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ABSTRACT
A convenient approach for the synthesis of diversely functionalized
[1,2,4]triazolo[5,1-f]purine heterocyclic framework have been accomplished.
The products were obtained through the combination of 5-amino-3-(meth-
ylthio)-1H-1,2,4-triazole with 5-bromo-2,4-dichloro-6-methylpyrimidine fol-
lowed by a SNAr alkoxylation of the novel tricyclic heterocyclic core with
various aliphatic alcohols. All newly synthesized heterocycles were fully elu-
cidated by both computational and spectral evaluations.
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Introduction

Imidazo[4,5-d]pyrimidine (Purine) as a privileged fused heterocyclic system was introduced by
Hermann Emil Fischer in 1884.1,2 As a pioneer in the synthesis of purine,3 he demonstrated that
adenine, xanthine, uric acid, guanine, and caffeine as natural products correspond to different
derivatives of purine system.4 In the last few years, purine scaffold has been contributed substan-
tially to the development of biologically active compounds.5 Vidarabine as an antiviral drug with
purine-based structure has been extensively applied in clinics since 1976. Also, purine skeleton
has been known as a key pharmacophore in the synthesis and function of nucleic acids and
enzymes. Purine-containing skeletons are one of the most widely used heterocyclic core in the
development of adenosine receptor modulators,6 protein kinase inhibitors,7,8 fructose bisphospha-
tase inhibitors,9 and adenylation enzyme inhibitors.10 Besides, Vidarabine (A) as antitumor,
Acyclovir (B), Penciclovir (C) as well as Ganciclovir (D) as antiviral, Azathioprine (E) as
immunosuppressive and Theophylline (F) as bronchodilator (Figure 1) are the notable examples
of bioactive purine-based heterocycles with versatile structures and activities.11–16

Consequently, in the light of such interesting bioactivities, several chemical procedures for
the synthesis of purine derivatives have been developed.17–21 Some synthetic routes include the
synthesis of disubstituted adenines and trisubstituted xanthines through the heterocyclization
of pyrimidine compounds22 and the reactions such as couplings23,24 or nucleophilic aromatic
substitutions.25

CONTACT Ali Shiri alishiri@um.ac.ir Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad,
Azadi Sq., 9177948974 Mashhad, Iran

Supplemental data for this article is available online at https://doi.org/10.1080/10406638.2020.1852287.

� 2020 Taylor & Francis Group, LLC

POLYCYCLIC AROMATIC COMPOUNDS
https://doi.org/10.1080/10406638.2020.1852287

http://crossmark.crossref.org/dialog/?doi=10.1080/10406638.2020.1852287&domain=pdf&date_stamp=2020-11-30
http://orcid.org/0000-0003-1912-8875
http://orcid.org/0000-0002-5736-6287
https://doi.org/10.1080/10406638.2020.1852287
https://doi.org/10.1080/10406638.2020.1852287
http://www.tandfonline.com


1,2,4-Triazoles are another important class of heterocyclic compounds with three nitrogen
atoms in a five membered ring which have attributed a lot of interesting structural features and
pharmacological activities26 such as antimicrobial,27 antimalarial,28 antiproliferative,29 neuropro-
tective,30 antioxidant,31 anti-HIV,32 molluscicidal,33 and anticonvulsant effects.34 They have been
synthesized from the starting materials such as aminoguanidine sulfate,35 hydrazones,36 chlorala-
mides,37 benzoyl thiosemicarbazide,38 1,3,4-oxadiazole,39 amidrazones,40 hydrazide,27 amidines
and imidates,41 thioamide,42 hydrazonoyl hydrochlorides and aldehydes,43 aminoguanidine bicar-
bonate and oxalic acid,44 maleimides and bisarylhydrazones,45 2-phenyl-1,3,4-oxadiazole,46 2-
hydrazinopyridines and aldehydes47 and from alkyl halides.48

Based on the importance and various applications of purines and triazoles in medicinal chem-
istry and in continuation of our desire in the synthesis of novel fused heterocyclic systems with
potentially biological aspects,49–54 we have developed a straightforward protocol for the synthesis
of novel elegantly functionalized [1,2,4]triazolo[5,1-f]purine derivatives.

Results and discussion

In the present study, potassium cyanocarbonimidodithioate was initially prepared from the reac-
tion of cyanamide with carbon disulfide55 which was subsequently underwent the methylation
via treatment with iodomethane.56 The obtained dimethyl cyanocarbonimidodithioate was subse-
quently heterocyclized into 3-(methylthio)-1H-1,2,4-triazol-5-amine (1) while treated with
hydrazine monohydrate in refluxing EtOH. On the other hand, 5-bromo-2,4-dichloro-6-methyl-
pyrimidine (2) was synthesized according to the previously reported method.57 The treatment
of compound (1) as a binucleophile with compound (2) in Et3N under heating condition
afforded 5-bromo-2-chloro-6-methyl-N-(5-(methylthio)-4H-1,2,4-triazol-3-yl)pyrimidin-4-amine
(3) (Scheme 1).

Figure 1. Examples of versatile pharmacologically active purines.
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The repulsive interaction between the lone pairs of nitrogen in pyrimidine and the NH2

nucleophile for the 2-Cl substituent requires more severe condition in comparison with the 4-Cl
one. Therefore, the selective 4-Cl substitution in pyrimidine by the NH2 moiety is preferred.
Nevertheless, computational evaluations were investigated as a further confirmation. To determine
which sites are acting as nucleophile and electrophile on both reactants, condensed-Fukui indices
were applied and calculated. Thus, geometrically optimized structures of (1) and (2) at M06-2X/
def2SVP level58 were considered for Fukui index computation with neutral, þ1 and �1 net
charged molecules to obtain the data needed for further considerations. The natural population
analysis (NPA) charges were extracted to calculate condensed-Fukui indices via UCL-FUKUI
v2.1.59 All other calculations were performed with Gaussian 09 package.60 Figure 2 depicts the
optimized structure of (1) and (2) and Table 1 represents Fukui-indices in order to determine
more susceptible Carbons/Nitrogens as electro/nucleophile sites, respectively.

According to the data derived from Table 1, C2 and C3 in compound (2) showed fþ values of
�0.0089 and 0.1431, respectively. These data confirmed that C3 is more electrophile than C2. In
the other hand, more positive Dual-Descriptor amounts indicate more electrophilic moiety on the
matter of interest site and negative values of such parameter reflect the nucleophilic sites. This

Scheme 1. Synthesis of 5-bromo-2-chloro-6-methyl-N-(5-(methylthio)-4H-1,2,4-triazol-3-yl)pyrimidin-4-amine.

Figure 2. Optimized geometry of (1) and (2) precursors at M06-2X/def2SVP.

Table 1. NPA and condensed-Fukui indices of (1) and (2).

N9PA charges Indices

Neutral Anion Cation f- fþ f0 Dual-descriptor

C2 0.4697 0.4786 0.5133 0.0437 �0.0089 0.0174 �0.0347
C3 0.2524 0.1093 0.2745 0.0221 0.1431 0.0826 0.121
N5 �0.8581 �0.905 �0.7875 0.0706 0.0469 0.0587 �0.0237
N14 �0.6401 �0.6793 �0.6045 0.0357 0.0392 0.0374 0.0035
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could be seen in N5 of compound (2) against N14 of it. Therefore, it could be deduced that sug-
gested structure of compound (3) was approved and its regiochemistry was correctly guessed.

In continuation, when compound (3) stirred with pyrrolidine in boiling EtOH, the 2-Cl of
pyrimidine heterocyclic core was substituted to yield 5-bromo-6-methyl-N-(5-(methylthio)-4H-
1,2,4-triazol-3-yl)-2-(pyrrolidin-1-yl)pyrimidin-4-amine (4). (Scheme 2)

Eventually, the treatment of compound (4) with some boiling alcohols in the presence of KOH
generated various derivatives (5a–e) of 2-alkoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]tria-
zolo[5,1-f]purine system with two possible tautomeric structure of A and B. (Scheme 3).

To the best of our knowledge, the conclusive evidence for the confirmation of the predicted
tautomerism of final tricyclic products can be provided based on thermochemistry criteria.
Hence, two possible tautomer of each derivative was optimized at M06-2X/def2SVP and showed
in Figure 3. Frequency calculation revealed that the optimized molecules did not show an imagin-
ary frequency and located in their true minima on the respective potential energy surface. The
data derived from DFT calculations are corresponded to Gibbs free energy of A tautomers which
are more stable than B structures in the range of 7.6–8.7 kcal mol�1. An initiative searching for a
transition state structure (TSS) showed DG� � 73–74 kcal mol�1 among the pathway of A to B
structure that is deduced to be accordingly high. Therefore, the data obtained from the computa-
tional study supports that it can be plausible to consider the structure A as more preferable
thermodynamically tautomeric form in comparison with the structure B.

Therefore, it can be rationalized that the reaction has most likely proceeded through two suc-
cessive SNAr mechanisms via intramolecular cyclocondensation and formation of a non-isolated
adduct intermediate that immediately underwent an intermolecular aromatic nucleophilic substi-
tution reaction on triazole moiety accompanied by the elimination of HBr and MeSH in each
nucleophilic attack on compound (4) as depicted in Figure 4.

Moreover, the satisfactory elemental analyses and the spectral data of compounds (5a–g) are
in agreement with the assigned structures. For example, the 1H NMR spectrum of compound
(5d) showed a singlet signal at 2.46 ppm due to the three protons of the methyl substituted on

Scheme 2. Synthesis of 5-bromo-6-methyl-N-(5-(methylthio)-4H-1,2,4-triazol-3-yl)-2-(pyrrolidin-1-yl)pyrimidin-4-amine.

Scheme 3. Synthesis of 2-alkoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine derivatives.
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pyrimidine ring and a broad multiplet peak around d 1.90–1.94 together with a triplet signal at
3.80 ppm belongs to the methylene groups of the pyrrolidine moiety. Also, the iso-propoxy signals
were observed at d 1.36 ppm (doublet, 3J¼ 6.0Hz) and d 5.10–5.22 ppm (septet, 3J¼ 6.0Hz) due

Figure 3. Geometrically optimized tautomerism structures of final products (A and B).
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to six protons of two equivalent CH3 and the single proton of OCH moieties, respectively. It is
noteworthy to mention that the NH signal did not detected in the 1H NMR spectrum. By assign-
ing signal of OCH at d 69.5 ppm as the most deshielded aliphatic carbon, the 13C NMR spectrum
was divided into upfield with other four resolved aliphatic signals at d¼ 22.0, 25.7, 25.8, and
50.3 ppm and downfield with six distinct aromatic signals at d¼ 94.2, 95.9, 159.9, 161.8, 162.4,
and 167.0 ppm. The mass spectrum of (5d) showed a molecular ion peak at m/z 310 consistent
with the molecular formula of C15H20N6O.

Conclusion

In summary, we have accomplished the synthesis of diversely functionalized [1,2,4]triazolo[5,1-
f]purines employing an efficient and simple procedure. This synthetic approach has been started
from the reaction of 5-amino-3-(methylthio)-1H-1,2,4-triazole (1) with 5-bromo-2,4-dichloro-6-
methylpyrimidine (2) in Et3N to give 5-bromo-2-chloro-6-methyl-N-(3-(methylthio)-1H-1,2,4-tri-
azol-5-yl)pyrimidin-4-amine (3) which were subsequently underwent SNAr reaction with pyrroli-
dine in boiling EtOH to yield quantitatively the corresponding pyrrolidine-substituted compound
(4). Further reaction of the latter compound with different alcohols in the presence of KOH
under reflux condition was resulted in cyclization and synthesis of various derivatives (5a–g) con-
taining novel [1,2,4]triazolo[5,1-f]purine fused heterocyclic core.

Experimental

Melting points were recorded on an Electro thermal type 9200 melting point apparatus. The IR
spectra were obtained on Avatar 370 FT-IR Thermo Nicolet instrument and only noteworthy
absorptions are listed. The 1H NMR (300MHz) and the 13C NMR (75MHz) spectra were
recorded on a Bruker Avance-III 300 NMR Fourier transformer spectrometer. The mass spectra
were scanned on a Varian Mat CH-7 at 70 eV. Elemental analyses were performed on a Thermo
Finnigan Flash EA 1112 microanalyzer.

Synthesis of 5-bromo-2-chloro-6-methyl-N-(5-(methylthio)-4H-1,2,4-triazol-3-yl)pyrimidin-
4-amine (3): To a mixture of compound (1) (6.5mmol, 0.85 g) and compound (2) (6.5mmol,
1.57 g), the excess amount of Et3N (2mL) was added and the mixture was heated at 80 �C for
24 h. After the completion of the reaction, the resulting pasty precipitate was washed with acetone
(2� 10mL) and filtered off. Then the resulting solid was washed with petroleum ether
(2� 10mL) and water (2� 20mL) to remove the impurities.

Figure 4. Plausible mechanism for synthesis of compounds (5a–g).
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Yellow powder, yield: 83%, mp: 180–182 �C, 1H NMR (DMSO-d6): d 2.52 (s, 3H, pyrimidine-
CH3), 2.53 (s, 3H, SCH3), 10.58 (s, 1H, NH, D2O-exchangable) ppm. 13C NMR (DMSO-d6): d
13.7, 26.6, 103.2, 151.9, 157.3, 158.4, 161.6, 172.4 ppm. IR (KBr disc): � 3373 (NH), 3092, 1644,
1490, 1430, 1408, 1279, 991 (C–Cl), 744 (C–Br) cm�1. MS (m/z) ¼ 336 [Mþ], 287 [Mþ – SMe],
255 [Mþ – Br], 208 [Mþ – SMe, Br]. Anal. Calcd. for C8H8BrClN6S (%): C, 28.63; H, 2.40; N,
25.04; S, 9.55. Found: C, 28.60; H, 2.38; N, 25.03; S, 9.51.

Synthesis of 5-bromo-6-methyl-N-(5-(methylthio)-4H-1,2,4-triazol-3-yl)-2-(pyrrolidin-1-
yl)pyrimidin-4-amine (4): A mixture of compound (3) (3mmol, 1.008 g) and excess amount of
pyrrolidine (12mmol, 1mL) in EtOH (15mL) was refluxed for 18 h. After the completion of the
reaction, the solvent was removed by filtration. The resulting solid was then washed with water
(2� 20mL), filtered off and recrystallized from ethanol.

Milky powder, yield: 78%, mp: 231–233 �C, 1H NMR (CDCl3): d 1.89–1.93 (m, 4H, 2CH2),
2.51 (s, 3H, pyrimidine-CH3), 2.54 (s, 3H, SCH3), 3.79 (t, 4H, J¼ 7.5Hz, 2NCH2), 6.57 (s, 1H,
NH, D2O-exchangable) ppm. 13C NMR (CDCl3): d 13.9, 25.7, 26.2, 50.8, 97.5, 152.6, 156.5, 158.7,
161.0, 166.7 ppm. IR (KBr disc): � 3382, 2926, 1647, 1577, 1472, 1433, 1394, 1280, 1082, 765
(C–Br) cm�1. MS (m/z) ¼ 370 [Mþ], 321 [Mþ – SMe], 252 [Mþ – pyrrolidine, SMe]. Anal.
Calcd. for C12H16BrN7S (%): C, 38.93; H, 4.36; N, 26.48; S, 8.66. Found: C, 38.91; H, 4.33; N,
26.47; S, 8.62.

Synthesis of 2-alkoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine (5a-g);
general procedure: To a mixture of compound 4 (0.51mmol, 0.188 g) and KOH (5mmol, 0.28 g),
the excess amount of the appropriate alcohol (5–7mL) was added and the mixture was heated
under reflux for 18–21 h. After the completion of the reaction, the mixture was cooled, poured
into an ice/water bath and neutralized with aqueous 5% HCl solution. When a precipitate
appeared, it was filtered, washed with water (2� 10mL), and dried at room temperature until
constant weight. When a viscous mixture appeared, the solution was extracted with chloroform
(3� 10mL). The organic layer was dried with anhydrous NaSO4, filtered, and evaporated. The
isolated solid was collected without further purification.

2-Methoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine (5a): (The alcohol is
CH3OH). White powder, yield: 68%, mp: 47–49 �C, 1H NMR (CDCl3): d 1.90–1.95 (m, 4H,
2CH2), 2.44 (s, 3H, pyrimidine-CH3), 3.57 (s, 3H, OCH3), 3.88 (t, 4H, J¼ 7.5Hz, 2NCH2), 13.22
(s, 1H, NH, D2O-exchangable) ppm. 13C NMR (CDCl3): d 19.9, 24.6, 49.8, 85.7, 128.0, 144.1,
153.2, 156.8, 157.0, 159.7 ppm. IR (KBr disc): � 2966, 2877, 2819, 1648, 1597, 1478, 1401,
1339 cm�1. MS (m/z) ¼ 272 [Mþ], 242 [Mþ – OMe], 203 [Mþ – pyrrolidine]. Anal. Calcd. for
C13H16N6O (%): C, 57.34; H, 5.92; N, 30.86. Found: C, 57.33; H, 5.90; N, 30.83.

2-Ethoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine (5b): (The alcohol is
C2H5OH). White powder, yield: 73%, mp: 54–56 �C, 1H NMR (CDCl3): d 1.29 (t, 3H, J¼ 6.0Hz,
CH3), 1.80–1.85 (m, 4H, 2CH2), 2.37 (s, 3H, pyrimidine-CH3), 3.71 (t, 4H, J¼ 6.0Hz, 2NCH2),
4.22 (q, 2H, J¼ 6.0Hz, OCH2) ppm. 13C NMR (CDCl3): d 14.6, 25.6, 25.7, 50.3, 62.8, 94.5, 96.0,
159.9, 160.1, 162.2, 166.8 ppm. IR (KBr disc): � 2974, 2924, 2873, 1569, 1523, 13474, 1331, 1234,
1077, 777 cm�1. MS (m/z) ¼ 286 [Mþ], 242 [Mþ – OEt], 217 [Mþ – pyrrolidine]. Anal. Calcd.
for C14H18N6O (%): C, 58.73; H, 6.34; N, 29.35. Found: C, 58.70; H, 6.32; N, 29.34.

8-Methyl-2-propoxy-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine (5c): (The alcohol is
n-C3H7OH). Yellow powder, yield: 89%, mp: 95–97 �C, 1H NMR (CDCl3): d 1.02 (t, 3H,
J¼ 7.5Hz, CH3), 1.74–1.86 (m, 2H, CH2), 1.91–1.95 (m, 4H, 2CH2), 2.47 (s, 3H, pyrimidine-
CH3), 3.81 (t, 4H, J¼ 6.0Hz, 2NCH2), 4.21 (t, 2H, J¼ 7.5Hz, OCH2) ppm. 13C NMR (CDCl3): d
10.6, 22.3, 25.7, 25.8, 50.3, 68.7, 94.4, 96.0, 159.9, 162.4, 162.7, 166.9 ppm. IR (KBr disc): � 2966,
2876, 1563, 1527, 1326 cm�1. MS (m/z) ¼ 300 [Mþ], 258 [Mþ– Pr], 242 [Mþ – OPr], 227 [Mþ –
pyrrolidine, Me]. Anal. Calcd. for C15H20N6O (%): C, 59.98; H, 6.71; N, 27.98. Found: C, 59.96;
H, 6.70; N, 27.96.
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2-Isopropoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine (5d): (The alcohol
is iso-C3H7OH). Yellow powder, yield: 75%, mp: 42–44 �C, 1H NMR (CDCl3): d 1.36 (d, 6H,
J¼ 6.0Hz, 2CH3), 1.90–1.94 (m, 4H, 2CH2), 2.46 (s, 3H, pyrimidine-CH3), 3.80 (t, 4H, J¼ 6.0Hz,
2NCH2), 5.10–5.22 (m, 1H, OCH) ppm. 13C NMR (CDCl3): d 22.0, 25.7, 25.8, 50.3, 69.5, 94.2,
95.9, 159.9, 161.8, 162.4, 167.0 ppm. IR (KBr disc): � 2972, 2920, 2871, 1562, 1387, 1316, 1233,
1115 cm�1. MS (m/z) ¼ 300 [Mþ], 242 [Mþ – OPr], 227 [Mþ – pyrrolidine, Me], 202 [Mþ – pyr-
rolidine, 2Me]. Anal. Calcd. for C15H20N6O (%): C, 59.98; H, 6.71; N, 27.98. Found: C, 59.97; H,
6.69; N, 27.97.

2-Butoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine (5e): (The alcohol is n-
C4H9OH). Oily liquid, yield: 69%, 1H NMR (CDCl3): d 0.94 (t, 3H, J¼ 6.0Hz, CH3), 1.40–1.52
(m, 2H, CH2), 1.69–1.78 (m, 2H, CH2), 1.88–1.93 (m, 4H, 2CH2), 2.44 (s, 3H, pyrimidine-CH3),
3.79 (t, 4H, J¼ 7.5Hz, 2NCH2), 4.24 (t, 2H, J¼ 7.5Hz, OCH2) ppm. 13C NMR (CDCl3): d 12.8,
18.2, 18.4, 24.7, 30.0, 49.2, 65.8, 93.4, 94.9, 158.8, 161.0, 161.3, 165.8 ppm. IR (KBr disc): � 2958,
2872, 1565, 1457, 1403, 1331, 1078, 1022, 779 cm�1. MS (m/z) ¼ 314 [Mþ], 300 [Mþ – Me], 258
[Mþ – Bu], 242 [Mþ – OBu], 230 [Mþ – pyrrolidine, Me], 158 [Mþ – pyrrolidine, Me, OBu].
Anal. Calcd. for C16H22N6O (%): C, 61.13; H, 7.05; N, 26.73. Found: C, 61.12; H, 7.04; N, 26.71.

2-Isobutoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine (5f): (The alcohol is
iso-C4H9OH). Oily liquid, yield: 73%, 1H NMR (CDCl3): d 0.99 (d, 6H, J¼ 6.0Hz, 2CH3),
1.88–1.93 (m, 4H, 2CH2), 2.02–2.15 (m, 1H, CH), 2.44 (s, 3H, pyrimidine-CH3), 3.79 (t, 4H,
J¼ 7.5Hz, 2NCH2), 4.01 (d, 2H, J¼ 9.0Hz, OCH2) ppm. 13C NMR (CDCl3): d 18.3, 18.4, 24.7,
26.9, 46.2, 72.4, 93.3, 94.8, 158.8, 161.4, 165.1, 165.8 ppm. IR (KBr disc): � 2958, 2873, 1597,
1564, 1456, 1318, 1328, 779 cm�1. MS (m/z) ¼ 314 [Mþ], 258 [Mþ – Bu], 230 [Mþ – pyrrolidine,
Me], 202 [Mþ – pyrrolidine, 3Me]. Anal. Calcd. for C16H22N6O (%): C, 61.13; H, 7.05; N, 26.73.
Found: C, 61.11; H, 7.03; N, 26.70.

N-Ethyl-2-((8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purin-2-yl)oxy)ethan-1-
amine (5g): (The alcohol is C2H5NH(CH2)2OH). Oily liquid, yield: 70%, 1H NMR (CDCl3): d
1.07 (t, 3H, J¼ 6.0Hz, CH3), 1.87–1.92 (m, 4H, 2CH2), 2.37 (s, 3H, pyrimidine-CH3), 3.58 (t, 2H,
J¼ 6.0Hz, NHCH2CH3), 3.64 (t, 2H, J¼ 6.0Hz, OCH2CH2NH), 3.74 (t, 4H, J¼ 7.5Hz, 2NCH2),
3.83 (t, 2H, J¼ 6.0Hz, OCH2), 5.65 (s, 1H, NH, D2O-exchangable) ppm. 13C NMR (CDCl3): d
13.1, 25.5, 25.7, 44.2, 46.2, 50.1, 64.5, 90.5, 92.1, 159.3, 161.0, 161.6, 164.5 ppm. IR (KBr disc): �
3366 (NH), 2967, 2933, 2868 (CH, aliphatic) 1586, 1545, 1477, 1079, 1048, 775 cm�1. MS (m/z) ¼
329 [Mþ], 260 [Mþ – pyrrolidine, Me], 242 [Mþ – OEt-NEt], 217 [Mþ – pyrrolidine, EtNH].
Anal. Calcd. for C16H23N7O (%): C, 58.34; H, 7.04; N, 29.77. Found: C, 58.32; H, 7.03; N, 29.75.
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