objective
function in [25] is J = 2.79302. The graph of approximated solution x1(t) and
x2(t) are plotted in Figure 1 and 2.

6.2. Pantograph delay.

Example 6.3. [5, 21] Consider the following pantograph differential equation.
dx(t)
dt = 1

2e
t
2x( t2 ) +

1
2x(t), 0 ⩽ t ⩽ 1, (6.3)

x(0) = 1.

With the exact solution x(t) = et.
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approximate x1(t)

0.2 0.4 0.6 0.8 1.0
t

1.5

2.0

2.5

x1(t )

Figure 1. The graph of approximated solution x1(t) for Ex-
ample 6.2

approximate x2(t)

0.2 0.4 0.6 0.8 1.0
t

-8

-6

-4

-2

x2(t )

Figure 2. The graph of approximated solution x2(t) for Ex-
ample 6.2

By choosing m = 8, we obtain the following solution

x(t) = (1− t)8 + 9(1− t)7t+ 35.5078(1− t)6t2 + 80.1918(1− t)5t3 + 113.368(1− t)4t4 +

102.716(1− t)3t5 + 52.2374(1− t)2t6 + 18.8894(1− t)t7 + 2.68327t8,

Exact and approximated solution and also absolute error between them are
shown in Table 2.
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Table 2. Exact, estimated values and error of x(t) for Exam-
ple 6.3

t exact approximated error
0 1 1 0

0.1 1.10517 1.10523 −0.00006

0.2 1.2214 1.22152 −0.00012

0.3 1.34986 1.34984 0.00002

0.4 1.49182 1.49125 0.00057

0.5 1.64872 1.64685 0.00187

0.6 1.82212 1.81786 0.00426

0.7 2.01375 2.00557 0.000053

0.8 2.22554 2.21137 0.01417

0.9 2.4596 2.43674 0.02286

1 2.71828 2.68327 0.03501

Example 6.4. [23, 5, 21] Consider the following pantograph differential equa-
tion.

x′′(t) =
3

4
x(t) + x(

t

2
)− t2 + 2, 0 ⩽ t ⩽ 1, (6.4)

x(0) = 0,

x′(0) = 0.

To solve this problem, we choose m = 2, suppose

X(t) = XTϕ(t),

X(
t

2
) = XTDp(τ = 2)ϕ(t),

X ′(t) = XTDϕ(t),

X ′′(t) = XTD.Dϕ(t) = XTD2ϕ(t), (6.5)
H(t) = −t2 + 2 = HTϕ(t),

where

Dp(τ = 2) =

1 1
2

1
4

0 1
2

1
2

0 0 1
4

 , D =

−2 −1 0

2 0 −2

0 1 2

 ,HT =
[
2 2 1

]
, XT =

[
X0 X1 X2

]
.

(6.6)

Substituting (6.5) into (6.4), we have

XT .D.D =
3

4
XT +XTDp(τ) +HT ,

then
R1 = XT .D.D − 3

4
XT −XTDp(τ)−HT .
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Since
∥R1∥2 = R1.R

T
1 ,

thus

∥R1∥2 = (XT .D.D− 3

4
XT−XTDp(τ)−H).(XT .D.D− 3

4
XT−XTDp(τ)−H)T .

(6.7)
By replacing (6.6) in (6.7), we obtain

∥R1∥2 = (−2 +
3

2
X0 −

21

4
X1 + 2X2)

2 + (−2 +
1

4
X0 − 4X1 + 2X2)

2

+ (−1 +
7

4
X0 −

9

2
X1 +X2)

2.

For the initial condition X(0) = 0 and Ẋ(0) = 0, we have

X(0) = XTϕ(0) = X0 = 0,

Ẋ(0) = XTDϕ(0) = −2X0 + 2X1 = 0,

so we have, X0 = 0 and X1 = 0. Substituting X0 and X1 into ∥R1∥2, yields
the result:

∥R1∥2 = 2(−2 + 2X2)
2 + (−1 +X2)

2.

So the quadratic programming is

min 2(−2 + 2X2)
2 + (−1 +X2)

2.

Solving the optimization problem, we have found X2 = 1. So X0 = 0, X1 = 0,
and X2 = 1, then

X(t) = XTϕ(t) =
[
0 0 1

]  (1− t)2

2t(1− t)

t2

 = t2.

Then the approximated solution is X(t) = t2 which it is the exact solution.

Example 6.5. Consider the following optimal control systems with pantograph
delay [12].

min J =
1

2

∫ 4

0

[
x2(t) + u2(t)

]
dt, (6.8)

ẋ(t) = x(
t

2
) + u(t),

x(0) = 1.

The approximated cost function by the presented method with m = 10 is
J = 0.173968 , Also the approximated cost function by the Chebyshev wavelet
method with M = 10, K = 4 , the Legendre method with M = 10 [12] and the
Bezier method [13] with n = 8 are, respectively, J = 0.173952, J = 0.173958

and J = 0.173187.
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Comparing with other methods, such as the Chebyshev wavelet method,
the Legendre method, the Variational method and the bezier method, the pro-
posed method has less time and less calculus since the operational matrix of
pantograph of Bernstein polynomial (4.4) is the upper triangular matrix that
reduces the computation. Moreover the Bernstein polynomials form a basic for
the vector space of continues polynomials. So any polynomial can be written
as a linear combination of these polynomials. In the other word, Bernstein
polynomials bases only a small number of bases are needed to obtain a satis-
factory and good results which is one of the advantage of proposed method.
Furthermore, in the Bezier method [13], one has to solve the problem of opti-
mizing the integral (i.e., the objective function in the optimization problem is
an integral over [0, 1]). So firstly, the integral must be approximated by nu-
merical methods. Secondly, the approximated optimization problem should be
solved. But by the presented method in this article, we directly solve quadratic
programming problem (QPP) which this is another advantage of our method.
The graph of approximated state and control plotted in Figure 3 and 4.

approximate u(t)

1 2 3 4

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

Figure 3. The graph of approximated state x(t) for Example 6.5

Conclusions

In this paper, the operational matrices of pantograph, delay, and constant
integration, for Bernstein polynomials are attained. Furthermore, an upper
bound for the error of approximation is presented. The presented upper bound
of error demonstrates convergent to the exact solution when a degree of the
Bernstein polynomials tends to infinity. The Bernstein polynomials are used
to solve pre-mentioned optimal control and pantograph and delay differential
equations. The problem has been decreased to solve a QPP which can be solved
by many software with an alternative accurate. The method is general with
less time and calculus, simple to implement, and yields accurate results. The
illustrative examples demonstrate that the presented method is valid.
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approximate x(t)

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Figure 4. The graph of approximated control u(t) for Exam-
ple 6.5
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