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Abstract In this paper, an adjustable robust optimization with a polyhedral un-
certainty set is used to deal with uncertain transportation cost in an uncapacitated
multiple allocation balanced hub location problem. Adjustable robust optimization
is modeled as two-stage or multi-stage problems in which decisions are determined
in two or multi separated stages. In two-stage robust optimization, first, the lo-
cation of hubs is determined in the absence of uncertain parameters, then the
second stage decision determined flows path in the presence of uncertainty. Two
new mathematical models are proposed for this problem with mixed-integer lin-
ear and non-linear structures. Benders decomposition algorithm with stronger cut
(Pareto-optimal cut) is used to solve proposed models. Adjustable robust models
and accelerated Benders decomposition algorithms are analyzed using well known
AP data set with different levels of uncertainty. Also a size reduction method is
introduced to solve medium and large instances with good solution quality and
shorter computation time. The numerical experiment shows the superiority of the
Pareto-optimal cut Benders decomposition algorithm comparing with a classic
one. Also, the mixed-integer non-linear model has better results in CPU time and
the gap in comparison with the linear integer one. Flow balancing affects hub
configuration with a decreasing number of hub facilities. Also by increasing the
uncertainty budget, more hubs are established and with increasing discount factor,
number of hub facilities are decreased.
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1 Introduction

Hub location is an important research area in location problems that received much
attention in recent decades. Transportation and telecommunication are important
applications for hub location problems such as public and air transportation and
delivery cargo system. This problem seeks to find the best location for establishing
hub facilities and determine the optimal pathway for sending commodities. In the
hub location problem, some facilities are considered as a connection point (hubs)
between each non-hub nodes. Hence, commodities are transmitted through one or
two hubs in this network. With the economy of scale property, the transportation
cost of the hub network is decreased. In other words, flows transportation through
direct paths between origin-destination nodes raises the cost, because the vehicle
that carries flows between origin-destination nodes may be empty on the return
path and imposes an extra cost to the network. A hub as a connection point makes
it possible to collect scattered flows and to send together or conversely. The firms
can reduce their distribution network costs by getting the correct decision for the
location of hub facilities in the network. According to this strategic decision, ir-
reparable aftereffects reduced with a good decision. Therefore, this decision affects
the performance of the system significantly.

Hub facilities manage commodities combinations according to their destina-
tions. The commodities are entered and collected to each established hubs from
each origin nodes. Commodities are transfer from origin to destination according
to the nearest path that reduce transportation cost, in other words, origin node
chose nearest hub and path to sending commodity. The large volume of commodi-
ties may be entered to a hub according to lack of capacity constraint for hubs.
The planning and managing of commodities become difficult with flows conges-
tion. Hence with balancing flow in hub facilities, this disadvantage is decreased. In
addition, with commodity flow balancing, some of the strategic and operational
planning and designs such as designing organizational charts, employing expert
human resources, using the same equipment, utilizing similar maintenance plan-
ning for hub equipment, making decisions in logistic planning, and research and
development planning can be done identically or similarly in hub facilities.

According to the real world, in hub location problem some parameters such
as demands, hub establishment cost, transportation cost, distance factors and so
on have an uncertain nature, so decide with the deterministic condition is not a
good idea. Decide with the deterministic condition may impose an extra cost in
the future with an incorrect decision because the value of parameters affects hub
facilities established. Although when considering the uncertainty, a decision may
need more budget compared to deterministic conditions, ignoring uncertainty in
the model may be more costly in the future. Different conditions, such as gov-
ernment policies, customers’ behavior, and shipping tariffs may be changed over
time. On the other hand, the company has to raise its services price to compensate
for imposed costs, which reduces customer satisfaction. Robust optimization and
stochastic programming are two approaches used to deal with uncertainty. The
probability distribution of uncertain parameters is known in stochastic program-
ming and an optimal solution is obtained by considering probability distribution
or several scenarios. Two-stage, multi-stage and chance constraints are different
ways that considered in stochastic programming. In the two-stage stochastic pro-
gramming, decisions are divided into two separate stages. Robust optimization
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is the other way to deal with uncertainty that uncertain parameters are defined
by an interval uncertainty or discrete scenarios. In adjustable robust optimization
approaches, first-stage decision variables are determined by focusing on the worst-
case of second-stage scenarios. Static and adjustable robust optimization are two
kinds of robust discrete optimization (Bertsimas et al. 2011). In Rstatic all deci-
sions are taken before revealing of uncertainty, while in the Radjustable proposed by
Ben-Tal et al. (2004) some decisions are taken after revealing of the uncertainty.
So the solution obtained by Radjustable maybe less conservatism in comparison
with Rstatic (Radjustable ≤ Rstatic).

The uncapacitated hub location problem with multiple allocation is formulate
in this paper with considering flows balancing. In this case, two new models are pro-
posed with mixed-integer linear and non-linear structures. Then, adjustable robust
optimization is applied to the proposed models to dealing with uncertain trans-
portation cost. Also classic and accelerated Benders decomposition algorithm are
used for solving adjustable robust models. Furthermore, a size reduction method
is introduced to solve medium and large instances with good quality and shorter
computation time.

The remainder of the paper is organized as follows: Section 2 pays attention to
the literature review of hub location problems and robust optimization, Section 3
introduces the mathematical models of balanced hub location problem, Section 4
introduces the adjustable robust optimization applied to the proposed models, Sec-
tions 5 and 6 introduces classic and accelerated Benders decomposition algorithms.
In Section 7, computational experiments are done for analyzing the performance
of accelerated Benders decomposition algorithm to solve proposed models, finally
Section 8 concludes the paper and suggests future studies.

2 Literature review

Goldman (1969) introduced the idea of hub location problem. Also the hub loca-
tion problem for air network background was proposed by O’Kelly (1986). O’kelly
(1987) proposed a mathematical model for a one-stop hub location problem. Then
Campbell (1994) introduced a model that the number of hubs is determined based
on hub establishment and transportation costs. Farahani et al. (2013) provided
a study about the solution method and application of the hub location problem
until 2012. Contreras et al. (2011) presented a hub location problem with unlim-
ited capacity for hubs and used two-stage stochastic programming to deal with
uncertain demands and transportation costs. They used the Benders decomposi-
tion algorithm augmented with a sample average approximation method to obtain
optimal solution considering of a proper number of scenarios. Alumur et al. (2012)
proposed a single and a multiple allocation hub location problems with uncertain
demands and hub establishment cost. They presented three formulations to deal
with the uncertainty. In the first model, hub establishment cost had an uncertain
nature and the objective was minimizing the worst-case regret over all scenar-
ios. The second model was formulated as two-stage stochastic programming with
uncertain demands, which Contreras et al. (2011) proved that the problem was
equivalent to the model with an expected value of demands. The third problem
was modeled as robust-stochastic with both uncertainties in demands and hub
establishment cost. Bertsimas et al. (2013) and Lorca et al. (2016) proposed a
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two-stage and a multistage robust model for the unit commitment problem, re-
spectively. Zeng and Zhao (2013) used adjustable robust optimization to deal with
uncertainty in a location transportation problem. They developed a decomposition
algorithm to generate new columns and rows in each iteration and decrease the
number of iterations and computational time.

Shahabi and Unnikrishnan (2014) developed a robust optimization for single
and multiple allocation hub location problems with uncertain demands. The value
of the uncertain parameter belongs to an ellipsoidal interval uncertainty. They pro-
posed a mixed-integer non-linear model and transformed it into a conic quadratic
problem with a relaxation strategy. They showed that more hubs are established
by the robust model comparing with the deterministic one. Ghaffari-Nasab et al.
(2015) introduced a robust optimization model for a capacitated single and multi-
ple allocation hub location problems with uncertain demands. Habibzadeh Boukani
et al. (2016) proposed a robust formulation for single and multiple allocation hub
location problems with uncertain hub establishment cost and capacity. They de-
fined several discrete scenarios and obtained the objective value for each scenario
to minimize the worst-case. Merakli and Yaman (2016) proposed a robust model
for an uncapacitated p-hab median problem with uncertain demands. Uncertain
demands were modeled in two different ways named as hose and hybrid models.
In the hose model, the only information about demands was the upper limit on
the total flow adjacent to each node, while the latter model comprised both lower
and upper limits on each origin/destination node. They used the Benders decom-
position algorithm for large-scale instances and analyzed the effect of uncertainty
on the model. Zetina et al. (2017) developed a model for an uncapacitated hub
location problem and used robust optimization to deal with uncertain demands
and transportation costs. The authors used the branch and cut algorithm for a
case of uncertain demands and transportation costs.

Merakli and Yaman (2017) presented a multiple allocation hub location prob-
lem with capacity constraint and hose demands uncertainty. The authors used
two kinds of Benders decomposition algorithm. Talbi and Todosijevi (2017) intro-
duced a robust optimization for an uncapacitated multiple allocation hub location
problems. They presented a new way to analyze the robustness of solution in the
presence of uncertainties and used a variable neighborhood search algorithm. de Sa
et al. (2018) proposed a model for a robust multiple allocation incomplete hub loca-
tion problems with uncertain demands and hub establishment cost. Furthermore,
Benders decomposition and hybrid heuristic approaches were used to solve large
scale instances. Tikani et al. (2018) proposed integrated hub location and revenue
management problem in the airline industry. Their models try to maximize the
revenue of transportation network and minimize hub establishment costs. Karimi
and Setak (2018) addressed flow shipment scheduling in the hub location-routing
problem in which the hub network is not fully interconnected. In their model,
the aim is to allocate each node to the established hub(s) and to schedule the
departure time from the nodes.

Ghaffarinasab (2018) developed p-hub median problem and used a robust op-
timization to deal with uncertain demands. Three different models were proposed:
hose, hybrid, and budget of uncertainty models. An efficient tabu search algorithm
based matheuristic was applied to solve the proposed models. de S et al. (2018)
applied a Benders decomposition algorithm for an incomplete hub location prob-
lem with service time requirement. They used a robust optimization approach to
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deal with uncertain travel times. Rahmati and Bashiri (2018) presented robust op-
timization for hub location problems with uncertain demands, hub establishment
cost and inter hub flow discount factor. voki and Stanimirovi (2019) introduced
a new problem for single allocation hub location problem with pricing strategy.
Their objective function seeks to find best hub facilities and spoke topology that
maximize profit. They show that their proposed matheuristic approach performs
better in comparison with commercial solver. Lozkins et al. (2019) proposed hub
location problem which demands have uncertain nature. They addresses robust
optimization for hub location problem with a set of demands scenarios. Also Ben-
ders decomposition algorithm was used for solving their proposed model. Li et al.
(2020) considered flows and hub establishment cost as two source of uncertainty
in robust hub location problem.

Table 1 Review of hub location problems based on robust optimization

Author(s) Uncertain approach Uncertain parameter Solution approach
SR AR w c f α cap t

Alumur et al. (2012) Commercial solver
Shahabi and Unnikrishnan (2014) Commercial solver

Ghaffari-Nasab et al. (2015) Commercial solver
Habibzadeh Boukani et al. (2016) Commercial solver

Merakli and Yaman (2016) Commercial solver
Zetina et al. (2017) Branch and cut

Merakli and Yaman (2017) Benders decomposition
Talbi and Todosijevi (2017) VNS

de Sa et al. (2018) Benders decomposition
Ghaffarinasab (2018) Tabu search

de S et al. (2018) Benders decomposition
Rahmati and Bashiri (2018) Commercial solver

Lozkins et al. (2019) Benders decomposition
Li et al. (2020) Commercial solver
This research Benders decomposition

SR = Static Robust, AR = Adjustable Robust, w = Demands, c = Transportation cost, f = Hub
establishment cost, α = Discount factor, cap = Capacity of hubs, t = Time.

Table 1 shows a brief review of the hub location problems based on robust
optimization. It is concluded that there is no research in hub location problem
with the adjustable robust optimization method. In other words, static robust
optimization with one stage decisions are considered in most researches in the
literature. Also according to our knowledge, no research considers balance flows in
hub facilities.

3 Balanced hub location problem

In this section, the deterministic model of the balanced hub location problem is
introduced. N and H are the set of nodes and potential hubs, respectively and
H ⊂ N . wij is the demands originated at node i ∈ N and destined to node j ∈ N ,
fk is the hub establishment cost, dij is distances or transportation cost between
node i ∈ N and node j ∈ N , χ is the collecting cost per unit, α is the inter
hub flow discount factor and δ is the transfer cost per unit. cklij determines the
transportation cost from origin node i ∈ N to the destination node j ∈ N through
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the hubs k ∈ H and l ∈ H, respectively and is calculated by cklij = χdik+αdkl+δdlj .
M is a positive big value and is equal to total flows in this paper, Pe is penalty
cost for flow unbalancing. zk is a binary variable and is equal to one when a hub
is established in node k ∈ H, otherwise, it gets zero value. xklij is the fraction of
flows originated at node i ∈ N and destined to node j ∈ N using hubs k ∈ H
and l ∈ H. vk is total flows that entered to each hub. pkl is the flow difference
between two hubs that established. λ1kl and λ2kl are binary variables that used for
formulate problem and are equal to one when flows transfer through one and two
hubs , respectively, otherwise have zero values.

3.1 Mixed-integer linear programming formulation

In this section, the mathematical model (mixed-integer linear) for the balanced hub
location problem is presented. It is assumed that hub facilities have no capacity
constraint, and flows between each origin-destination nodes can be transferred by
different pathways (multiple allocation property). The mathematical model of the
balanced hub location problem can be formulated as follows:

min
∑
k∈H

fkzk +
∑
i∈N

∑
k∈H

∑
l∈H

∑
j∈N

wijc
kl
ijx

kl
ij +

∑
k∈H

∑
l∈H,k<l

Pe× pkl (1)

Subject to:∑
k∈H

∑
l∈H

xklij = 1 ∀i ∈ N, j ∈ N (2)

∑
l∈H

xklij +
∑

l∈H,l6=k

xlkij ≤ zk ∀i ∈ N, j ∈ N, k ∈ H (3)

vk =
∑
i∈N

∑
j∈N

∑
l∈H,l6=k

wijx
kl
ij ∀k ∈ H (4)

zk + zl = λ1kl + 2λ2kl ∀k ∈ H, l ∈ H, k < l (5)

pkl ≥ vk − vl −M(1− λ2kl) ∀k ∈ H, l ∈ H, k < l (6)

pkl ≥ vl − vk −M(1− λ2kl) ∀k ∈ H, l ∈ H, k < l (7)

zk ∈ {0, 1} ∀k ∈ H (8)

λ1kl, λ
2
kl ∈ {0, 1} ∀k ∈ H, l ∈ H (9)

xklij ≥ 0 ∀i ∈ N, j ∈ N, k ∈ H, l ∈ H (10)

pkl ≥ 0 ∀k ∈ H, l ∈ H (11)
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vk ≥ 0 ∀k ∈ H (12)

Equation (1) is the objective function and minimize total cost. The first term
of Equation (1) is hub establishment cost, the second term is transportation cost
and the last one is penalty cost for unbalancing flows. Constraints (2) ensures
that demands are fully transmitted. Constraints (3) prohibit creating a connec-
tion between non-hub nodes. In other words, flows should be transmitted through
one or two hubs. According to the constraints (4), the flows that entered to each
established hubs are calculated. Constraints (5), (6) and (7) are flow unbalancing
constraints. In constraints (5), the values of λ1kl and λ2kl are determined based
on the number of established hubs that used through origin-destinations. Con-
straints (6) and (7), calculated flows difference between each established hubs. In
other words, a penalty cost is added to the objective function when two hub flows
are dissimilar. When λ2kl is equal to zero, constraints (6) and (7) be redundant.
Constraints (8) to (12) determine the domains of decision variables.

3.2 Mixed-integer non-linear programming formulation

Balanced hub location problem can be formulated as a non-linear mathematical
programming without big value of M. Hence, constraints (5) and (9) are removed
from MIP model and constraints (6) and (7) can be rewrite as constraints (13)
and (14), respectively.

pkl ≥ (vk − vl)zkzl ∀k ∈ H, l ∈ H, k < l (13)

pkl ≥ (vl − vk)zkzl ∀k ∈ H, l ∈ H, k < l (14)

4 Adjustable robust optimization

In the previous models, its assumed that all parameters are known in the planning
time. While, in real condition some parameters have uncertain nature. These un-
certainties are taken into account by adjustable robust optimization. In adjustable
or two-stage robust optimization, decisions are divided into two separate states
(Ben-Tal et al. 2004). The location of hub facilities is taken in the first-stage with-
out revealing of uncertainties and allocation decisions are taken in the second-stage
in presence of uncertainties.

There are three types of uncertainty sets nominated by box, ellipsoidal, and
polyhedral uncertainty sets in robust optimization. In the box uncertainty set,
all uncertain parameters have the maximum deviation from their nominal val-
ues; hence this uncertainty set has excessive conservatism, which increases costs
(Soyster 1973). Ellipsoidal uncertainty set has a non-linear structure (2-norm for-
mulation) that all parameters are not at their worst-case values and consequently
have less conservatism in comparison with the box one (Ben-Tal et al. 2009). Fi-
nally, in the polyhedral uncertainty set proposed by Bertsimas and Sim (2003), the
risk-averse and conservatism level is controlled by an uncertainty budget. The high
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and low value for uncertainty budget increases and decreases the costs and conser-
vatism level, respectively. Polyhedral uncertainty set is used in this paper and the
level of conservatism is controlled by an uncertainty budget. Transportation cost is
assumed taken a value in interval of [dnij − ddij , dnij + ddij ]. d

n
ij and ddij , respectively,

are nominal and deviation values of transportation cost. Γ is a parameter that
denotes the level of conservatism.

4.1 Adjustable robust balanced hub location problem(ARBHLP)

The mathematical model of adjustable robust balanced hub location problem with
uncertain transportation cost is as follows:

min
z

∑
k

fkzk + max
d∈D

min
(x,p,v)∈Υ (z,d)

∑
i∈N

∑
k∈H

∑
l∈H

∑
j∈N

wijc
kl
ijx

kl
ij+

∑
k∈H

∑
l∈H,k<l

Pe× pkl

(15)

Subject to:

zk + zl = λ1kl + 2λ2kl , (zk, zl, λ
1
kl, λ

2
kl) ∈ S1 (16)

where Υ (z, d) = {(x, p, v) ∈ S2 : (2) − (4), (6), (7), (10) − (12)} with S1 ⊆
Rn+ and S2 ⊆ Rm+ . In this model, zk, λ1kl and λ2kl are the first-stage decision
variables, while second-stage decision variables consist of xklij , vk and pkl. Hence,
first-stage decision variables are minimized according to the worst-case of second-
stage decision variables.

4.2 Adjustable robust non-linear balanced hub location problem(ARNBHLP)

The mathematical model of adjustable robust balanced hub location problem with
non-linear formulation is like to MIP formulation. The model of Section 4.1 is
considered for non-linear formulation, but with some changing. In other words,
constraints (16) is removed and constraints (6) and (7) replaced by constraints
(13) and (14), respectively.

The objective function of the adjustable robust mixed-integer linear and non-
linear balanced hub location problems have min max-min terms that makes the
problems hard to solve. Hence, these models can not be solved directly without
implementing decomposition algorithms, such as the Benders decomposition al-
gorithm. Also ARNBHLP problem have non-linear structure in some constraints.
That’s why, a decomposition algorithm should be used to solve adjustable robust
problems, decomposition algorithm can be used to simplify the proposed models.
In the next section, Benders decomposition algorithm is applied to solve adjustable
robust balanced hub location problems.

5 Benders decomposition algorithm

Benders decomposition algorithm was proposed by Benders (1962). In this algo-
rithm, original model is divided into two separate problems named as master and
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sub problems. Sub problem is a linear model, so positive variables shall be existing
in this problem. Master problem consist of hard variables (e.g. Binary or integer
variables).

5.1 Benders decomposition algorithm for ARBHLP

In sub problem, z̄k and λ̄2kl are solutions that obtained from master problem. Sub
problem of proposed model with second-stage decision variables can be written as
follows:

max
d∈D

min
∑
i∈N

∑
k∈H

∑
l∈H

∑
j∈N

wijc
kl
ijx

kl
ij +

∑
k∈H

∑
l∈H,k<l

Pe× pkl (17)

Subject to:∑
k∈H

∑
l∈H

xklij = 1 ∀i ∈ N, j ∈ N (18)

∑
l∈H

xklij +
∑

l∈H,l6=k

xlkij ≤ z̄k ∀i ∈ N, j ∈ N, k ∈ H (19)

vk =
∑
i∈N

∑
j∈N

∑
l∈H

wijx
kl
ij ∀k ∈ H (20)

pkl ≥ vk − vl −M(1− λ̄2kl) ∀k ∈ H, l ∈ H, k < l (21)

pkl ≥ vl − vk −M(1− λ̄2kl) ∀k ∈ H, l ∈ H, k < l (22)

xklij ≥ 0 ∀i ∈ N, j ∈ N, k ∈ H, l ∈ H (23)

pkl ≥ 0 ∀k ∈ H, l ∈ H (24)

vk ≥ 0 ∀k ∈ H (25)

The objective function (17) of sub problem have a max-min term, so with
dual method can transform min form to max form. In other words, in the term
of minimization, that consist of positive variables, strong duality theorem ensures
the same objective value for primal and dual problems. yij , g

k
ij , rk, hkl and bkl

are dual variables of constraints (18), (19), (20), (21) and (22), respectively. The
dual of sub problem can be written as follows:

max
d∈D

∑
i∈N

∑
j∈N

yij −
∑
i∈N

∑
j∈N

∑
k∈H

gkij z̄k +
∑
k∈H

∑
l∈H,k<l

(hkl + bkl)(−M(1− λ̄2kl))

(26)

Subject to:
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yij−gijk−gijl+wijrk ≤ wij(χdik+αdkl+δdlj) ∀i ∈ N, j ∈ N, k ∈ H, l ∈ H, k 6= l
(27)

yij − gijk + wijrk ≤ wij(χdik + δdkj) ∀i ∈ N, j ∈ N, k ∈ H (28)

hkl + bkl ≤ Pe ∀k ∈ H, l ∈ H, k < l (29)

∑
l∈H,l<k

(hlk − blk) +
∑

l∈H,l>k

(−hkl + bkl)− rk ≤ 0 ∀k ∈ H (30)

gkij ≥ 0 ∀i ∈ N, j ∈ N, k ∈ H (31)

hkl ≥ 0 ∀k ∈ H, l ∈ H (32)

bkl ≥ 0 ∀k ∈ H, l ∈ H (33)

In constraints (27) and (28), exactly two and one hubs are considered for
transfer flows between origin-destination nodes, respectively. However, uncertain
parameter (transportation cost) still not considered at this model. For consider-
ing uncertain transportation cost, constraints (27) and (28) that contain dij , with
polyhedral uncertainty set, should be changed. Hence, a new positive decision vari-
able (µij) is considered at model for controlling amount of uncertain parameters
that deviate from their nominal values. The worst-case value for uncertain pa-
rameters in primal model is equal to the best-case value for uncertain parameters
in dual model (Jeyakumar and Li 2010). So in constraints (35) and (36), polyhe-
dral uncertainty set is written for transportation cost parameter according to the
best-case of right hand sides.

max
∑
i∈N

∑
j∈N

yij −
∑
i∈N

∑
j∈N

∑
k∈H

gkij z̄k +
∑
k∈H

∑
l∈H,k<l

(hkl + bkl)(−M(1− λ̄2kl))

(34)

Subject to:

yij − gkij + wijrk ≤ wij

χ(dnik + ddikµik)+

α(dnkl + ddklµkl)+

δlj(d
n
lj + ddljµlj)

 ∀i ∈ N, j ∈ N, (k 6= l) ∈ H (35)

yij − gijk + wijrk ≤ wij
(
χ(dnik + ddikµik)+

δkj(d
n
kj + ddkjµkj)

)
∀i ∈ N, j ∈ N, k ∈ H (36)

∑
i∈N

∑
j∈N

µij ≤ Γ (37)

0 ≤ µij ≤ 1 ∀i ∈ N, j ∈ N (38)

(29)-(33)
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Constraint (37) is control maximum parameters that allowed have deviation
from their nominal values according to the uncertainty budget (Γ ). Master problem
with first-stage decision variables can be written as follows:

min
∑
k∈H

fkzk + η (39)

Subject to:

η ≥


∑
i∈N

∑
j∈N

ȳij −
∑
i∈N

∑
j∈N

∑
k∈H

ḡkijzk+∑
k∈H

∑
l∈H,k<l

(h̄kl + b̄kl)(−M(1− λ2kl))

 (40)

∑
k∈H

zk ≥ 1 (41)

(5),(8), (9)

Constraints (40) is the optimality cut that be added in each iteration to the
master problem according to the dual of sub problem solutions. Constraint (41)
guarantees that at least one hub should be established. This constraint eliminate
need of feasibility cut for the master problem.

5.2 Benders decomposition algorithm for ARNBHLP

Also in non-linear model, sub and master problems have some low changing in
comparison of MIP model. Constraints (5) and (9) are removed from master prob-
lem and optimality cut is changed as constraint (42).

η ≥
∑
i∈N

∑
j∈N

ȳij −
∑
i∈N

∑
j∈N

∑
k∈H

ḡkijzk (42)

The dual of sub problem for ARNBHLP model can be written as follows:

max
∑
i∈N

∑
j∈N

yij −
∑
i∈N

∑
j∈N

∑
k∈H

gkij z̄k (43)

Subject to:

(hkl + bkl)z̄kz̄l ≤ Pe ∀k ∈ H, l ∈ H, k < l (44)

∑
l∈H,l<k

z̄kz̄l(hlk − blk) +
∑

l∈H,l>k

z̄kz̄l(−hkl + bkl)− rk ≤ 0 ∀k ∈ H (45)

(31)-(33), (35)-(38)

Equation (43) is the objective function of dual sub problem for non-linear
model. Also constraints (29) and (30) in dual of sub problem (MIP model) changed
as constraints (44) and (45), respectively.

Considering the Benders decomposition algorithm, the binary variables in the
master problem are fixed in dual sub problem and behave as parameters. Hence
the constraints (13) and (14) act like linear constraints structure. Algorithm 1
shows the pseudo code of Benders decomposition algorithm. OFV(dsp) denotes
the objective function value of the dual sub problem.
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Algorithm 1: Benders decomposition algorithm

Data: LB= −∞ , UB=+∞
1 while UB - LB > ε do
2 Step 1 : Solve master problem
3 z̄k ← zk (linear and non-linear models)

4 λ̄2kl ← λ2kl (linear model)

5 LB ←
∑
k∈H

fk z̄k + η

6 Step 2 : Solve dual of sub problem
7 ȳij ← yij
8 ḡkij ← gkij
9 h̄kl ← hkl

10 b̄kl ← bkl

11 UB ← OFV (dsp) +
∑
k∈H

fk z̄k

12 end

6 Enhancement of Benders decomposition algorithm

The solution that obtained from dual of sub problem may be have alternative
solutions with same objective function. Magnanti and Wong (1981) proposed a
method to obtaining a solution that generate strong optimality cut. In other words,
this method find solution that generate higher value for lower bound. A cut is called
a Pareto-optimal cut if it is not dominated by any other cuts. A cut generated
using a solution (yaij , g

ka
ij , h

a
kl, b

a
kl) achieved from the dual sub problem is stronger

than (yeij , g
ke
ij , h

e
kl, b

e
kl) if and only if:


∑
i∈N

∑
j∈N

yaij −
∑
i∈N

∑
j∈N

∑
k∈H

gkaij z̄k+∑
k∈H

∑
l∈H,k<l

(hakl + bakl)(−M(1− λ̄2kl))

 ≥

∑
i∈N

∑
j∈N

yeij −
∑
i∈N

∑
j∈N

∑
k∈H

gkeij z̄k+∑
k∈H

∑
l∈H,k<l

(hekl + bekl)(−M(1− λ̄2kl))


(46)

6.1 Pareto-optimal cut model for ARBHLP

The Pareto-optimal cut model of linear mathematical model can be written as
follows:

max
∑
i∈N

∑
j∈N

yij −
∑
i∈N

∑
j∈N

∑
k∈H

gkijz
o
k +

∑
k∈H

∑
l∈H,k<l

(hkl + bkl)(−M(1− λ2okl ))

(47)
Subject to:∑

i∈N

∑
j∈N

yij −
∑
i∈N

∑
j∈N

∑
k∈H

gkij z̄k +
∑
k∈H

∑
l∈H,k<l

(hkl + bkl)(−M(1− λ̄2kl)) = z̄dsp

(48)
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(29)-(33), (35)-(38)

zok and λ2okl are core points and have a value between zero and one. Constraint
(48) guarantees that the value of the dual sub problem should not be changed.

6.2 Pareto-optimal cut model for ARNBHLP

The following mathematical model should be solved after a dual sub problem
to obtain a Pareto-optimal cut for the non-linear model.

max
∑
i∈N

∑
j∈N

yij −
∑
i∈N

∑
j∈N

∑
k∈H

gkijz
o
k (49)

Subject to:

∑
i∈N

∑
j∈N

yij −
∑
i∈N

∑
j∈N

∑
k∈H

gkij z̄k = z̄dsp (50)

(31)-(33), (35)-(38), (44)-(45)

zok is core point and have a value between zero and one. According to the
constraint (50), the dual sub problem value cannot be changed in the Pareto-
optimal cut model. Hence the Pareto model seeks to find a solution that generates
a stronger optimality cut for the master problem. A pseudo-code of the Pareto-
optimal cut Benders decomposition algorithm is presented in Algorithm 2.

Algorithm 2: Pareto-optimal cut Benders decomposition algorithm

Data: LB= −∞ , UB=+∞
1 while UB - LB > ε do
2 Step 1 : Solve master problem
3 z̄k ← zk (linear and non-linear models)

4 λ̄2kl ← λ2kl (linear model)

5 LB ←
∑
k∈H

fk z̄k + η

6 Step 2 : Solve dual of sub problem
7 Step 3 : Solve Pareto model
8 ȳij ← yij
9 ḡkij ← gkij

10 h̄kl ← hkl
11 b̄kl ← bkl

12 UB ← OFV (dsp) +
∑
k∈H

fk z̄k

13 end



14 Reza Rahmati, Hossein Neghabi

7 Computational experiment

In this section, the performance of the proposed models and Benders decomposi-
tion algorithm are analyzed. The well-known set of instances such as the AP data
set (Australian Post) is used in this paper for analysis that used widely in hub
location problems. This data set is consists of demands, distances (transportation
cost) between each node. It is assumed that χ = δ = 1 and because of the economy
of scale property, α have a value lower than χ and δ. The inter hub flow discount
factor (α) is allowed to be 0.1, 0.2, ..., 0.8. The value of the uncertainty budget (Γ )
is presented as a percentage in the further analysis (Γ ∈ {0.1, 0.2, ..., 1}). In other
words, an uncertainty budget of 0.2 denotes that 20 percent of parameters are
allowed to have deviation from their nominal values. As an example, for 10-node
instance (|N |× |N−1| = 10×9 = 90 parameters) and uncertainty budget of 0.1, 9
transportation cost parameters are allowed to have deviation from their nominal
values. In this paper, the fixed cost of establishing hub facilities introduced by
Correia et al. (2018) is calculated according to Equations (51) and (52). The hub
establishment cost factor is denoted by c as an input parameter. A high value for
c increases hub establishment cost and decreases the number of established hubs.
Therefore, this parameter should be tuned. Proposed adjustable robust balanced
hub location problems were solved by GAMS software (CPLEX solver) and run
in an Intel Core i7 with 3.7 GHz CPU and 32 GB of RAM.

ok =
∑
j∈N

wkj ∀k ∈ H (51)

fk = c× log(ok) ∀k ∈ H (52)

In Section 7.1 both the hub location problem (HLP) and balanced hub location
problem (BHLP) are compared with each other. The proper value of the core point
in the Pareto-optimal cut Benders decomposition algorithm for each uncertainty
budget is analyzed and presented in Section 7.2. Section 7.3 evaluates the perfor-
mance of the accelerated Benders decomposition algorithm in comparison with the
classic Benders decomposition algorithm, also the linear and the non-linear mod-
els are compared in different values of uncertainty budget (Γ ) and discount factor
(α). In Section 7.4, a size reduction method is introduced for solving medium and
large instances with good quality and shorter computation time.

7.1 HLP and BHLP analysis

In this section, the hub location problem (HLP) and balanced hub location problem
(BHLP) are compared with each other in deterministic conditions. Figures 1 and 2
shows hub networks for HLP and BHLP, respectively for AP 10-node instance. In
Figures 1 and 2, square and circle shapes represent hubs and nodes, respectively.
According to the Figure 1, the value of the commodities flow that entered to each
established hubs are dissimilar. Flows that entered to hub 5 is much less than
hub 2 and 8, while hub 8 has the largest flow value. In Figure 2, the value of the
commodities flow that entered to each hub is similar and equal to 161.7.
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Fig. 1 Hub network of HLP for AP 10-node instance, α = 0.2

Fig. 2 Hub network of BHLP for AP 10-node instance, α = 0.2

In Table 2, the objective function value (cost) and hub configuration of HLP
and BHLP are compared with different discount factors from 0.1 to 0.8 and differ-
ent penalty costs for AP 20-node instance. With increasing in discount factor α,
the objective function value (cost) is increased, while the number of hub facilities
are decreased. In the last column of Table 2, the check mark represents the full
balancing of hub facilities, and the associated unbalancing penalty cost is zero. It
should be noted that penalty cost values are only used in the BHLP model, so the
HLP model results are the same for each penalty cost value.
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Table 2 Comparison between HLP and BHLP for AP 20-node instance

α HLP Penalty BHLP
Obj. Hub configuration Obj. Hub configuration Balance

0.1 48056.64 2,5,8,11,15,18 0.5 49875.14 2,8,11,15,18
1 51422.43 2,8,15,16,18

1.5 52032.35 2,12,14,18
2 52094.31 2,12,14,18

0.2 51398.20 2,8,11,15,18 0.5 53135.81 2,8,15,18
1 54091.72 2,12,14,18

1.5 54422.64 2,12,14,18
2 54591.46 2,12,14,18

2.5 54637.66 2,12,14,18
0.3 54099.75 2,8,15,18 0.5 55642.52 2,12,14,18

1 56126.77 2,12,14,18
1.5 56463.63 2,12,14,18
2 56697.62 2,12,14,18

2.5 56802.87 2,12,14,18
3 56815.87 2,12,14,18

0.4 56403.86 2,8,14,18 0.5 57519.60 2,12,14,18
1 57951.05 2,12,14,18

1.5 58233.01 7,14,18
2 58328.89 7,14,18

0.5 58202.14 2,9,12,18 0.5 58963.85 7,14,18
1 59349.60 7,14,18

1.5 59470.70 7,14,18
2 59477.55 7,14,18

0.6 59578.45 2,9,18 0.5 60143.09 7,14,18
1 60431.23 8,18

0.7 60602.26 7,14,18 0.5 61038.06 8,18
0.8 61352.80 7,14,18 0.5 61413.56 8,18

1 61414.33 8,18

7.2 Core point analysis

Performance of the Pareto-optimal cut Benders decomposition algorithm is de-
pendent on the core point value. In other words, the core point value affects the
number of iterations and computation time to achieve the optimal solution. There-
fore in this section, an analysis is done to obtain a good core point value for further
experiments. It should be noted that linear and non-linear models have two and
one core points, respectively. For reducing the number of calculations, it is assumed
that the two core points of the linear model take the same values in each opti-
mization. Furthermore, the number of iterations and CPU time are obtained with
different value of the core points (zok, λ

2o
kl ∈ {0.05, 0.1, ..., 0.95}) and uncertainty

budgets (Γ ∈ {0.1, 0.2, ..., 1}) for AP 10-node instance. Based on the number of
iteration and computation time, the best core point value for linear and non-linear
models has been illustrated in Figures 3a and 3b, respectively. The core point value
of each uncertainty budget shown in these figures is used for other instances (AP
20-node and 40-node instances).
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(a) (b)

Fig. 3: Best core points value for (a) linear and (b) non-linear models, AP 10-node
instance and α = 0.2

7.3 Performance evaluation of the Pareto-optimal cut and the classic Benders
decomposition algorithms

In this section, the performance of the Pareto-optimal cut and the classic Benders
decomposition algorithms in solving the proposed mathematical models (linear and
non-linear) are investigated under different values of the uncertainty budget (Γ ∈
{0.1, 0.2, ..., 1}) and discount factor (α ∈ {0.2, ..., 0.4}). Also, the impacts of model
parameters such as uncertainty budget (Γ ) and discount factor (α) on hub network
configuration and its objective function are analyzed. As illustrated in Table 3 for
AP 10-node instance for ARBHLP (linear model) and ARNBHLP (non-linear
model), it could be concluded that the Benders decomposition algorithm with
Pareto-optimal cut performs better than the classic one considering the number of
iterations to convergence. As an example, when Γ is equal to 1 the Pareto-optimal
cut Benders decomposition algorithm in ARBHLP model converges to an optimal
solution in 26 iterations while the classic algorithm can find the same solution in
187 iterations.

By increasing the uncertainty budget value (Γ ) in two models, the superiority
of the Pareto-optimal cut Benders decomposition algorithm becomes more evident
in CPU time (seconds) in comparison with the classic one. The results show the
non-linear model’s superiority compared to the linear one in both the number of
iterations and CPU time.
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Figures 4a and 4b shows the convergence trend for the Pareto-optimal cut
and classic Benders decomposition algorithm, respectively in a case of uncertainty
budget equals to 0.4. The value of the lower bound in each iteration must be greater
than the value in the previous iterations. But upper bound does not have such
behavior. In other words, upper bound can take different values in each iteration
that may be greater or smaller than the upper bounds in previous iterations.
Comparing two figures confirms the rapid convergence of the Pareto-optimal cut
Benders decomposition algorithm to solve the proposed model compared with the
classic one.

(a) (b)

Fig. 4: Convergence of the (a) Pareto and (b) classic Benders decomposition algo-
rithm, α = 0.2, Γ = 0.4

Table 4 represents the effects of different values of Γ and α on the objective
function and hub configuration in AP 10-node instance. The discount factor has a
direct impact on the objective function value, and the number of established hubs
is decreased by increasing the discount factor (α). Furthermore, the uncertainty
budget directly affects both the objective function value and the number of estab-
lished hubs. In other words, the objective function increases with more established
hubs in case of high values for uncertainty budget.

The total number of arcs between nodes is equal to |N |× |N − 1|, but all these
arcs aren’t considered in the hub location problem. For example, total arcs that
considered in Figure 1 are equal to 11. So according to this discussion and Table
4, the result in the objective function and hub configuration are the same when
the uncertainty budget is greater than 0.4 and increasing in uncertainty budget
(Γ > 0.4) don’t affect the optimal solution. In other words, the objective function
value and optimal hub structure remain constant when the uncertainty budget is
greater than 0.4. The total CPU time (seconds) and the total number of iterations
are calculated according to the Table 3 results and illustrated in Figures 5a and
5b, respectively. ARNBHLP have much less number of iterations and CPU time
(seconds) in comparison with ARBHLP.

Different uncertainty budget (Γ ) and discount factor (α) for AP 20-node in-
stances have been solved by the linear and non-linear models, and their results
are presented in Tables 5 and 6, respectively. It should be noted that a maximum
specific execution time (8 hours) is set for these instances and the results for all
instances are reported according to this predetermined time.
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Table 4 The effects of different Γ and α on objective function and hub configuration, AP
10-node instance

α Γ Objective function Hub configuration

0.2 0.1 19959.49 2, 8
0.2 22523.11 2, 8
0.3 23832.85 2, 4, 7

0.4-1 23991.99 2, 4, 7
0.3 0.1 20122.68 2, 8

0.2 22705.59 2, 8
0.3 24291.27 2, 4, 7

0.4-1 24376.89 2, 8
0.4 0.1 20298.14 2, 8

0.2 22877.02 2, 8
0.3 24514.49 2, 8

0.4-1 24720.00 2, 8

(a) (b)

Fig. 5: Comparison between ARBHLP and ARNBHLP according to the total
summation of their (a) CPU time and (b) iterations, AP 10-node 30 instances

The results confirm that the Pareto-optimal cut Benders decomposition algo-
rithm performs better than the classic one in both models (the linear and non-
linear models). In the linear model, the average gap obtained by the classic Benders
decomposition algorithm is equal to %60.25, while the corresponding gap in the
Pareto model is equal to %46.18. Also, the Pareto-optimal cut Benders decom-
position algorithm has fewer iterations compared to the classic one. Besides, the
average gap in the non-linear model for the classic Benders decomposition algo-
rithm is equal to %13.56, while the associated gap for the Pareto one is equal to
%9.07. Furthermore, comparing the gap results obtained with linear and non-linear
models reveal the appreciable performance of the non-linear model in comparison
to the linear one. In other words, Tables 5 and 6 confirm that the non-linear model
has better performance in comparison with the linear model in obtaining the lower
bounds and upper bounds.
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Table 5 Comparison of the Pareto-optimal cut Benders decomposition algorithm with classic
one for AP 20-node instance, ARBHLP model

α Γ Classic Pareto
LB UB % Gap # Iteration LB UB % Gap # Iteration

0.2 0.1 44081.25 99725.75 55.80 2675 50457.20 95472.81 47.15 1517
0.2 40900.54 98519.46 58.48 2678 46585.81 93376.21 50.11 1345
0.3 39106.83 107666.59 63.68 2780 46668.47 97351.10 52.06 1287
0.4 31518.14 98127.87 67.88 2925 58141.35 100520.92 42.16 1348

0.3 0.1 47753.81 101727.59 53.06 2665 53900.19 98570.87 45.32 1489
0.2 43087.11 93447.37 53.89 2660 50968.39 93571.73 45.53 1516
0.3 40834.29 113652.91 64.07 2762 51900.19 95570.87 45.69 1467
0.4 34566.51 116115.86 70.23 3087 57582.83 105553.52 45.45 1423

0.4 0.1 50057.64 86206.77 41.93 2674 58778.17 87573.79 32.88 1811
0.2 44419.48 115709.09 61.61 2627 53951.13 105382.51 48.80 1490
0.3 41465.07 105166.43 60.57 2693 54087.82 102555.29 47.26 1434
0.4 34361.85 121683.44 71.76 3111 56884.00 117845.32 51.73 1350

Average 60.25 2778.08 46.18 1456.42
LB = Lower bound, UB = Upper bound, Gap = ((UB-LB)/UB)

Table 6 Comparison of the Pareto-optimal cut Benders decomposition algorithm with classic
one for AP 20-node instance, ARNBHLP model

α Γ Classic Pareto
LB UB % Gap # Iteration LB UB % Gap # Iteration

0.2 0.1 76163.61 89094.89 14.51 3757 76524.75 83761.25 8.64 1282
0.2 82292.84 93570.39 12.05 3663 83382.37 89591.58 6.93 993
0.3 84773.03 97064.55 12.66 3767 85329.23 91655.63 6.90 781
0.4 85872.93 97098.52 11.56 3657 86143.75 94048.35 8.40 754

0.3 0.1 78640.27 84237.29 6.64 3792 78940.46 83147.29 5.06 1156
0.2 85303.36 101253.07 15.75 3726 86423.75 100146.32 13.70 984
0.3 89081.85 110922.20 19.69 3615 90147.76 104270.40 13.54 948
0.4 91087.08 104756.51 13.05 3650 91417.43 99112.42 7.76 923

0.4 0.1 80631.25 91863.59 12.23 3816 80897.14 92141.43 12.20 1231
0.2 87380.76 100250.75 12.84 3608 88993.45 101753.73 12.54 971
0.3 91879.79 110864.27 17.12 3546 93423.73 99459.41 6.07 932
0.4 95076.35 111288.84 14.57 3583 95981.32 103231.20 7.02 890

Average 13.56 3681.66 9.07 987.08
LB = Lower bound, UB = Upper bound, Gap = ((UB-LB)/UB)

7.4 Size reduction method

In the hub location problem, each node can send commodities flows through the
network and can be chosen as a hub facility. Therefore, all nodes have the potential
to be selected and operated as hubs. The assumption of considering all nodes as
potential hubs increases the complexity of the models. It is correct that all nodes
can be selected as hubs, but all of these nodes are not necessarily suitable for
operating as hub facilities. In other words, the more suitable nodes are better to
be considered as potential hubs. Hub establishment cost, demands, transportation
cost, and uncertainty are the sources that affect the hub network. So in this section,
a method is introduced to reduce the number of potential nodes that can be chosen
as hubs. For this purpose, nodes are sorted via the biggest value of total input and
output flows. Also, nodes are sorted from smallest to biggest value according to
the fixed hub establishment costs. Then about 20 percent of the top of these sorted
lists are chosen and considered as potential hub nodes. Furthermore, to complete
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the list of potential hubs, the deterministic model is solved according to the worst-
case value for the transportation cost parameter, and the selected hubs are also
added to the list. In other words, in the deterministic model, it is assumed that
all parameters have a deviation from their nominal values. The solution obtained
from this deterministic model (established hubs) is also added to the potential
hub’s list.

Table 7 shows that the full size and size reduction model are compared for the
AP 10-node instance. It should be noted that in this section, the non-linear model
and the Pareto-optimal cut Benders decomposition algorithm are used for analysis.
The results show that the size reduction model obtained the optimal solution in
much fewer iterations and CPU time than the full-size model.

Table 7 The impact of size reduction method for AP 10-node instance

α Γ Full size Size reduction
Objective function # Iterations CPU time (s) Objective function # Iterations CPU time (s) % Gap

0.2 0.1 19959.49 29 13.51 19959.49 12 1.14 0
0.2 22523.12 42 34.22 22523.12 12 1.05 0
0.3 23832.85 53 44.39 23832.85 13 1.27 0
0.4 23991.99 41 32.50 23991.99 8 0.98 0

0.3 0.1 20122.68 33 15.71 20122.68 12 1.03 0
0.2 22705.59 60 44.43 22705.59 12 1.02 0
0.3 24291.27 75 60.96 24291.27 14 1.28 0
0.4 24376.89 74 55.06 24376.89 8 0.99 0

0.4 0.1 20298.15 33 15.33 20298.15 12 0.98 0
0.2 22877.02 65 46.05 22877.02 12 1.16 0
0.3 24514.49 51 42.02 24514.49 14 1.27 0
0.4 24720.00 39 29.61 24720.00 10 1.09 0

Average 49.58 36.15 11.58 1.11 0

Tables 8 and 9 show the results for the full-size model and size reduction
method for AP 20-node and AP 40-node instances, respectively. The results con-
firm that the size reduction method obtains a partially good solution in much less
computation time than the full-size model. The results reported in Table 8 indi-
cate the size reduction method obtains a high-quality solution close to the lower
bound of the full-size model. Hence, it can be ensured that the solution obtained
from the size reduction method is so close to the optimal solution. Furthermore,
Table 9 indicates that the full-size model cannot obtain the right solution, and on
average, has a %76.05 gap. Therefore, the lower bound obtained from the full-size
model does not have enough validation to evaluate the size reduction solution.
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8 Conclusion

In this paper, two new models with mixed-integer linear and non-linear structures
were proposed for uncapacitated multiple allocation hub location problem with
balancing flows in established hubs. An adjustable robust optimization was used
to deal with uncertain transportation cost in the proposed models. The location
of hub facilities is taken in the first stage without revealing of uncertainties and
allocation decisions are taken in the second stage in presence of uncertainty. Poly-
hedral uncertainty set was used in this paper and the level of conservatism was
controlled by an uncertainty budget. An accelerated Benders decomposition algo-
rithm was applied to solve proposed models. Furthermore, a size reduction method
was proposed to solve larger instances of proposed models. Computational exper-
iments showed that the Benders decomposition algorithm with Pareto-cuts had
less iterations comparing with the classic Benders decomposition algorithm for all
values of the uncertainty budgets. Also demand handling is more comfortable with
balancing flows that entered to each hub facility. According to the results, number
of hub facilities are increased when uncertainty is high. Also adjustable robust
balanced hub location problem with mixed-integer non-linear structure had better
result in CPU time and Benders iterations in comparison with linear one. In ad-
dition, results show that size reduction method had a good quality and speed. As
a direction for the future study, modeling of a problem with time consistency in
any period can be considered. Proposing of other algorithms to solve the problem
can be considered as another direction for the future work.
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