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Abstract
In recent years, surface water quality has decreased due to the increasing demand for water and increasing the use of fer-
tilizers, pesticides and the discharge of domestic and municipal wastewater to surface water. The purpose of this research 
is a comparison of the efficiency of different time-series models in modeling and prediction of monthly water quality 
performance in Harmaleh area of Khuzestan in the southwest of Iran. Water quality parameters including Ca, HCO3, SO4, 
Ec, pH, Mg, Cl, Na, and TDS for the period of 2001 to 2014 were evaluated. Five time-series models (AR, MA, ARMA, 
ARIMA, and SARIMA) with 12 different structures were assessed by R software. First, the data were normalized using 
Kolmogorov–Smirnov test. Also, the adequacy of data was tested by Hurst’s coefficient. The Hurst coefficient was > 0.5 
for all investigated parameters, which indicated suitable length of the time series for the modeling. As the components of 
trend, jump, and seasonality are usually specific, modeling of them is not required, but modeling of stochastic components 
is of importance in water resources simulation and management. Therefore, using the R software, deterministic parts of the 
time series (e.g., trend, jump, and seasonality) were eliminated and non-deterministic component (e.g., randomness) was 
simulated (from 2011 to 2014), and finally, the data were predicted (from 2015 to 2018) based on the optimized models. 
The optimized models were selected based on auto-correlation function (ACF) and partial auto-correlation function (PACF) 
as well as the use of Akaike information criteria (AIC) and coefficient of determination. Results showed that in 66% of 
data ARMA [with the same rate of ARMA (1, 2), ARMA (2, 1), and ARMA (2, 2)], in 22% of data AR (1), and in 11% of 
data ARIMA (1, 1, 2) models presented the highest efficiency in monthly water quality simulation. Finally, each quality 
parameter was also predicted for the next 4 years (2015–2018) based on the selected optimized models. Results indicated 
that the values of SO4 and pH, respectively, showed the highest and lowest correlation with the related observations with a 
coefficient of determination of 0.54 and 0.19. Overall, modeling of water quality using stochastic models could save time 
and costs, especially when time series of parameters are long and adequate.

Keywords  Water quality · Stochastic models · Simulation · Prediction

Introduction

There is water all around us. There are vast oceans, large 
lakes, big rivers, small ponds, and tiny streams. All of 
these matter to us and other creatures on this planet. Our 
river systems connect to make watersheds. Little streams 
feed large rivers, which can then feed lakes or oceans. The 
contamination of the smallest stream will affect everything 
downstream. We often get our drinking water from lakes 
and rivers. Although we treat our drinking water, we should 
protect it at its initial source: up to the tiniest stream. Lots of 
other animals and plants depend upon the watersheds which 
we inhabit. Cleaner water means a healthier food chain (from 
bugs to fish, to birds, to people), and poor water quality 
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tends to affect disadvantaged communities disproportion-
ately (Mirzavandet al. 2012).

Water is essential to human life and the health of the 
environment. As a valuable natural resource, it comprises 
marine, estuarine, freshwater (river and lakes), and ground-
water environments that stretch across coastal and inland 
areas. Water has two dimensions that are closely linked: 
quantity and quality. Water quality is commonly defined by 
its physical, chemical, biological, and esthetic (appearance 
and smell) characteristics. A healthy environment is one in 
which the water quality supports a rich and varied commu-
nity of organisms and protects public health. Water quality 
in a body of water influences the way in which communities 
use the water for activities such as drinking, swimming, or 
commercial purposes (Mirzavand et al. 2020a, b).

In the twenty-first century, a decrease in water qual-
ity is one of the major concerns in the world (Perrin et al. 
2014). Surface water quality is a significant concern in the 
world at all levels of public and decision makers (He et al. 
2015). Consequently, efficient management of water qual-
ity becomes very crucial (Singh Patel and Ramachandran. 
2015). Variations in water quality and quantity within a 
regional or local basin can be attributed directly or indirectly 
to humans activities, e.g., climate change (Delpla et al. 2009; 
Piao et al. 2010; Solheim et al. 2010; Whitehead et al. 2009), 
land-use type (Tong and Chen. 2002; Wan et al. 2014), and 
industrial or agricultural activities (Carr and Neary 2006; 
Dabrowski et al. 2009). Temporal and spatial variations of 
surface water quality have been evaluated by many research-
ers (Antonopoulos et al. 2001; Luo et al. 2011; Pejman et al. 
2009; Singh et al. 2004). Recognizing, modeling, and fore-
casting of surface water quality which enable long-term 
planning are essential for more efficient utilization of water 
(Mirzavand and Ghazavi 2015).

Many methods such as ANN, fuzzy, ANFIS, and other 
techniques have been used for water quality modeling 
(Nayak et al. 2004; Partal and Kisi 2007; Debele et al. 
2009; Yeniguna and Ecer 2012; Boskidis et al. 2012; Dök-
men and Aslan 2013). When we have just one series of 
data (dependent variable), stochastic time-series theory is 
usually applied to predict hydrological parameters (Bras 
and Rodriguez Iturbe 1985; Brockwell and Davis 2010; 
Lin and Lee 1992). Stochastic time-series models are 
accessible and useful tools for medium-range forecasting 
and for generating synthetic data (Adhikary et al. 2012). 
Time-series method can be used to evaluate the temporal 
variation of surface water quality. A time-series model is, 
in fact, an empirical model for stochastically simulating 
and forecasting the behavior of uncertain hydrological sys-
tems (Kim et al. 2005). A number of stochastic time-series 
models such as the Markov, Box–Jenkins (BJ) seasonal 
auto-regressive integrated moving average (ARIMA), 
depersonalized auto-regressive moving average (ARMA) 

(Mirzavand and Ghazavi 2015; Dasturani et al. 2016), 
periodic auto-regressive (PAR), transfer function noise 
(TFN), and periodic transfer function noise (PTFN), are 
usually used in this regard (Brockwell and Davis 2010; 
Box et al. 1994; Hipel and Mcleod 1994). The selection 
of an appropriate method for modeling a particular prob-
lem depends on factors such as the number of series to be 
modeled, required accuracy level, modeling costs, ease of 
use of the models, and ease of interpretation of the results 
(Mondal and Wasimi 2007).

The main aim of this study is to evaluate the perfor-
mances of time-series models (AR, MA, ARMA, ARIMA, 
and SARIMA) for surface water quality forecasting in sem-
iarid environment of Harmaleh area of Khuzestan in the 
southwest of Iran. The finding of this research can help to 
predict the quality of waters for different uses with accept-
able accuracy using appropriate models.

Materials and methods

The study area

The study area in this research is the Harmaleh area located 
in Khuzestan province of Iran between longitude 47° 42′ 50° 
E and latitude 29° 56′ 33° N (Fig. 1). Khuzestan province 
with the area of 64,057 km2 in the southwest of Iran has 
been surrounded by the Zagros Mountains from its north 
and east directions. Altitude varies from zero to more than 
4000 m a.s.l, and it is one of the wealthiest provinces of 
Iran in water resources because five large rivers originated 
from Zagros Mountains irrigate Khuzestan plain and then 
are directly or indirectly drained to the Persian Gulf. The 
climate condition in this province is mostly semi-desert 
although due to variations of altitude, temperature, and pre-
cipitation in north, south, and west parts of it, warm as well 
as moderate climate conditions are seen different parts of 
this province. Annual average rainfall in southwest region 
is about 150 mm, in central parts is about 200 mm, and in 
north parts is about 300 mm, and toward the higher elevation 
of northern east parts, annual average precipitation reaches 
the amount of 1000 mm. The temperature is relatively high, 
and the monthly mean in July gets more than 30 °C. Due 
to the climatic condition and soil diversity, some parts of 
Khuzestanis are covered with relatively spars forestlands 
with shrubs, small trees, and trees as well as rangelands. The 
geology formation of Harmaleh is conglomerate of Bakh-
tiari Formation; Quaternary deposits and gray thick-bedded 
to massive Orbitolina limestone were observed in the river 
direction. The main land uses in Harmaleh are farmland 
(mainly wheat in winter and spring and corn and vegetables 
in summer and autumn).
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Data collection and analysis

In order to assess the stochastic models ability in water 
quality prediction, data collected and analyzed by Min-
istry of Energy of Iran were used. The parameters of Ca, 
HCO3, SO4, Ec, pH, Mg, Cl, Na, and TDS from 2001 to 
2014 were used. During 2001 to 2014, surface water sam-
ples from Harmaleh station were collected (Fig. 1 and 
Table 1). Before sampling, the bottles were rinsed with 
distilled water. Water samples were collected in 250-mL 
PVC bottles for anions and cations analysis. The electri-
cal conductivity (EC) and pH values were measured in 
the field by portable HACH-150 and Metrohm instrument. 

After sampling, the cations samples were filtered with a 
Millipore filter of 0.45 µm and acidified to pH < 2 using 
pure HCl. Samples were stored at 4 °C and transferred 
to the Ministry of Energy of Iran Laboratory. The anions 
and cations were analyzed by ion chromatography (IC) 
and inductively coupled plasma mass spectrometry (ICP-
MS). In addition, CO3

2– and HCO3
– were measured by 

digital titration using 0.16 N sulfuric acid and phenol-
phthalein and bromocresol green-methyl red powder indi-
cators, respectively (Table 1). The computed charge bal-
ance error (Eq. 1) is within the acceptable range of ± 5% 
(Clark 2015).

Fig. 1   The study area of Har-
maleh in Khuzestan province 
located in southwestern Iran
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Table 1   Statistical 
characteristics of 
physicochemical parameters 
and major ion concentrations of 
Harmaleh station (concentration 
in mg/L)

Date Statistical 
characteris-
tics

pH Ec (μS/cm) TDS Na Ca Mg Cl ALK (HCO3) SO4

2001 Max 8.3 1494 1174 5.6 15 4.44 4.32 4.45 7.71
Min 7.6 550 375 1.5 6 1.7 1.4 2.26 2.22
Mean 8 995 678 3.24 10 2.81 2.81 3 4.32

2002 Max 8.5 1236 988 3.84 5.9 4.37 3.31 3.63 5.79
Min 7.5 536 351 1.3 3 1.17 1.24 2.1 1.17
Mean 8 829 563 2.65 3.92 2.33 2.41 2.96 3.10

2003 Max 8.2 1176 820 3.84 5.5 3.4 2.93 4.33 5.2
Min 7.3 515 338 1.3 2.91 0.86 1.1 3 0.84
Mean 7.88 821 560 2.63 3.94 2.29 2 3.48 3.22

2004 Max 8.2 1110 767 4 5.45 3 3.75 3.61 5.4
Min 7.7 610 390 1.45 3.5 0.99 1.51 2.33 1.2
Mean 8 804 549 2.59 4 1.90 2.43 3 2.95

2005 Max 8.3 1390 970 5.96 6.15 4 5.98 4 6.5
Min 7.6 569 386 1.21 2.15 0.56 1.06 1.54 1.2
Mean 8 946 673 2.95 4.23 2.51 2.81 3.10 3.79

2006 Max 8.6 1277 894 3.3 8.61 6.11 3.43 3.91 5.33
Min 7.4 341 243 1.2 1.24 0.24 1.3 1.14 1.4
Mean 7.88 859 550 2.38 3.90 2.39 2.49 3 2.90

2007 Max 9 1342 939 5.53 5.31 4 4.95 3.63 7.33
Min 7.4 440 242 0.94 3.14 1.32 1.45 2.56 0.82
Mean 7.9 843 565 2.74 3.80 2.56 2.57 3.10 3.29

2008 Max 8.3 1348 990 5.29 6 5.12 5 5.7 6.88
Min 6.8 898 494 2.15 2.72 0.90 2.94 1.99 0.99
Mean 7.49 1151 756 4.23 4.89 3.22 3.62 3.81 4.78

2009 Max 8.2 1673 1255 6.11 7.9 5.83 6.12 4.44 8.74
Min 7 883 600 2.94 2.94 2.05 2.74 2.78 2.69
Mean 7.62 1342 924 4.95 5.78 3.47 4.55 3.55 6.12

2010 Max 8.1 1758 1145 8.3 6.8 5.15 6.9 4 7.43
Min 7 657 420 2.12 2.9 1.25 2 1.89 1.47
Mean 7.83 1109 727 3.90 4.77 2.97 3.85 3.14 4.31

2011 Max 8 1449 1096 5.21 9.23 4.1 4.5 4.63 7
Min 7.5 869 560 2.93 3.36 1.36 2.94 3.11 2.2
Mean 7.71 1204 834 4 5.81 3 3.70 3.95 5

2012 Max 8.1 1644 1150 6.75 7.44 9.69 6.22 4.95 10
Min 7.4 520 338 1.18 2.54 1.55 1.13 2.41 2.6
Mean 7.77 1330 894 4.85 5.26 4.63 4.38 3.51 6.62

2013 Max 8 1587 1100 5.47 8.11 6.8 4.85 4.32 8.48
Min 7 1052 796 3.87 5 3 3.63 0.34 4.23
Mean 764 1334 960 4.78 6.30 4.04 4.18 3.60 6.55

2014 Max 8 1515 1100 5.47 7.4 4.38 4.5 4.3 8.44
Min 7.3 754 421 2 3.76 2 2.2 2.87 1.47
Mean 7.67 1232 854 4.29 5.70 3.45 3.73 3.81 5.69
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Methodology

Data pre‑processing

First, data adequacy test was performed using Horst’s test. 
The Horst coefficient equal to 0.5 shows the independent 
and normal time series. Also, since the coefficient was 
more than 0.5, the data had no problem with data length. 
The Horst coefficient can be calculated using Eq. (2).

where N is the number of data for each parameter and � is 
the standard deviation. For calculation of S+ and S−, the 
average of each parameter was minus from each data series 
and the cumulative series were plotted, and the maximum 
and minimum values were determined as S+ and S−, respec-
tively (Mirzavand and Ghazavi 2015).

After that, data were normalized using Kolmogo-
rov–Smirnov test (P value < 0.5). Then, N/4 of the data 
were selected as a testing part and remaining ones used for 
simulation and optimized model selection. Hence, using 
the R software, time series were decomposed into deter-
ministic components (jump, trend, and seasonality) and 
non-deterministic component (randomness). Then, mod-
eling was done based on the randomness component. After 
that, monthly simulation was done (from 2011 to 2014) for 
determining the optimized models. Finally, monthly pre-
diction was done (from 2015 to 2018) based on the opti-
mized models for different hydrogeochemical parameters.

Modeling

Generally, the models for time-series data can have differ-
ent forms and represent different non-deterministic pro-
cesses (Sokolnikov 2013). Most modeling of time series 
takes place based on a linear technique. For example, AR, 
MA, and ARMA models have linear base (Klose et al. 
2004). In this research, AR, MA, ARMA, ARIMA, and 
SARIMA models on 12 different structures based on trial 

(1)CBE = (%) =

∑

cat −
∑

an
∑

cat +
∑

an
× 100.

(2)K = ((Log(R∕∕(Log(N∕2))

R = S+ − S−

Sn =

n
∑

k=1

(

Xk − X
)

,

and error were examined and used to assess the ability of 
these models in monthly water quality indicator prediction.

AR model  In a series where persistence is present, the 
event outcome of (t + 1)th period is dependent on the cur-
rent tth period magnitude and those preceding values; 
then for such a series, the observed sequence X1, X2, …, Xt 
is used to fit an AR model.

The auto-regressive model can be expressed as Eq. (3):

where ∅1 , ∅2 , …, �p are model parameters and coefficients 
and at is the random component of the data that follows a 
normal distribution with mean, p is the desired delay and z, 
is desired time series data (Mirzavand and Ghazavi 2015).

MA model  Moving average models are simple covariance 
stationary and ergodic models that can be used for a wide 
variety of auto-correlation patterns (Mirzavand and Ghazavi 
2015).

Moving average (MA) model can be expressed as Eq. (4):

where �1 , �2 , …, �q are model parameters and Q coefficient 
model and at is the random component of the data that fol-
lows a normal distribution with mean (Hannan 1971).

ARMA model  The ARMA model is a synthesis of AR and 
MA models. ARMA model forms a type of linear models 
which are widely applicable and parsimonious in parame-
terization. ARMA (p, q) model can be expressed as Eq. (5):

where δ is the stationary part of the ARMA model, �i points 
out the ith autoregressive coefficient, �j is the jth moving 
average coefficient, it shows the error part at period t, and 
Zt refers to the value of water quality indicator observed or 
predicted at time period t (Erdem and Shi 2011; Behnia and 
Rezaeian 2015).

ARIMA and  SARIMA models  Auto-regressive integrated 
moving average (ARIMA) models are one of the well-known 
linear models for time-series modeling and prediction. 
ARIMA models have been originated from the synthesis of 
AR and MA models. ARIMA is used to model time-series 
data behavior and to make predictions (Shirmohammadi 
et al. 2013). ARIMA modeling uses correlational methods 
and could be used to model arrays that may not be observ-
able in plotted data (Box et al. 1994). In ARIMA, the future 

(3)zt = �1zt−1 + �2zt−2 +⋯ + �pzt−p + at,

(4)Zt = � +

p
∑

i=1

�izt−1 +

q
∑

j=1

�jet−j + et

(5)Zt = � +

p
∑

i=1

�izt−1 +

q
∑

j=1

�jet−j + et,
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amount of a parameter is assumed to be a linear function of 
past observations and random errors (Behnia and Rezaeian 
2015). A SARIMA model can be explained as ARIMA (p, 
d, q) (P, D, Q)s, where (p, d, q) is the non-seasonal com-
ponent of the model and (P, D, Q)s is the seasonal compo-
nent of the model in which p is the order of non-seasonal 
auto-regression, d is the number of regular differencing, q is 
the order of non-seasonal moving average, P is the order of 
seasonal auto-regression, D is the number of seasonal dif-
ferencing, Q is the order of sesonalal moving average, and s 
is the length of season (Faruk 2010).

Model selection

To determine the best model, partial auto-correlation func-
tion (PACF) and auto-correlation function (ACF) are usually 
used in most of the carried out researches. But, to improve 
the model selection accuracy, Akaike information criteria 
(AIC) and Coefficient of determination (R2) have also been 
used in this research in addition to PACF and ACF.

AIC and R2 can be expressed as Eqs. (6) and (7) (Hu 
2007):

(6)AIC(k) = nln(MSE) + 2k

(7)R2 =

�

∑n

i=1

�

qi − q
�

�

�qi − q̂
��2

∑n

i=1

�

qi − q
�2 ∑n

i=1

�

�qi − q̂
�2

where n is the number of data points (which used for cali-
bration), and k is the number of free parameters used in the 
modeling process. MSE stands for a mean square error. qi 
and q̂i , are observed value, and the estimated values and 
q̂ and q are the estimated mean values and computational 
model outputs respectively. Typically, the desired model 
gives higher R2 or the lowest value of AIC. Also, the param-
eters of the selected model should not exceed from + 1 or 
− 1. The autocorrelation statistics and corresponding 95% 
confidence bands from lag-0 to lag-20 were estimated for 
the surface water quality time series (for example for TDS 
is shown in Fig. 2). For the surface water quality, the par-
tial autocorrelation function (PACF) indicated significant 
correlation up to lag-2 for this time series within the confi-
dence limits, and auto-correlation function (ACF) decreases 
exponentially.

Results and discussion

Table 2 shows the values of R2 and AIC performance criteria 
for the results presented by different stochastic models for 
prediction of water quality indicators. Quality of the results 
given by different stochastic models against the observed 
values is shown in Figs. 3, 4, 5, 6, 7, 8, 9, 10 and 11 for the 
various hydrogeochemical parameters.         

As given in Table 2 and also Fig. 3, models have shown 
different behaviors in predicting Ca. The values of R2 are 
different from 0.611 for the outputs of ARMA (2, 1) and 
ARMA (2, 2) to 0.516 for the SARIMA models as the 

Fig.2   a Auto-correlation and b partial auto-correlation functions of the monthly data of TDS
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maximum and minimum values, respectively. The values of 
AIC also vary from 260.16 to 305.8 for the results produced 
by ARMA (2, 2) and ARIMA (1, 2, 1) models, respectively. 
Moreover, based on Fig. 3, in the prediction of Ca, results of 
different models are almost near to each other, but not close 
enough to the observed values, especially in the months 
when the maximum and minimum values (extreme values) 
occur. To sum up, the best model for simulation and predic-
tion of Ca is AR (1) with R2 equal to 0.60.

In the prediction of pH, the results presented by most 
of the used models are relatively good and almost close 

to the observed values and also close to each other. How-
ever, the results produced by SARIMA models are differ-
ent from those presented by other models and even weaker 
in accuracy compared to the related observations. Figure 4 
clearly shows this condition. Pursuant to Table 2, the opti-
mized model for simulation and prediction of pH varia-
tions is ARMA (2, 2) with R2 equal to 0.46. For example, 
the stochastic models could not do good simulation for 
pH variation.

For prediction of TDS, the outputs of all models are 
quite close to each other and following almost the average 
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Fig. 3   Models prediction versus observed Ca data
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Fig. 4   Models prediction versus observed pH data
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line of TDS values all over the modeled period, and not 
able to predict fluctuations with acceptable accuracy 
(Fig. 5). Based on the results (Table 2), the best model for 
simulation and prediction of TDS variations is ARIMA 
(1, 1, 2) with R2 equal to 0.64. As shown in Fig. 5, the 
observed data showed sum jumps in which none of the 
models could not simulate this term.

As Fig. 6 indicates, in the prediction of HCO3, the behav-
iors of all models are almost similar. Where the monthly 
data of HCO3 are almost flat with small or no fluctuations, 
the predictions of all models are reliable. However, when it 
shows more fluctuations, the model’s prediction accuracy 
decreases.

In the prediction of SO4, as Fig. 7 shows the model’s 
performance is almost similar to the HCO3 prediction con-
dition, which means that models can present good predic-
tions for the data near the average values, but are not able to 
make acceptable predictions of the maximum and minimum 
points. However, the best model for simulation of SO4 is AR 
(1) with R2 equal to 0.73.

A similar statement can be made about the prediction of 
Mg, Na, Cl, and EC (Figs. 8, 9, 10, 11). Although the abil-
ity of different models in prediction of these parameters is 
more or less different in all of these, the performance of the 
models decreases in the prediction of maximum and mini-
mum values.
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Fig. 5   Models prediction versus observed TDS data
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Fig. 6   Models prediction versus observed HCO3 data
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According to the results, the water quality data had 
an ascending trend before removing deterministic com-
ponents of the data (e.g., for TDS parameter shown in 
Fig. 7). But these parameters have seasonal and random 
ingredients. So, at first, the seasonal and trend (determine 
components) were omitted, and the random component 
(stochastic component) was simulated and predicted for 
each parameter. Overall, ARMA was the best model for 
six parameters out of nine based on ACF and PACF. The 
Akaike criterion and the correlation coefficient were used 
to select more accurate simulation models. The obtained 
results from this research about the applicability of 

time-series models in prediction of water quality param-
eters are in line with studies carried out by Singh Par-
mar and Bhardwaj (2014) and TaheriTizro et al (2014). 
But in the type of the best selected models, the findings 
of the present study differ from those of Singh Parmar 
and Bhardwaj (2014) and TaheriTizro et al. (2014). The 
main reason for this incompatibility can be limited types 
of models used in those studies in comparison with this 
one and the differences between geological, anthropogenic 
activities, and climate conditions of the mentioned two 
studies and the present one which affect the statistical 
nature of data.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Time(month)

So
4(

)

AR(1) AR(2) MA(1) MA(2) ARMA(1,1)
ARMA(1,2) ARMA(2,1) ARMA(2,2) ARIMA(1,1,2) ARIMA(1,2,1)

SARIMA(1,1,0) SARIMA(1,1,1) Observated

Fig. 7   Models prediction versus observed SO4 data
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Fig. 8   Models prediction versus observed Mg data
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Fig. 9   Models prediction versus observed Na data
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Fig. 10   Models prediction versus observed Cl data
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Regarding the results produced by different models for 
different water quality parameters in this research, the best 
model for each parameter was selected based on Akaike 
information criteria (AIC) and coefficient of determination 
(R2), and then, the water quality parameters were predicted 
for the next period of 2015–2018 based on the best model 
for each parameter. Table 3 shows these monthly predic-
tion values.

Conclusions

In this research, it has been tried to simulate nine water 
quality parameters including Ca, HCO3, SO4, EC, pH, Mg, 
Cl, Na, and TDS using five time-series models (AR, MA, 
ARMA, ARIMA, and SARIMA) with 12 different struc-
tures for the time period of 2001–2014. The purpose is to 
evaluate and select the best model for prediction of the 

mentioned parameters in the future time periods. Time-
series R software was used to simulate the water quality 
parameters using monthly data (2001–2014). Time-series 
data have four components (trend component, seasonal 
ingredient, jump, and random component). In this study, 
the time series was decomposed, and the random element 
for each parameter was modeled. Five models with 12 dif-
ferent structures were examined. Overall, ARMA was the 
best model for six parameters out of nine based on ACF 
and PACF. To sum up, it can be concluded that the sim-
plicity of times-series models is an advantage to use these 
models for prediction purposes. However, this research 
showed that their results are generally satisfactory when 
the data range of variations is not too wide. In other word, 
the results of these models are acceptable when the data 
fluctuations are limited, as the predictions made by these 
models for maximum and minimum values in this research 
are relatively weak.
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Fig. 11   Models prediction versus observed Ec data
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Table 3   Predicted monthly values of water quality indices using the optimized models for the period of 2015–2018

Time year Ca Cl Ec HCO3 Mg Na pH SO4 TDS
AR(1) ARMA (2,1) ARMA (1,2) ARMA (2,1) ARMA (2,2) ARMA (1,2) ARMA (2,2) AR(1) ARIMA (1,1,2)

2015
 1 4.36 3.15 936.21 2.92 2.25 3.15 7.82 3.3 677.65
 2 4.06 2.71 840.44 2.53 2.04 3.05 8 3.73 652.56
 3 4.34 3.07 915.61 2.27 2.32 3.29 7.79 4.08 647.23
 4 5.12 3.54 1111.15 3.33 3.34 3.44 7.76 4.72 781.13
 5 5.94 3.93 1198.8 3.4 3.12 4.22 7.7 5.59 847.97
 6 5.56 4.03 1238.05 3.22 3.46 4.41 7.89 5.9 864.34
 7 4.93 3.96 1143.67 3.24 3.11 4.07 7.87 4.68 736.14
 8 4.63 4.33 1151.65 3.35 2.98 4.26 7.86 4.1 746.62
 9 5.29 3.97 1183.04 3.55 2.78 4.08 7.65 4.3 776.59
 10 4.94 3.91 1118.22 3.46 2.65 4.2 7.6 4.15 736.36
 11 4.94 3.94 1135.52 3.61 2.73 4.31 7.88 4.13 731.87
 12 4.81 3.76 1107.03 3.63 3.11 3.9 7.71 4.07 740.52

2016
 1 5.18 3.66 1143.36 3.9 2.87 3.81 7.72 3.99 758.59
 2 4.74 3.3 1067.62 3.44 2.68 3.66 7.74 4.34 738.53
 3 4.99 3.63 1116.34 3.01 3 3.88 7.7 4.93 752.86
 4 6.01 4.11 1340.74 4.01 4.11 4.23 7.63 6.13 933.84
 5 6.85 4.19 1385.04 4.08 3.87 4.72 7.69 6.93 985.56
 6 6.38 3.93 1334.31 3.91 3.74 4.52 7.77 6.65 954.26
 7 5.69 3.85 1212.11 3.94 3.25 4.16 7.79 5.18 811.72
 8 5.25 4.27 1204.33 4.02 3.16 4.3 7.75 4.47 802.53
 9 5.77 4.01 1229.98 4.1 2.92 4.17 7.62 4.57 821.04
 10 5.31 4.1 1181.09 3.86 2.82 4.4 7.56 4.46 787.11
 11 4.91 4.2 1211.82 3.82 3.38 4.54 7.89 4.66 795.2
 12 4.36 4.1 1195.69 3.59 4.16 4.26 7.75 4.84 812.48

2017
 1 4.88 4.17 1273.65 3.73 4.02 4.35 7.8 5.12 853.92
 2 4.67 4.05 1255.74 3.2 3.97 4.45 7.79 5.92 872.44
 3 4.87 4.51 1317.9 2.81 4.34 4.79 7.74 6.42 881.11
 4 5.59 4.8 1471.41 3.78 5.25 4.86 7.62 7.04 993.92
 5 6.28 4.84 1487.97 3.69 4.88 5.38 7.71 7.79 1020.56
 6 5.98 4.7 1498.28 3.5 5.03 5.45 7.82 8.15 1036.09
 7 5.48 4.6 1409.58 3.55 4.62 5.13 7.88 6.99 926.6
 8 5.23 4.89 1395 3.65 4.33 5.18 7.86 6.28 925.2
 9 5.93 4.44 1394.52 3.68 3.99 4.86 7.7 6.39 936.13
 10 5.44 4.36 1308.64 3.34 3.88 4.98 7.62 6.28 885.07
 11 5.4 4.32 1288.12 3.42 3.87 5.07 7.94 6.25 874.66
 12 5.41 4.07 1225.64 3.48 4.01 4.6 7.74 6.04 879.61

2018
 1 5.88 3.95 1260.61 3.77 3.67 4.55 7.78 5.95 902.46
 2 5.55 3.53 1185.82 3.25 3.39 4.38 7.79 6.41 888.86
 3 5.74 3.74 1211.78 2.78 3.62 4.46 7.74 6.81 883.11
 4 6.61 4.24 1422.82 3.8 4.68 4.82 7.6 7.75 1045.13
 5 7.48 4.58 1509.1 3.98 4.52 5.58 7.65 8.56 1122.72
 6 7.05 4.43 1493.53 3.86 4.57 5.43 7.71 8.38 1110.09
 7 6.3 4.2 1349.29 3.89 4 4.83 7.73 6.69 946.56
 8 5.68 4.39 1283.46 3.93 3.67 4.68 7.67 5.54 894.41
 9 5.93 3.87 1247.64 4.11 3.36 4.3 7.57 5.33 866.13
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