
Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Exact and efficient reliability and performance optimization of synchronous
task graphs
Reza Ramezania,⁎, Abolfazl Ghavidelb, Yasser Sedaghatb
a Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran
bDepartment of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

A R T I C L E I N F O

Keywords:
Synchronous task graphs
Optimization
Reliability
Performance
Makespan
FPGA

A B S T R A C T

SRAM-based FPGAs have found many applications in modern computer systems. In these systems, high-per-
formance computing applications are executed as task graphs in which reliability and performance are crucial
constraints. In this paper, an exact method is presented to efficiently optimize the reliability and performance of
synchronous task graphs running on SRAM-based FPGAs in harsh environments. Solving this optimization
problem leads to the generation of a true Pareto set of Fault Tolerance (FT) techniques. Each solution of this set
determines FT techniques of the tasks and leads to specific reliability and makespan. Thus, this solution set
trades off between reliability and makespan, and one of the solutions that best meets system requirements can be
applied to the running tasks to optimize the reliability and performance. The proposed technique is novel as it
obtains the true Pareto set of FT techniques of the whole task graph by partitioning the task graph into its
segments, optimizing different segments separately, and joining the obtained solutions. This partitioning
strategy leads to reduce the computation time significantly. In this paper, it is mathematically proved that the
proposed partitioning strategy generates global optima from the local ones without losing any optimal solutions.
The experiments show that the proposed technique improves the MTTF of real-world and random task graphs by
46.30% on average without any negative effects on the performance. Then, the efficiency of the computation
time of the proposed technique is demonstrated by conducting several experiments on small-, medium-, and
large-size synchronous task graphs and comparing the results with other exact and evolutionary optimization
methods. Finally, supplementary experiments in dynamic environments show that the proposed technique
outperforms adaptive state-of-the-art FT techniques in terms of reliability and makespan improvement.

1. Introduction

Field Programmable Gate Arrays (FPGAs)-based reconfigurable
computers have gained more and more importance in recent years.
Modern SRAM-based FPGAs include plenty of configurable logic and
routing resources to implement hardware tasks composed of millions of
gates. Such FPGAs are very attractive for a wide variety of applications
as they feature the ability to integrate a complex Systems-on-Chip (SoC)
on a single device, combining the speedup of hardware with the flex-
ibility of software, unlimited reconfiguration at runtime, and lower
development cost than ASICs [1]. In particular, SRAM-based FPGAs are
very popular in space mission systems as they are inherently flexible to
meet different functional requirements [2]. In these systems, the ap-
plications are usually modeled as task graphs to manage dependencies
among different tasks [3].

Compared to ground-level systems, space computing ones

experience more radiations during their mission [4]. SRAM-based
FPGAs suffer from susceptibility to radiations induced by soft errors
[5]. The soft error rate (SER) of the environment highly affects the
reliability of such FPGAs. Consequently, some Fault Tolerance (FT)
techniques are required to alleviate the negative impacts of soft errors.
However, FT techniques appear with different overheads [6]. There-
fore, they should be applied optimally in such a way that not only the
system reliability increases but also the imposed overheads affect the
system performance as least as possible.

Several researchers have tried to improve the reliability of FPGA-
based designs by using conventional and modern FT techniques [7].
Although significant reliability improvements have been obtained by
them, they have not paid enough attention to overheads imposed by the
employed FT techniques. The overheads of these techniques lead to
performance degradation. Therefore, some researchers have focused on
improving system reliability while a given performance is guaranteed.

https://doi.org/10.1016/j.ress.2020.107223
Received 17 February 2020; Received in revised form 13 July 2020; Accepted 26 August 2020

⁎ Corresponding author.
E-mail addresses: r.ramezani@eng.ui.ac.ir (R. Ramezani), ghavidel@mail.um.ac.ir (A. Ghavidel), y_sedaghat@um.ac.ir (Y. Sedaghat).

Reliability Engineering and System Safety 205 (2021) 107223

Available online 29 August 2020
0951-8320/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2020.107223
https://doi.org/10.1016/j.ress.2020.107223
mailto:r.ramezani@eng.ui.ac.ir
mailto:ghavidel@mail.um.ac.ir
mailto:y_sedaghat@um.ac.ir
https://doi.org/10.1016/j.ress.2020.107223
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2020.107223&domain=pdf

However, reliability and performance are two contradicting features
which should be improved simultaneously. Thus, it can be seen as a
multi-objective optimization problem with reliability and performance
as objective functions. Solving this optimization problem leads to the
generation of a true Pareto set of FT techniques that trades off reliability
and performance.

A recent study made by the authors [8] has shown that, by applying
selective FT techniques to the tasks, it is possible to improve the system
reliability without degrading its performance. Their proposed tech-
nique uses an approximation approach to optimize the reliability and
performance simultaneously. Although this technique obtains the so-
lutions efficiently, it does not guarantee to generate optimal solutions.
Therefore, in another study, the authors have presented an exact
method that guarantees the generation of optimal solutions for the
problem of reliability and makespan optimization of task graphs [9].
Although this technique can find global optimal solutions, it exhibits
exponential time complexity, where the problem size exponentially
increases with the number of tasks, which makes it unsuitable for
runtime systems.

In order to come up with these challenges, in this paper, a technique
named segment-technique has been presented to exactly and efficiently
optimize the reliability and performance of synchronous task graphs
running on SRAM-based FPGAs in harsh environments. The proposed
technique generates an optimal solution set of FT techniques for a
synchronous task graph in such a way that its solutions are non-domi-
nated and lead to trade off between reliability and makespan. The
synchronous task graphs consist of multiple serially connected sub-
graphs known as segments. The presented approach obtains the true
Pareto set of FT techniques of the whole task graph by exactly opti-
mizing the reliability and makespan of different segments of the task
graph separately, combining the non-dominated solutions of the seg-
ments in order to generate a preliminary set of solutions, and finally
filtering out the dominated solutions. In this regard, it has been proved
that such a partitioning strategy leads to the generation of the true
Pareto set of the whole task graph with low time complexity.

The efficiency of the proposed technique has been evaluated by
conducting several experiments on real-world and randomly-generated
task graphs. In this regard, the positive impacts of applying optimal FT
techniques on improving the reliability of task graphs without affecting
their makespan has been first demonstrated. Then, it has been shown
that the proposed technique outperforms the time complexity of the
recent enumeration-based Pareto technique by examining medium-size
task graphs. The third experiment compares the proposed solution with
three well-known evolutionary algorithms in terms of precision, recall,
and time complexity. The obtained results show that the proposed
technique requires much less computation time, yet it yields much
better precision and recall. The last experiment demonstrates the po-
sitive impacts of the proposed technique in reliability and makespan
improvement of task graphs running in harsh environments with dy-
namic and unpredicted SREs.

The rest of the paper is organized as follows. Section 2 introduces
related studies and Section 3 presents illustrative examples and the

system model. Section 4 elaborates basic concepts and contains the
general methodology and foundations of the presented technique. In
Section 5, it is proved that the proposed technique can generate the true
Pareto set of the whole task graph. The experimental evaluations and
the obtained results are discussed in Section 6. Finally, Section 7 con-
cludes the paper.

2. Related work

Reliability assessment is one of the most important testing goals
during the system validation and verification process [10]. In this re-
gard, designers should assess the reliability of their designs and im-
prove it if it does not comply with system requirements [11]. This issue
is especially important in safety-critical applications that require high
levels of reliability [12].

Since SRAM-based FPGAs are vulnerable to soft errors, the problem
of improving the reliability of FPGA-based designs has been addressed
by many researchers. However, most of them have not paid enough
attention to the performance degradation problem. Preliminary FT
techniques were applied within designs by developers themselves. The
efficiency of these techniques should be assessed during the validation
and verification phase. RcB and NSCP are examples of these techniques
which require acceptance tests to validate the outputs [13]. These
techniques are not widely used as they are application-dependent and
are very hard to apply [14]. Therefore, modern FT techniques are used
which are applied to the designs that have been developed completely
[15]. These techniques consist of two main FT strategies: design-based
methods and recovery-based methods.

Design-based methods are based on replication and are applied to
different abstractions regardless of the final application [16]. For ex-
ample, the application of dual and triple redundancies in increasing the
reliability of FPGA-based designs has been addressed in [17] and [18].
Similarly, the Adaptive FT technique proposed by [19] is a dynamic re-
dundancy-based FT technique that employs different task replications
for different orbits during space missions. Although these FT techniques
impose different overheads on the system, their overheads can be re-
duced by protecting more critical parts of the design [20].

Recovery-based methods are the second group of mitigation tech-
niques that avoid soft error accumulation in configuration memory and
can be used by SRAM-based reconfigurable computers at runtime [21].
In this approach, the configuration memory of designs is sporadically
refreshed to recover faulty cells using scrubbing or task reallocation
tasks [22]. The efficiency of the scrubbing techniques can be improved
by customizing the recovery process for essential configuration bits
[23].

Modern SRAM-based reconfigurable computers are widely used in
safety-critical real-time systems. In these systems, performance is as
important as reliability. Although conventional FT techniques improve
the system reliability, they impose unaffordable overheads on runtime
systems which leads to the performance degradation. Very few studies
have paid attention to performance constraints when applying FT
techniques. These studies try to increase the system's reliability while a

Notations

n Number of tasks
m Number of segments
τi Task τi
SGi Segment i
X Decision variables set of the whole task graph
Xi Decision variables set of SGi

x Solution
f X()ok kth objective function
f x()ok kth objective function value

f x()o ijk kth objective function values of the jth solution of SGi
ri Redundancy level of task τi
Nmax Maximum redundancy level of tasks
(xa, xb) Concatenation of solutions xa and xb
f x x(,)o a bk kth objective function value of the solution (xa, xb)
R i Initial reliability of task τi
R i Reliability of fault-tolerant task τi
R*TG Reliability objective function
IR*TG Inverse reliability objective function

+IRTG Additive inverse reliability objective function
MSTG Makespan objective function

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

2

given performance is guaranteed as well. For instance, the Primary/
Backup scheme presented in [24] supports FT while reducing the per-
formance degradation. The real-time FT scheduling algorithm pre-
sented in [25] uses a sufficient schedulability test to guarantee the
schedulability of hybrid hardware/software tasks while tolerating fi
faults during their execution. Similarly, the authors have examined the
impacts of different FT strategies for different real-time scheduling al-
gorithms on the performance of reconfigurable computers [26]. In an-
other study, a reconfigurable FT framework has been presented by [27]
for dynamic environments which determines the best FT techniques of
the tasks by taking both task execution time and system fault rate into
account. Another approach in this context is the co-employment of
CPUs-FPGAs to make tradeoffs between the reliability of CPUs and the
performance of FPGAs [28]. All these studies try to increase the system
reliability while degrading its performance as least as possible.

Although the mentioned studies try to not degrade the system per-
formance when applying FT techniques, they do not guarantee to op-
timize it. Performance is a crucial factor for modern computer systems
as future applications demand high-performance computing (HPC). In
this regard, as the granularity of FT techniques affects the system re-
liability and performance, the problem of selecting the optimal granu-
larity level of FT techniques has been addressed in [29]. Fine-grain
granularities yield better reliability at the cost of performance losses. In
a previous study [8], the authors have presented an approximation
technique to address the problem of reliability and performance opti-
mization of general task graphs executing on SRAM-based reconfigur-
able computers. This technique generates a Pareto set of FT techniques
for the task graphs in which each solution of the generated set de-
termines the FT technique of each hardware task of the task graph.
Thus, due to the competition of the objective functions, this set features
different reliability and makespan trade-offs. Thus, a solution that best
meets system requirements can be applied to the running tasks. Since
this study has used an approximation strategy, it does not guarantee to
generate global optima of reliability and makespan. Therefore, in an-
other study, a technique named enumeration-based Pareto technique has
been presented to exactly optimizing the reliability and makespan of
general task graphs [9]. This technique generates the true Pareto set of
FT techniques by using an exact optimization method. Although the
enumeration-based Pareto technique guarantees the generation of the true
Pareto set, it suffers from the exponential time complexity since the size
of the exploration space increases drastically with the number of tasks.
Therefore, it cannot be used at modern computer systems whose
characteristics and requirements change dynamically at runtime,
especially the space-computing ones that experience different SERs
during their mission.

Therefore, a new approach is required to exactly and efficiently
optimize the reliability and makespan simultaneously in such a way
that it can be used at runtime systems. In this paper, a new technique is
presented for the problem of reliability and makespan optimization of
synchronous task graphs running on SRAM-based FPGAs in harsh en-
vironments. It guarantees the generation of optimal solutions with low
time complexity.

3. System model and illustrative examples

In this section, the basic concepts are explained first. Then, the
model of tasks and task graphs has been presented, followed by dis-
cussing the reliability model used for calculating the system reliability.
Finally, an illustrative example has been provided to better understand
the basic ideas of the presented reliability and makespan optimization
problem.

3.1. Preliminary concepts

A technical story is presented in this subsection to make the con-
cepts and ideas of this study clearer.

CPUs are general-purpose processors that provide flexibility at the
cost of performance losses. ASICs are contradicting processing devices
which lack flexibility but provide acceptable levels of performance.
SRAM-based FPGAs are modern computing devices that trade off CPUs
and ASICs. These FPGAs provide both flexibility and performance
which make them appropriate solutions for modern computer systems.

In SRAM-based FPGAs, the designs (known as hardware tasks) are
configured on the FPGA by programming bitstreams of the configura-
tion memory. Since SRAM memories can be modified at runtime, the
hardware tasks can be reconfigured at runtime to change the system
functionality. As the FPGAs have limited resources, scheduling strate-
gies are required to steer the reconfiguration and execution of hardware
tasks on the FPGA. This issue is especially important for task graphs, as
the underlying scheduler not only should manage the device resources
but also it should meet the precedence constraints of the tasks. The
employed scheduler highly affects the execution length of the task
graph (known as makespan). Makespan is a representative of the system
performance.

Despite being programmable, SRAMs are vulnerable to soft errors
induced by the environment. Thus, reliability is the main concern of
SRAM-based reconfigurable computers which is usually compensated
for by using FT techniques (e.g., by duplicating or triplicating hardware
tasks). Although FT techniques improve the system reliability, they
impose different overheads on the system and cause an increase to its
makespan (which leads to degrade the system performance).

As reliability and makespan are contradicting features, the FT
techniques should be applied in such a way that the system reliability is
improved, but their imposed overheads do not affect the makespan
significantly. Therefore, it can be seen as a multi-objective optimization
problem with reliability maximization and makespan minimization as
objective functions, and the FT technique of individual hardware tasks
as decision variables. As the objective functions are contradicting, in-
stead of just one solution, solving the corresponding optimization
problem leads to the generation of multiple solutions, known as Pareto
set. Each solution of this set determines the FT technique of individual
hardware tasks of the task graph. If the optimization problem is solved
by an exact method (which guarantees to find global optimal solutions)
the obtained solution set is referred to as true Pareto set. In a Pareto set,
all solutions are non-dominated. In other words, no solution is com-
pletely better than the other ones.

For example, assume the reliability and makespan of a task graph
without applying any FT techniques is [0.9868524, 2593]. After opti-
mizing the reliability and makespan of this task graph, a Pareto set with
three solutions [0.9888453, 2605], [0.9923657, 2647], and
[0.9975587, 2689] are obtained. All these solutions are non-dominated,
and the system designer can select the best one based on system re-
quirements.

Obtaining the true Pareto set with exact methods is an NP-Hard
problem, and it takes exponential computation time with the number of
tasks. Therefore, many researchers have used inexact optimization
techniques (such as approximation ones and evolutionary ones) to solve
the optimization problem in lower time at the cost of losing global
optima. In this study, an exact technique is presented which guarantees
to obtain the true Pareto set of FT techniques of synchronous task graph
efficiently with little computation times. The proposed technique is
based on the task graph decomposition idea whose ability in obtaining
global optima is proved in this study. The efficiency of the proposed
technique is also demonstrated by conduction several experiments over
state-of-the-art exact and inexact optimization methods.

3.2. Task and task graph model

The synchronous task graph is an intra-task parallelism task model
in which the initial task graph is forked into several independent seg-
ments (a.k.a. subgraphs, levels), each of which contains one or more
tasks that can execute simultaneously in parallel. Upon completion of a

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

3

segment, its parallel tasks join into the next segment and this behavior
may repeat again up until the completion of the task graph.

We consider a synchronous task graph =TG S{ , , } where Γ is
the set of n hardware tasks as = …{ , , }n1 . Each hardware task τi is
attributed with = CT CB TS R{ , , , }i i i i i where CTi is task computation
time which includes task execution time plus its configuration delay,
CBi is the number of configurable logic blocks (CLB) required by the
task, TSi is task size in the configuration memory, and Ri is the task
reliability which can be obtained using different reliability models [30-
32]. S is the set of m segments in TG as = …S SG SG{ , , }m1 , where each
segment SGi contains one or more hardware tasks as SGi⊆Γ and

=SGSG S ii . Finally, δ denotes the set of dependencies among tasks in
which δij indicates the dependency between hardware tasks τi and τj and
means that τj cannot start its execution until the execution of τi finishes.
Thus, if δij ∈ δ, τi and τj cannot be placed at the same segment.

In this model, the tasks of segment SGi cannot start their execution
until the execution of all tasks of segment SGi 1 is finished [33].
However, if there are enough resources, all tasks of a segment can
execute in parallel. Fig. 1 illustrates a sample synchronous task graph
with 5 segments and 11 hardware tasks.

3.3. Reliability model

Since the SRAM-based FPGAs are susceptible to radiation-induced
upsets [34], the soft errors are the object of concern. Each hardware
task τi is attributed to the reliability Ri. With the assumption that the
task graph TG execute without any failure if all its tasks execute cor-
rectly, the reliability of TG is obtained as:

=R RTG i
i (1)

Once the reliability of task graph TG is obtained, the Mean Time to
Failure (MTTF) of TG is calculated as [35]:

=MTTF MS
R1TG
TG

TG (2)

where MSTG is the makespan of TG and equals to the total execution
time of the task graph. In this paper, the configurations and executions
of task graphs are managed using an As Soon As Possible (ASAP) sche-
duling strategy [9]. This strategy has been selected as it is simple and
yields suboptimal schedules with very little runtime overheads. How-
ever, other scheduling strategies can be used instead as the proposed
technique is orthogonal to all of them.

As it will be discussed soon, in this paper, the reliability Ri of
hardware task τi is increased by applying replication-based FT techni-
ques [29]. Thus, following Eq. (1), improving the reliability of hard-
ware tasks leads to an increase in the reliability of the whole task graph.
Nevertheless, such FT techniques have time (in terms of execution time
and configuration time) and space (in terms of configuration memory)
overheads. Thus, making a hardware task τi of segment sj redundant
might lead to increase the makespan of sj and as a result, increase the
makespan of the whole task graph. Thus, the FT technique of a task
should be selected optimally in such a way that not only the reliability
of the task is improved but also its imposed overheads are negligible. In
this paper, an efficient yet exact technique has been presented to gen-
erate such optimal FT techniques for synchronous task graphs.

3.4. Illustrative example

In this section, an illustrative example has been provided to better
clarify the ideas presented in this study. For this purpose, task τ1 of SG1
and tasks τ2, τ3, and τ4 of SG2 of Fig. 1 have been attributed with dif-
ferent characteristics as presented in Table 1. In this case, the compu-
tation time and size of the tasks as well as their resource occupancy on
the target FPGA are shown.

A simple schedule of the tasks of Table 1 is shown in Fig. 2. In this

case, the ASAP scheduling strategy without applying any FT techniques
has been used to execute the tasks on a given FPGA which comprises 14
CLBs. As the schedule of Fig. 2 shows, the execution of SG1 finishes at
time 17. Then, the execution of SG2 starts. However, the tasks of SG2
cannot be executed concurrently as their cumulative size exceeds
available resources. Therefore, in this example, the execution of SG2
finishes at time 71. For simplicity, the execution of other segments of
the task graph is not shown.

Next, the reliability of the task graph is increased by applying some
replication-based FT techniques to tasks τ1 and τ2. For this purpose, the
Duplication With Comparison (DWC) technique has been applied to task
τ1, and the Triple Modular Redundancy (TMR) technique has been ap-
plied to task τ2 whose obtained schedule is presented in Fig. 3. As this
figure shows, although applying FT techniques has led to improve the
task graph reliability, its makespan has not been prolonged compared to
the simple schedule of Fig. 2. In this case, the schedule of Fig. 3 dom-
inates that of Fig. 2 as it yields better reliability without increasing the
makespan. In this example, for simplicity, it has been assumed that the
computation time of the decider is negligible with respect to the com-
putation time of the tasks.

In another schedule, the DWC FT technique has been applied only to
task τ3 whose scheduling result is shown in Fig. 4. As this figure shows,
since there are not enough resources, task τ3 has been replicated tem-
porally. Therefore, compared to the schedule of Fig. 2, this schedule
yields better reliability but at the cost of prolonging the makespan. In
other words, these two schedules are non-dominated, and none of them
is better than the other one. However, the schedule of Fig. 3 dominates
that of Fig. 4 as it yields better reliability and makespan.

The goal of this paper is to exactly and efficiently generate the non-
dominated solution set of FT techniques for a synchronous task graph
each of which leads to specific reliability and makespan in such a way
that none of the corresponding schedules is dominated by other sche-
dules.

4. Problem formulation

4.1. Problem definition

Since FT techniques impose different overheads on the system, the
reliability of a system is usually improved at the cost of performance
degradation. Thus, there exist some sort of contradictions between re-
liability and makespan objective functions. Therefore, the optimization
methods that address the problem of reliability and makespan optimi-
zation of a task graph instead of generating just one FT solution, gen-
erate a solution set of FT techniques for the whole task graph [9]. Each
solution contains multiple FT techniques, each of which corresponds to
a hardware task in the task graph. Therefore, different solution sets
yield different reliabilities and makespans for the task graph. Thus, it
can be seen as a multi-objective optimization problem in which relia-
bility and makespan of the task graph are the objective functions, and
the FT techniques of the tasks (in terms of redundancy level) are

Fig. 1. A sample synchronous task graph.

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

4

decision variables.
Without losing generality, assuming n decision variables and d ob-

jective functions, let us define the following terms from the optimiza-
tion problem point of view:

• = …X r r r{ , , , }n1 2 is the set of decision variables. Any set of decision
variables whose variables have been assigned a value is referred to
as a solution x.
• = …f X f X f X f X() { (), (), , ()}o o o od1 2 is a set of objective functions. These
functions return a set of specific values for each solution x. Given
solution x, each one of these values is denoted as f x k d(), 1ok .

In this paper, each decision variable ri indicates the redundancy
level of hardware task τi. In this regard, with n hardware tasks in the
task graph, the set of decision variables is represented by

= …X r r r{ , , , }n1 2 , in which ri denotes the redundancy level of Task τi,
1 ≤ ri ≤ Nmax. For example, =r 1i indicates no FT technique for τi,

=r 2i stands for the DWC technique, and =r 3i denotes the TMR tech-
nique. The value of Nmax is the maximum redundancy level of the tasks.
Besides, in this paper, the reliability maximization and makespan
minimization are the objective functions of the presented optimization
problem.

There are multiple Pareto optimality definitions in multi-objective
optimization problems in terms of minimization, as [36]:
Definition 1. (Pareto dominance): A solution x dominates y (denoted as
x≻y) iff f x f y() ()o ot t and < …q f x f y t q d: () (); , {1, 2, , }o oq q ;
otherwise, x and y are not better than each other. If there are no
solutions that dominate x, then x is a non-dominated solution.

Definition 2. (Pareto set): A set of all non-dominated solutions {x|∃y:
y≻x} is called a Pareto set.

Definition 3. (True Pareto set): If all possible non-dominated solutions
are generated using an exhaustive optimization method, the obtained
solution set is called true Pareto set.

The presented optimization problem is a nonlinear integer one as
the decision variables (redundancy level of the tasks) take integer va-
lues. It has been proved that optimization problems with integer vari-
ables cannot be optimally solved in polynomial time [37]. Thus, in this
paper, a partitioning-based technique has been presented to overcome
this complexity for synchronous task graphs. With this strategy, by
analyzing the task graph by partitioning it into a number of segments,
the computation will take a lower time with respect to the analysis of

the whole task graph. The main goal of this study is to obtain the true
Pareto set of FT techniques of the whole task graph at runtime with low
time complexity.

4.2. Outline of segment-technique

The presented technique generates the true Pareto set of FT tech-
niques in three steps:

1) Task Graph Segmentation: First of all, the synchronous task graph
(TG) is partitioned into m disjoint segments SGi in such a way that
|SGi| ≥ 1 and == SG n| |i

m
i1 , where |SGi| is the number of tasks of

SGi. In this partitioning …{SG , SG , , SG }m1 2 have disjoint tasks. In
other words, each segment SGi will have a set of disjoint decision
variables Xi where Xi⊆X and =Xi m i , X being that of the whole
task graph. Different strategies, such as level-based scheduling, can
be used to partition the task graph into multiple segments [38-41].

2) True Pareto set generation of the segments: Then, an exact multi-
objective optimization method is used to generate the true Pareto set
of FT techniques of the segments separately. In this paper, the
enumeration-based Pareto technique presented in [9] has been used
to generate the true Pareto set of each segment separately in which
reliability and makespan are objective functions. This technique is
based on the definitions given at the beginning of this section.
Nevertheless, any other exact multi-objective optimization method
presented in the literature can be used instead for the generation of
the true Pareto set, as they are completely orthogonal to the solution
that this paper presents.

3) Combination of solutions: Finally, the obtained non-dominated so-
lutions of the segments are combined sequentially to produce the
preliminary solution set of FT techniques. The Cartesian product
operation has been used for this purpose. The Cartesian product
operates on two sets A and B and yields a set of ordered pairs (xa, xb)
in which xa ∈ A and xb ∈ B. In the presented problem, each com-
bined solution (xa, xb) is obtained as XA CAT XB, where CAT is the
concatenation operator and concatenates the decision variables of
the two solutions xa and xb to generate a new solution. In addition,
since the objective functions return a set of specific values for each
solution, the objective function values of the combined solutions are
calculated as well and are denoted by f x x(,)o a bk . In other words, in
this paper, the Cartesian product of two solution sets A and B results
in a new solution set as:

=x x f x x x A x B k{(,), (,)| , , {1, 2} }a b o a b a bk (3)

where f x x(,)o a bk is the kth objective function value of the combined
solution (xa, xb). For example, assume two solution sets A and B, each of
which contains three solutions where A has two decision variables and
B has one decision variable. The Cartesian product of these two solution
sets leads to the generation of a solution set with 9 solutions as shown in
Table 2. As this table shows, in each combination, the values of the

Table 1
The characteristics of tasks τ1, τ2, τ3, and τ4 of Fig. 1.

Task Computation Time Task Size (CLB) Resource Usage (%)

τ1 17 5 35.71%
τ2 19 3 21.43%
τ3 20 12 85.71%
τ4 15 13 92.86%

Fig. 2. A simple schedule of the tasks of Table 1 with no FT techniques.

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

5

decision variables of the solutions are concatenated. In addition, each
combined solution leads to a specific objective function value that
should be calculated.

Finally, in the next section, it will be shown that the Cartesian
product of the solutions would generate some dominated solutions.
Hence, at this step, a filtering function is applied to remove the domi-
nated solutions after each combination. Due to simplicity, this filtering
is not shown in Table 2. After generating the solution set of FT tech-
niques, a solution that best meets system requirements is selected to be
applied to the running tasks by the underlying system middleware.

As it will be proved in the next sections, such a partitioning strategy
yields the same results as an exact optimization method is applied to the
whole task graph without partitioning it. Last but not least, it should be
noted that Step 1 (task graph segmentation) is done at design time.
Nevertheless, as the true Pareto set of FT techniques depends on the
reliability of tasks, both Step 2 and Step 3 are performed at runtime,
once the reliability of the tasks changes due to changes in the SER of the
environment.

The workflow of the proposed technique is shown in the flowchart
of Fig. 5. As this figure shows, a task graph application is developed first
at runtime followed by the task graph segmentation and the task graph
validation and verification. Next, at runtime, it is checked if the task
graph reliability and makespan meets system requirements. If so, the
task graph continues its normal execution. Otherwise, the proposed
technique is applied to select a set of FT techniques that best meets
system requirements for the running task graph. The modified task
graph is then rescheduled to be executed by the FPGA. Since the FPGA
might be operated in different orbital conditions, the SER of the en-
vironment might be changed which results in changing the task graph
reliability. Thus, the compliance of the task graphs is examined re-
peatedly.

4.3. Additive reliability objective function

In this study, the reliability (RTG) and makespan (MSTG) of task
graph TG are the objective functions of the optimization problem. Since
in the proposed solution each segment has its own decision variables,
the objective functions of the whole task graph should be obtained from
those of the different segments. Since Step 3 is performed at runtime,
rescheduling the whole task graph to obtain its reliability and

makespan leads to an increase in the time complexity of the proposed
solution. In order to cope with this complexity, a new strategy has been
proposed which is based on additive objective functions. With this
strategy, the values of the objective functions of the task graph are
obtained from summing the objective function values of the different
segments. The decomposability of reliability and makespan objective
functions are discussed in the current and the next subsections. In this
subsection, an additive reliability objective function is derived by
which the reliability of the task graph can be obtained from the relia-
bility of the segments, regardless of the redundancy level of the tasks.

In this work, it has been assumed that the initial reliability of a
hardware task τi (denoted as Ri) depends on the characteristics of the
task and the SER of the environment, and it is obtained from the re-
liability model presented in [42]. It is noteworthy to state that any
other reliability estimation methods can be used instead to estimate Ri

[31,32], since they are orthogonal to the solution presented in this
paper. In this work, the reliability of tasks is increased by applying
replication-based FT techniques. As mentioned before, each decision
variable ri indicates the redundancy level of task τi. Thus, by replicating
task τi for ri times, using the out of r1 i FT scheme, the reliability
of task τi after applying FT techniques (denoted as Ri) is given by [43]:

=
=

R
r
k R R() (1)i

k

r
i

i
k

i
r k

1

i
i

(4)

Without losing generality, suppose each hardware task is a segment.
Therefore, assuming the task graph is executed successfully if all the
tasks are executed without any failure, the reliability of the task graph
TG after applying FT techniques is obtained from the product of relia-
bility of its segments, regardless of the redundancy level of the tasks
[44], as:

= =
=

R R r
k R R* (1)TG

TG
i

TG k

r
i

i
k

i
r k

1i i

i
i

(5)

On the one hand, the objective functions should be additive in the
proposed technique. On the other hand, since the definitions of op-
timality presented in the previous section are in terms of minimization,
the objective functions should be defined in terms of minimization as
well. It is clear that the reliability objective function of Eq. (5) is not
additive and also it is used in the reliability maximization optimization

Fig. 3. A schedule of the tasks of Table 1 with applying DWC technique to task τ1 and TMR technique to task τ2.

Fig. 4. A schedule of the tasks of Table 1 with applying DWC technique to task τ3.

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

6

problems. The inverse of reliability is a good alternative objective
function that can be used in minimization optimization problems. Thus,
an inverse reliability objective function (denoted by +IRTG) has been
presented in Proposition 1 which is additive and its minimization
generates the same optimization solutions that the maximization of the
original reliability objective function of Eq. (5) generates.
Proposition 1. The inverse reliability objective function +IRTG is additive
and its minimization generates the same optimization solutions as the
maximization of the reliability objective function R*TG.

Proof. : Since R*TG is in terms of maximization, R1/ *TG can be used in
minimization optimization problems. In other words, the minimization
of R1/ *TG is the same as the maximization of R*TG. Thus, let define the
inverse reliability of task graph TG as: =IR R* 1/ *TG TG. Therefore, we
have:

= =IR R R* 1/ * 1/TG TG
TG

i
i (6)

Assume +IRTG is an additive inverse reliability objective function that
is monotonically equivalent to IR*TG. Monotonic equivalency means that
if <IR IR* *TG TG1 2 then <+ +IR IRTG TG1 2. Therefore, a set of decision variables
minimizing IR*TG leads to the minimization of +IRTG as well. In order to
transform the inverse reliability objective function (IR*TG) to a
monotonically equivalent additive one (+IRTG), a logarithmic
transformation has been applied to the objective function of Eq. (6), as:

= = =

=

+IR IR R R

R

log * log 1/ log 1 log

log

TG TG
TG

i
TG

i

TG
i

i i

i (7)

By this transformation, +IRTG is obtained from the negative of
summation of the logarithm of the segments' reliability. +IRTG uses a
logarithmic transformation which is a monotonic transformation and
conserves the rank order of the solutions. Thus, the minimization of

+IRTG generates the same optimization solutions as the maximization of
R*TG. Since +IRTG is additive and it has been presented in terms of
minimization, it can be easily used by the presented approach. Finally,
by using the assumption used in Eq. (5), the inverse reliability of a
segment (+IRSGj) can be obtained as =+IR RlogSG SG ij i j

. Thus,
regardless of the redundancy level of the tasks, we have

=+
=

+IR IRTG i
m

SG1 i, where m is the number of segments. □

4.4. Additive makespan objective function

Makespan is another objective function of the presented problem.
Proposition 2 establishes that the makespan of the whole task graph can
be always obtained as the summation of the segments’ makespan, re-
gardless of the redundancy level of the tasks.
Proposition 2. In the case of synchronous task graphs,

= =MS MSTG i
m

SG1 i, regardless of the redundancy level of the tasks.
Proof. : The proof is easy and straightforward. Let MSSGi denote the

makespan of SGi. In synchronous task graphs, the hardware tasks of a
segment should be joined before starting the next segment. In other
words, the segments are executed serially and a segment does not start
its execution until the execution of all tasks of the previous segment and
their redundancies finishes. Thus, since the segments cannot execute in
parallel, we will have = =MS MSTG i

m
SG1 i. □

As it will be shown, both the additive reliability and makespan
objective functions are used by the proposed segment-technique to gen-
erate the true Pareto set of FT techniques. Next, some propositions have
been presented to address this question: “Is it possible to generate the true
Pareto set of the whole task graph by partitioning the task graph into multiple
segments, optimizing each segment separately, and then combining and fil-
tering out the obtained solutions?”

5. True Pareto set generation for synchronous task graphs

As it was shown, there are two additive objective functions to be
minimized in the presented problem: the inverse reliability of the task

Table 2
An example of the Cartesian product of two solution sets.

Solution Set B
SM f B(), ()ok 1 DWC f B(), ()ok 2 TMR f B(), ()ok 3

(SM, TMR), (SM, TMR, SM), (SM, TMR, DWC), (SM, TMR, TMR),
f A()ok 1 f A B(,)ok 1 1 f A B(,)ok 1 2 f A B(,)ok 1 3

Solution set A (DWC, DWC), (DWC, DWC, SM), (DWC,DWC, DWC), (DWC, DWC, TMR),
f A()ok 2 f A B(,)ok 2 1 f A B(,)ok 2 2 f A B(,)ok 2 3

(TMR, TMR), (TMR, TMR, SM), (TMR, TMR, DWC), (TMR, TMR, TMR),
f A()ok 3 f A B(,)ok 3 1 f A B(,)ok 3 2 f A B(,)ok 3 3

Fig. 5. Flowchart of the proposed technique workflow.

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

7

graph (+IRTG) and makespan of the task graph (MSTG). For simplicity, in
the rest of the paper, f X()o1 denotes one of the objective functions and
f X()o2 denotes the other one, where X is a decision variable set of TG. In
other words, the general optimization problem is
Min f X Min f X{ (), ()}o o1 2 .
When the objective functions are denoted as additive functions,

there exist several properties of the non-dominated solutions obtained
from the presented segment-technique. Propositions 3–5 will discuss
these properties in detail. In these propositions, it is assumed that

= ==f x f x k() (), {1, 2}o i
m

o i1k k , where xi ∈ Xi and =X Xi m i.
The first property relates to the true Pareto set coverage. In this

regard, Proposition 3 proves that the proposed technique guarantees
the generation of the true Pareto set.
Proposition 3. Any non-dominated solution of the true Pareto set of the
whole task graph can be obtained from the Cartesian combination of non-
dominated solutions of the true Pareto set of the segments, given objective
functions = ==f x f x k() (), {1, 2}o i

m
o i1k k .

Proof. : As mentioned before, in the presented technique, the true
Pareto set of the segments is generated separately using an exact
optimization method. Thus, the optimization problem of the segment
SGi is formulated as Min f X Min f X X X{ (), () | }o i o i i1 2 . Suppose NDS
is the set of non-dominated solutions of the true Pareto set of the
original task graph and NDSSGi is the set of non-dominated solutions of
the true Pareto set of segment SGi. In addition, suppose NDSC is the non-
dominated solutions set generated from applying the Cartesian operator
to non-dominated solutions of the segments. In other words

= × … ×NDS NDS NDSC SG SGm1 (8)

where × is the Cartesian product operator. Now, assuming there exists
a solution x′ ∈ NDS but x′∉NDSC, the proof is by contradiction. Since
x′ ∈ NDS, then <f x f x() ()o o1 1 and f x f x() ()o o2 2 , ∀x∉NDS. In addition,
without losing generality, suppose there exist two segments, e.g.,

=SG SG SG{ , }1 2 . In this case, =x x x(,)1 2 . Since the objective
functions are additive, we have + < +f x f x f x f x() () () ()o o o o1 2 1 21 1 1 1 .
There exist four different scenarios to satisfy this expression:

1) <f x f x() ()o o1 11 1 and f x f x() ()o o2 21 1

2) f x f x() ()o o1 11 1 and <f x f x() ()o o2 21 1

3) f x f x() ()o o1 11 1 and <f x f x() ()o o2 21 1

4) <f x f x() ()o o1 11 1 and f x f x() ()o o2 21 1

In order to prove the proposition, it has to be shown that there
cannot exist an x′ ∈ NDS but x′∉NDSC. The first two scenarios indicate
that NDSSG1 and NDSSG2 include x1 and x2 or better solutions with re-
spect to the objective function fo1. The former circumstance is a con-
tradiction to the assumption that x′∉NDSC because, as indicated by
Eq. (8), NDSC is obtained from the Cartesian combination of non-
dominated solutions of the segments. The latter circumstance is a
contradiction to the assumption that x′ ∈ NDS because a better solution
implies that x′ has been dominated. In the last two scenarios, there is a
solution which dominates x′, i.e., x x(,)1 2 and x x(,)1 2 are both better
than x′, which is a contradiction to the original assumption that
x′ ∈ NDS. These four scenarios can also be followed for <f x f x() ()o o2 2
and the last two ones for =f x f x() ()o o2 2 to complete the proof. □

Although Proposition 3 guarantees the generation of the true Pareto
set, some of the solutions achieved by the Cartesian combination might
be dominated, as shown by Proposition 4.
Proposition 4. Some solutions obtained from the Cartesian combination of
non-dominated solutions of the segments (NDSC) might be dominated.

Proof. : The proposition can be proved by contradiction. Let
f x f x((), ())o ij o ij1 2 denote the objective function values of the jth non-
dominated solution of segment SGi. Assume there exist two segments,
each of which contains two non-dominated solutions, with the objective
function values f x f x((), ())o o11 111 2 and f x f x((), ())o o12 121 2 for the first
segment, and the objective function values f x f x((), ())o o21 211 2 and

f x f x((), ())o o22 221 2 for the second one. Since each segment has two non-
dominated solutions, the solutions of the first segment should meet

<f x f x() ()o o11 121 1 and >f x f x() ()o o11 122 2 , and the solutions of the second
segment should meet >f x f x() ()o o21 221 1 and <f x f x() ()o o21 222 2 . Four
different objective function values can be achieved from the Cartesian
combination of these non-dominated solutions as:

1) = + +f x x f x x f x f x f x f x((,), (,)) (() (), () ())o o o o o o11 21 11 21 11 21 11 211 2 1 1 2 2
2) = + +f x x f x x f x f x f x f x((,), (,)) (() (), () ())o o o o o o11 22 11 22 11 22 11 221 2 1 1 2 2
3) = + +f x x f x x f x f x f x f x((,), (,)) (() (), () ())o o o o o o12 21 12 21 12 21 12 211 2 1 1 2 2
4) = + +f x x f x x f x f x f x f x((,), (,)) (() (), () ())o o o o o o12 22 12 22 12 22 12 221 2 1 1 2 2

Now, assume that all these combined solutions are non-dominated.
It means that in the comparison of these combined solutions, for ex-
ample, if <f x f x() ()o o1 1 , then >f x f x() ()o o2 2 and vice versa. Thus, let us
violate the assumption of the proposition through a numerical example.
Suppose, the objective function values of non-dominated solutions of
the segments are as follow:

1) =f x f x((), ()) (1, 2)o o11 111 2
2) =f x f x((), ()) (3, 1)o o12 121 2
3) =f x f x((), ()) (3, 5)o o21 211 2
4) =f x f x((), ()) (4, 3)o o22 221 2

These values indicate that the solutions of the segments are non-
dominated. Nevertheless, the combination of x11 with x22,
f x x f x x((,), (,))o o11 22 11 221 2 , dominates the combination of x12 with x21,
f x x f x x((,), (,))o o12 21 12 211 2 , which is in contradiction to the assumption of
the proposition. In other words, + +(1 4, 2 3) dominates

+ +(3 3, 1 5). □

As the Cartesian combination of non-dominated solutions would
generate some dominated solutions, a filtering operation is required to
remove any dominated solutions from the obtained solution set. Initial
experiments revealed that sequentially removing dominated solutions
after the Cartesian combination of two solution sets performs much
faster than removing dominated solutions at once, after Cartesian
combinations of all the solution sets. Proposition 5 shows that removing
dominated solutions after each Cartesian combination of two solution
sets does not miss any non-dominated solution of the true Pareto set.
Proposition 5. Removing dominated solutions after each Cartesian
combination of non-dominated solutions of segments, does not lead to any
failure in identifying the non-dominated solutions of the true Pareto set.

Proof. : Assume x′ ∈ NDS. Therefore, <f x f x() ()o o1 1 and f x f x() ()o o2 2 ,
∀x∉NDS. The proof is by contradiction. Let us consider a case consisting
of three segments, where x x and x NDS, ,i i i SGi. Following
Proposition 3, we have:

+ + < + +f x f x f x f x f x f x() () () () () ()o o o o o o1 2 3 1 2 31 1 1 1 1 1

Now assume there exists a solution =x x x(,)1 2 in the Cartesian
combination of segments SG1 and SG2 which dominates

+f x f x() ()o o1 21 1 , i.e., + < +f x f x f x f x() () () ()o o o o1 2 1 21 1 1 1 . Therefore
=x x x(,)1 2 is removed from the solution set. Nevertheless, the

combination of =x x x(,)1 2 and x3 will dominate x′, i.e.

+ + < + +f x f x f x f x f x f x() () () () () ()o o o o o o1 2 3 1 2 31 1 1 1 1 1

Therefore, x′ cannot be within the NDS which is a contradiction. □

In summary, the proposed segment-technique can generate all the
non-dominated solutions of the true Pareto set iff the objective functions
are additive, i.e., = ==f x f x k() (), {1, 2}o i

m
o i1k k . In this case,

Proposition 3 guarantees that the true Pareto set of the whole task graph
can be obtained from the Cartesian combination of non-dominated
solutions of the true Pareto set of the segments. Proposition 4 shows that
this Cartesian combination would generate dominated solutions that
need to be removed. Finally, Proposition 5 states that removing

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

8

dominated solutions after each combination does not result in missing
any non-dominated solutions of the true Pareto set.

6. Experiments

6.1. Experimental setup

The proposed segment-technique has been evaluated by conducting
several simulations on real-world and synthetic synchronous task
graphs. In the experiments, Montage, Epigenomic, LIGO, and
Cybershake applications have been used as real-world task graphs [45].
The Montage has an application in astronomy and the Cybershake is
used in characterizing the earthquake hazards in an area. The Epige-
nomic has an application in biology and the LIGO analyzes the unified
data obtained from compact binary systems. These task graphs differ in
their core structure, as shown in Fig. 6. In addition, some real-world-
inspired task graphs have been generated randomly for the experi-
ments. In this regard, the standard P-Method [46] has been used to
generate realistic task graphs. P-Method is based upon a task graph
adjacency matrix which is constructed by a probabilistic process. In P-
Method, a Bernoulli process with connectivity parameter c (0 ≤ c≤ 1)
has been used to determine the connectivity among tasks.

In the experiments, the Xilinx™ Virtex-5 XUPV5LX110T FPGA [47]
has been used to simulate a realistic reconfigurable computer. This
device has 160 rows and 54 columns of CLBs in which each CLB group
has 20 CLBs. As a result, there exist 8 CLB groups in each column. The
experiments made by our research group shows that the time required
to reconfigure a CLB group is 3.53 ms [9].

Different simulations have been carried out on both real-world and
randomly-generated task graphs to evaluate the effectiveness of the
proposed technique. In this regard, the scheduling of a task graph on
the underlying FPGA without applying any FT techniques has been si-
mulated on a PC to obtain the initial reliability and makespan of the
task graph. Reliability has been obtained using Eq. (1) and makespan
has been obtained using the ASAP scheduling strategy. The proposed
technique has then been applied to the task graph to obtain its true
Pareto set of FT techniques with reliability (Eq. (4)) and makespan as
objective functions. For random task graphs, in each experiment, 100
different task graphs have been examined and the average of the ob-
tained results has been presented as the final result.

These experiments correspond to the system testing life cycle which
is done at both design time and runtime. Thus, the steps of the system
testing life cycle [48] and its corresponding operations in the experi-
ments are shown in Table 3.

In the first experiment, the positive effects of the proposed tech-
nique on the reliability of task graphs without makespan degradation
have been examined. Then, the segment-technique has been compared
with the enumeration-based Pareto technique to demonstrate the effi-
ciency of the proposed technique (in terms of time complexity) in
generating the true Pareto set of FT techniques. The proposed solution
has then been applied to medium- and large-size task graphs and its
results have been compared with three well-known evolutionary algo-
rithms. Finally, the proposed segment-technique has been evaluated in
harsh environments with dynamic SERs to demonstrate how it yields
better reliability and makespan compared to state-of-the-art adaptive
FT techniques. For the experiments, the SERs reported in [9] have been
used. However, since the first three experiments require just one SER,
the average of the minimum SER (E1.0 7) and the maximum SER
(E5.0 5) is used in them.

All the aforementioned techniques have been implemented using
C# 5.0 and have been experimented on Windows 10 operating system
on a computer equipped with 4 GB RAM and Intel Core i5 processor
(2.4 GHz, 3 MB cache).

6.2. Comparison with no FT technique (MTTF improvement)

The positive effects of the proposed segment-technique on improving
the MTTF of task graphs without degrading their makespan have been
examined in the first experiment. Thus, the task graphs have been first
scheduled without applying any FT techniques to obtain their initial
MTTF and makespan as the point of reference. Then, the true Pareto set
of FT techniques of the task graphs have been generated using the
proposed segment-technique. These FT techniques lead to different re-
liability and makespan tradeoffs. Thus, in this experiment, a solution
that has the same makespan of the initial schedule but yields better
reliability has been chosen from the solutions of the true Pareto set.

In this experiment, the real-world task graphs Montage,
Epigenomic, LIGO, and Cybershake have been first examined in-
dividually. The obtained results are presented in Fig. 7. The obtained
results demonstrate the ability of the proposed technique in improving
the reliability of the task graphs without adversely affecting their ma-
kespan. In other words, by choosing appropriate FT techniques for each
hardware task, the MTTF of these task graphs has been improved up to
68.73% but their makespan has not been prolonged.

In SRAM-based FPGAs, the reliability of task graphs is affected by
different characteristics of hardware tasks [42]. Thus, more experi-
ments have been conducted to disclose how the task CLB count and the
task computation time affect the reliability improvement obtained by
the proposed technique. It is worth noting to remark that the impacts of
the task size and the task configuration delay have not been experi-
mented separately since they depend on the task CLB count.

In this experiment, hardware tasks with 50 to 1500 CLBs have been
used for the task graph generation. The results of this experiment are
depicted in Fig. 8. The results show that the proposed technique im-
proves the MTTF of the task graphs from 28.24% to 92.28% without
prolonging their makespan. The results demonstrate that by using op-
timal FT techniques generated by the proposed technique, it is possible
to hold the makespan of task graphs constant while their MTTF is im-
proved substantially.

In the next experiment, hardware tasks with computation times
from 50 ms to 500 ms have been examined whose results are illustrated
in Fig. 9. The obtained results show moderate improvements for task

Fig. 6. Structure of four real-world task graphs [41].

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

9

graphs and these improvements increase by increasing the tasks’ com-
putation time. Similar to the previous experiments, in this experiment
too, the MTTFs have been improved without prolonging the makespan.
Nevertheless, supplementary experiments have shown that the config-
uration delay of tasks is a serious obstacle to the reliability and ma-
kespan optimization problem. In other words, the MTTF improvement

of task graphs without degrading their makespan will be more sig-
nificant when such configuration delays are alleviated [49]. The reason
is that when the configuration delay of tasks is low, more tasks can be
replicated with the lowest impact (in some cases no impact) on the task
graph makespan. It gives more opportunity for replicating tasks that
leads to more MTTF improvements.

6.3. Comparison with optimal FT technique (Time complexity)

As mentioned before, the enumeration-based Pareto technique pre-
sented in [9] is an exact method for the reliability and makespan op-
timization problem of general task graphs. It uses an exhaustive search
strategy and analyzes the task graph as a whole to obtain the true Pareto
set of FT techniques. In contrast, in our proposed technique, all non-
dominated solutions of the segments of a synchronous task graph are
first obtained separately and then sequentially combined to obtain the
final true Pareto set of FT techniques. It also has been proved that such a
strategy yields the same results as an exact method yields for the whole
synchronous task graph. The enumeration-based Pareto technique suffers
from the time complexity and its computation time increases ex-
ponentially by increasing the number of tasks. Thus, in this experiment,
both real-world task graphs and the randomly-generated ones have
been examined to compare the computation time of the proposed seg-
ment-technique with that of the enumeration-based Pareto technique.

In this experiment, several random task graphs which consist of 4 to
30 tasks have been first generated and examined whose obtained results
are shown in Table 4. In the results, for each task count, the average
number of non-dominated solutions and the computation times of both
the proposed segment-technique and the enumeration-based Pareto tech-
nique [9] have been presented. The obtained results demonstrate that
our proposed technique has much lower computation time and this
improvement is more significant when the number of tasks increases.
By increasing the number of tasks, the computation time of the enu-
meration-based Pareto technique increases drastically (on average, 5.23X
for each step). The reason is that this technique enumerates all possible
FT techniques for all the tasks and then selects the non-dominated ones

Table 3
The system testing life cycle of the experiments.

Step Operations Stage

Requirement Analysis Goal: testing task graphs on SRAM-based FPGAs in environments with dynamic SERs Design time
Test Planning Determining reliability and makespan as objective functions (testing goals) Design time
Test Case Development Determining the underlying FPGA and preparing target task graphs Design time
Test Environment Setup Measuring the current SER of the environment. Runtime
Test Execution Applying the proposed technique over task graphs and the underlying FPGA by considering the SER Runtime
Test Closure Obtaining the solution set of FT techniques and selecting the best one Runtime

Fig. 7. The MTTF improvement achieved for real-world task graphs.

Fig. 8. The impacts of task size (CLB count) on the MTTF improvement.

Fig. 9. The impacts of task computation time on the MTTF improvement.

Table 4
Comparison of the computation time of the presented technique with the enu-
meration-based Pareto technique presented in [9] over random task graphs with
different number of tasks.

#Tasks #Solutions Exact Segment

4 18.12 13 ms 21 ms
6 38.85 40 ms 26 ms
8 62.65 88 ms 33 ms
10 107.7 355 ms 54 ms
12 141.47 1.43 s 78 ms
14 187.63 5.68 s 103 ms
16 239.3 22.72 s 170 ms
18 346.08 1.51 min 209 ms
20 495.57 6.10 min 264 ms
22 748.56 24.23 min 303 ms
24 1018.31 1.61 hrs 352 ms
26 1452.45 6.47 hrs 436 ms
28 2136.94 25.87 hrs 512 ms
30 2893.73 4.41 days 584 ms

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

10

for the solution set. In contrast, our proposed technique uses an exact
optimization method for each segment separately which as a result, due
to the lower number of tasks in the segments, leads to better compu-
tation times.

Similar experiments have been conducted on real-world task graphs
whose results are presented in Table 5. As the results show, Montage
and Epigenomic both have 20 tasks (see Fig. 6). In this case, as the
enumeration-based Pareto technique does not pay attention to the shape
of task graphs and it just enumerates all possible FT techniques for all
tasks, its computation time is almost the same for them. In contrast,
although the number of tasks of these two task graphs is equal, our
presented technique takes almost different times for Montage and
Epigenomic task graphs (16% discrepancy). The reason is that, instead
of the whole number of tasks, the number of tasks in each segment most
contributes to the computation time of the proposed segment-technique.
The results also show that for larger task graphs (LIGO and Cyber-
shake), the enumeration-based Pareto technique cannot find all non-
dominated solutions in an acceptable time (we limited the computation
time to 7 days), whereas our presented technique finishes the compu-
tation in 961 ms on average.

6.4. Comparison with evolutionary algorithms (GA, PSO, ant colony)

Evolutionary algorithms do not guarantee the generation of exact
solutions for optimization problems but they take reasonable compu-
tation times. Thus, in the third set of experiments, the performance of
the proposed technique has been compared with that of three well-
known evolutionary and stochastic optimization techniques Non-domi-
nated Sorting Genetic Algorithm II (NSGA-II) [50], Particle Swarm Opti-
mization (PSO) [51], and Ant Colony Optimization (ACO) [52]. These
evolutionary algorithms have been selected as their performance in the
reliability optimization problems has been demonstrated [53].

In this experiment, the true Pareto set of FT techniques has been first
generated by applying the proposed segment-technique to medium- and
large-size task graphs with 25–100 tasks. Then, NSGA-II, PSO, and ACO
techniques have been applied to the same task graphs to obtain non-
dominated solution sets. Since these evolutionary algorithms are sto-
chastic and do not guarantee to yield optimal results, their obtained
solutions might be different from those of the true Pareto set. Thus, two
metrics have been used for the evaluation: Recall which denotes what
percent of solutions of the true Pareto set is generated by the evolu-
tionary algorithms and Precision which denotes what percent of solu-
tions generated by the evolutionary algorithms belongs to the true
Pareto set.

As mentioned before, the exploration space of the presented pro-
blem increases drastically by increasing the number of tasks. Thus, as
the evolutionary algorithms search the exploration space stochastically,
in this experiment, the computation time, as well as the recall and
precision of the proposed technique, have been compared with those of
the evolutionary algorithms.

The obtained results are tabulated in Table 6. In this table, first, the
time required to generate the true Pareto set using our proposed tech-
nique has been presented. Then, the results obtained from NSGA-II,
PSO, and ACO techniques have been shown. For this purpose, these
techniques have been run for different time spans from 30 s to 1 hour to
see how their evolution affects the recall and precision of the solutions.

As the proposed segment-technique generates the true Pareto set, it
has been used as the point of reference (with recall and precision equal
to 1). The evolutionary algorithms have been continuously run for 30 s,
1 min, 5 min, 10 min, 30 min, and 1 hour to generate non-dominated
solutions. As the results of Table 6 show, the presented segment-tech-
nique, on average, takes 57 ms for task graphs with 10 tasks and takes
9.65 s for task graphs with 100 tasks. In contrast, not only the evolu-
tionary algorithms take much more time for generating non-dominated
solutions but also their obtained solutions are sub-optimal. For ex-
ample, in the case of task graphs with 10 tasks, the best obtained result

devotes to PSO with Recall = 93.83% and Precision = 97.51%, which
has been obtained after 1 hour of computation. In addition, by in-
creasing the number of tasks, the recall and precision of the evolu-
tionary algorithms have been decreased. For example, by having 50
tasks in task graphs, after 1 hour of computation, the best recall and
precision are 28.63% and 83.14%, respectively, whereas in this case,
our proposed technique generates the true Pareto set in 1.28 s on
average. With 75 tasks, PSO and ACO have not found any solutions and
the NSGA-II in the best case has found only 0.16% of the solutions.
Besides, in the case of 100 tasks, no solutions have been found by the
evolutionary algorithms. The reason is that, as presented in [9], with n
tasks and three redundancy levels (no FT, DWC, and TMR), the search
space will contain 3n different cases. Thus, it is very unlikely, if not
impossible, to find true solutions among 3100 ≈ 5.15E47 cases using a
stochastic approach. Finally, the average and maximum recall and
precision values obtained by the evolutionary algorithms have been
presented at the bottom of the table. The obtained results show that the
proposed technique features efficient computation time and yields exact
solutions. Thus, it is suitable to be used at runtime in systems operating
in environments with dynamic and unpredicted SERs, as it will be
shown in the next subsection.

6.5. Comparison with adaptive technique

As mentioned before, the SER of the environment affects the relia-
bility of hardware tasks. An adaptive FT technique named three-mode
adaptive strategy has been presented in [19] for space mission computer
systems operating in environments with dynamic SERs. This technique
divides the range of SERs of the environment into three intervals and in
each interval applies a fixed FT technique to the tasks. For this purpose,
it first estimates the minimum and maximum SER of the environment
during the mission. Then, no FT technique is applied at runtime when
the current SER is less than 10% of the expected SER range. It applies
TMR when the current SER is more than 50% of the expected SER
range. Otherwise, the tasks are duplicated.

In the fourth set of experiments, the true Pareto set of FT techniques
generated by the proposed technique has been compared with the three-
mode adaptive strategy. For this purpose, the SER of four solar conditions
(Solar Max, Worst Week, Worst Day, and Peak 5-Min) of five orbits
(GEO, GPS, MOL, Polar, and LEO) are used [49]. However, for simpli-
city, a representative subset of them are presented in this section. In this
experiment, for different SERs, the adaptive strategy has been applied
to task graphs and their reliability and makespan have been obtained.
Then, the proposed segment-technique has been applied to the task
graphs to generate the true Pareto set of FT techniques from which two
solutions are chosen: 1) The solution that increases the reliability
without prolonging the makespan, and 2) The solution that decreases
the makespan without degrading the reliability. The results of the ex-
periment are illustrated in Fig. 10.

As Fig. 10 shows, in the first SER range (0% – 10%), the adaptive
strategy has not applied any FT techniques to the tasks. Therefore, it is
not possible to further improve the makespan using the proposed seg-
ment-technique. However, the proposed technique yields significant
MTTF improvements without degrading makespan. In the next SER
ranges (10 – 50% and 50 – 100%), both makespan and MTTF of the task

Table 5
Comparison of the computation time of the presented technique with the enu-
meration-based Pareto technique presented in [9] over real-world task graphs.

Task Graph #Tasks #Solutions Exact Segment

Montage 20 386 6.71 min 141 ms
Epigenomic 20 465 6.66 min 168 ms
LIGO 40 8755 NaN 894 ms
Cybershake 36 5642 NaN 402 ms

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

11

graphs have been improved without deteriorating the other metric.
Besides, within a given SER range, the amount of MTTF and makespan
improvements are increased by increasing the SER. The results show
that even though the adaptive strategy has positive effects on the
system reliability in environments with dynamic SERs, the proposed
segment-technique yields better reliability and makespan, and, due to its
efficient computation time, it is suitable to be used at runtime in sys-
tems operating in SER-varying environments.

7. Conclusions

In this paper, a segment-technique has been presented to address the
problem of reliability and makespan optimization of synchronous task
graphs running on SRAM-based FPGAs in environments with dynamic
and unpredicted SERs. In these systems, once the SER changes a new set
of FT techniques should be generated at runtime to be applied to the

running tasks in order to adjust the system reliability and performance.
The presented approach generates the true Pareto set of FT techni-

ques in three steps including the task graph segmentation, generating
the true Pareto set of the segments separately, and finally combining
solutions of the segments using the Cartesian product operator and
removing dominated ones from the solution set. In this regard, it has
been proved that such a strategy generates the true Pareto set as an
exact method generates for the whole task graph with low time com-
plexity.

Different experiments have been conducted to evaluate the effi-
ciency of the proposed technique. Thus, the first set of experiments
have been performed to demonstrate the positive impacts of the pro-
posed solution on the system reliability. The obtained results show that
by using optimal FT techniques generated by the proposed technique, it
is possible to improve the MTTF of task graphs by 46.30% on average
without deteriorating their makespan. The second and the third set of

Table 6
Comparison of the proposed technique with evolutionary algorithms NSGA-II, PSO, and ACO.

#Tasks → 10 25 50 75 100
Metric → Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

Iteration EAs ↓ Proposed Technique 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
57 ms 373 ms 1.28 s 3.32 s 9.65 s

30 s NSGA-II 55.10% 78.45% 50.12% 73.66% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
PSO 51.44% 76.54% 47.13% 75.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ACO 49.14% 80.32% 31.24% 66.14% 0.91% 12.50% 0.00% 0.00% 0.00% 0.00%

1 min NSGA-II 88.24% 96.09% 69.44% 86.49% 1.45% 18.12% 0.00% 0.00% 0.00% 0.00%
PSO 82.63% 87.14% 65.63% 82.16% 0.98% 23.12% 0.00% 0.00% 0.00% 0.00%
ACO 78.92% 83.56% 66.14% 89.14% 4.52% 53.16% 0.00% 0.00% 0.00% 0.00%

5 min NSGA-II 92.41% 96.88% 73.65% 86.76% 19.89% 72.63% 0.02% 0.15% 0.00% 0.00%
PSO 90.93% 94.16% 72.55% 83.14% 21.12% 69.12% 0.00% 0.00% 0.00% 0.00%
ACO 88.56% 93.77% 71.44% 90.32% 24.16% 83.14% 0.00% 0.00% 0.00% 0.00%

10 min NSGA-II 92.65% 96.89% 75.29% 85.38% 22.90% 73.85% 0.09% 0.26% 0.00% 0.00%
PSO 92.78% 97.42% 75.66% 84.13% 24.16% 74.16% 0.00% 0.00% 0.00% 0.00%
ACO 91.42% 94.86% 72.12% 89.86% 25.85% 82.96% 0.00% 0.00% 0.00% 0.00%

30 min NSGA-II 92.69% 96.87% 75.35% 85.39% 24.12% 76.32% 0.13% 0.31% 0.00% 0.00%
PSO 93.75% 97.16% 76.14% 84.52% 27.16% 81.96% 0.00% 0.00% 0.00% 0.00%
ACO 91.43% 95.14% 73.06% 90.16% 26.74% 83.14% 0.00% 0.00% 0.00% 0.00%

1 h NSGA-II 92.71% 96.87% 75.35% 85.39% 25.95% 77.66% 0.16% 0.39% 0.00% 0.00%
PSO 93.83% 97.51% 76.14% 84.52% 28.63% 84.12% 0.00% 0.00% 0.00% 0.00%
ACO 91.49% 95.26% 73.13% 90.52% 26.74% 83.14% 0.00% 0.00% 0.00% 0.00%

Total EAs Average 82.39% 90.85% 69.27% 85.18% 16.96% 58.28% 0.02% 0.06% 0.00% 0.00%
Max 93.83% 97.51% 76.14% 90.52% 28.63% 84.12% 0.16% 0.39% 0.00% 0.00%

Fig. 10. MTTF and makespan improvements of the proposed technique over three-mode adaptive strategy [19] (left y-axis scale is logarithmic).

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

12

experiments have demonstrated the efficient computation time of the
proposed solution for small-, medium-, and large-size task graphs with
respect to other exact and evolutionary optimization methods. Finally,
supplementary experiments have been performed to reveal the positive
impacts of the proposed technique on the runtime systems that are
employed in environments with dynamic and unpredicted SERs. The
obtained results have demonstrated that the presented approach gains
better reliability and makespan over state-of-the-art adaptive FT tech-
niques with a reasonable time in dynamic environments.

The presented approach is limited to synchronous task graphs. Thus,
proposing efficient solutions for generating the true Pareto set of FT
techniques for general task graphs is recommended as a direction for
future work.

Declaration of Competing Interest

None.

References

[1] Ramezani R. Dynamic scheduling of task graphs in multi-FPGA systems using cri-
tical path. J Supercomput 2020:1–22. https://doi.org/10.1007/s11227-020-
03281-3.

[2] Engelen S, Gill E, Verhoeven C. On the reliability, availability, and throughput of
satellite swarms. IEEE Trans Aerosp Electron Syst 2014;50(2):1027–37.

[3] Ramezani R. A prefetch-aware scheduling for FPGA-based multi-task graph systems.
J Supercomput 2020;76:7140–60. https://doi.org/10.1007/s11227-020-03153-w.

[4] Jung S, Choi JP. Predicting system failure rates of SRAM-based FPGA on-board
processors in space radiation environments. Reliab Eng Syst Safety
2019;183:374–86.

[5] Gao Z, Zhang L, Han R, Reviriego P, Li Z. Reliability Evaluation of Turbo Decoders
Implemented on SRAM-FPGAs. 38th VLSI Test Symposium (VTS). IEEE; 2020.
p. 1–6.

[6] Wei W, Namba K, Kim Y-B, Lombardi F. A Novel Scheme for Tolerating Single
Event/Multiple Bit Upsets (SEU/MBU) in Non-Volatile Memories. IEEE Trans
Comput 2016;65(3):781–90.

[7] Ghavidel A, Sedaghat Y, Naghibzadeh M. Hybrid scheduling to enhance reliability
of real-time tasks running on reconfigurable devices. J Supercomput
2020;76:4701–30.

[8] Ramezani R, Sedaghat Y, Naghibzadeh M, Clemente JA. A decomposition-based
reliability and makespan optimization technique for hardware task graphs. Reliab
Eng Syst Safety 2018;180:13–24.

[9] Ramezani R, Sedaghat Y, Naghibzadeh M, Clemente JA. Reliability and Makespan
Optimization of Hardware Task Graphs in Partially Reconfigurable Platforms. IEEE
Trans Aerosp Electron Syst 2017;53(2):983–94.

[10] System, Software, and Hardware Verification and Validation (Standard 1012-2016),
IEEE, 2016.

[11] Systems and Software Engineering - Life Cycle Processes - Requirements Engineering
(Standard 29148-2018), ISO/IEC/IEEE, 2018.

[12] General Principles of Reliability Analysis of Nuclear Power Generating Station Systems
and Other Nuclear (Standard 352-2016), IEEE, 2016.

[13] Pullum LL. Software fault tolerance techniques and implementation. Artech House;
2001.

[14] Chiang M-C, Huang C-Y, Wu C-Y, Tsai C-Y. Analysis of a Fault-Tolerant Framework
for Reliability Prediction of Service-Oriented Architecture Systems. IEEE Trans
Reliab 2020:1–36. https://doi.org/10.1109/TR.2020.2968884.

[15] Kastensmidt FL, Reis R. Fault-tolerance techniques for SRAM-based FPGAs.
Springer; 2007.

[16] Li T, Liu H, Yang H. Design and Characterization of SEU Hardened Circuits for
SRAM-Based FPGA. IEEE Trans Very Large Scale Integr (VLSI) Syst 2019.

[17] Zhao Z, Nguyen NT, Agiakatsikas D, Lee G, Diessel O. Fine-grained module-based
error recovery in FPGA-based TMR systems. ACM Trans Reconfig Technol Syst
(TRETS) 2018;11(1):4.

[18] Clark LT, Patterson DW, Ramamurthy C, Holbert KE. An embedded microprocessor
radiation hardened by microarchitecture and circuits. IEEE Trans Comput
2016;65(2):382–95.

[19] Jacobs A, Cieslewski G, George AD, Gordon-Ross A, Lam H. Reconfigurable fault
tolerance: a comprehensive framework for reliable and adaptive FPGA-based space
computing. ACM Trans Reconfig Technol Syst (TRETS) 2012;5(4):232–63.

[20] Mandal S, Sarkar S, Ming WM, Chattopadhyay A, Chakrabarti A. Criticality aware
soft error mitigation in the configuration memory of SRAM based FPGA. 2019 32nd
International Conference on VLSI Design and 2019 18th International Conference
on Embedded Systems (VLSID). IEEE; 2019. p. 257–62.

[21] In-system configuration of programmable devices (standard 1532-2002), IEEE, 2002.
[22] Morgan KS, et al. 10 Fault Tolerance Techniques and Reliability Modeling for

SRAM-Based FPGAs. Radiat Effects Semicond 2018:140.
[23] Zhang R, Xiao L, Li J, Cao X, Li L. An adjustable and fast error repair scrubbing

method based on xilinx essential bits technology for SRAM-based FPGA. IEEE Trans
Reliabil 2019;69(2):430–9.

[24] Yin J-Y, Guo G-C, Wu Y-X. A hybrid fault-tolerant scheduling algorithm of periodic
and aperiodic real-time tasks to partially reconfigurable FPGAs. International
Workshop on Intelligent Systems and Applications (ISA). IEEE; 2009. p. 1–5.

[25] Yin J, Zheng B, Sun Z. A hybrid real-time fault-tolerant scheduling algorithm for
partial reconfigurable system. J Comput (Taipei) 2012;7(11):2773–80.

[26] Ramezani R, Sedaghat Y. Scheduling periodic real-time hardware tasks on dynamic
partial reconfigurable devices subject to fault tolerance. 4th International
eConference on Computer and Knowledge Engineering (ICCKE). IEEE; 2014. p. 1–6.

[27] Jacobs A, Wulf N, George AD. Task scheduling for reconfigurable systems in dy-
namic fault-rate environments. High Performance Extreme Computing Conference
(HPEC). IEEE; 2013. p. 1–6.

[28] Vallero A, Carelli A, Di Carlo S. Trading-off reliability and performance in FPGA-
based reconfigurable heterogeneous systems. 13th International Conference on
Design & Technology of Integrated Systems In Nanoscale Era (DTIS). IEEE; 2018.
p. 1–6.

[29] Hoque KA, Mohamed OA, Savaria Y. Dependability modeling and optimization of
triple modular redundancy partitioning for SRAM-based FPGAs. Reliabil Eng Syst
Safety 2019;182:107–19.

[30] Ramezani R, Clemente JA, Sedaghat Y, Mecha H. Estimation of hardware task re-
liability on partially reconfigurable FPGAs. 16th European Conference on Radiation
and Its Effects on Components and Systems (RADECS). IEEE; 2016. p. 1–4.

[31] Héron O, Arnaout T, Wunderlich H-J. On the reliability evaluation of SRAM-based
FPGA designs. International Conference on Field Programmable Logic and
Applications (FPL). IEEE; 2005. p. 403–8.

[32] Ostler PS, et al. SRAM FPGA reliability analysis for harsh radiation environments.
IEEE Trans Nucl Sci 2009;56(6):3519–26.

[33] Kretzschmar U, Gomez-Cornejo J, Astarloa A, Bidarte U, Del Ser J. Synchronization
of faulty processors in coarse-grained TMR protected partially reconfigurable FPGA
designs. Reliab Eng Syst Safety 2016;151:1–9.

[34] Villalta I, Bidarte U, Gómez-Cornejo J, Jiménez J, Lázaro J. SEU emulation in in-
dustrial SoCs combining microprocessor and FPGA. Reliab Eng Syst Safety
2018;170:53–63.

[35] Lee J-Y, Feng Z, He L. In-place decomposition for robustness in FPGA. International
Conference on Computer-Aided Design (ICCAD). IEEE/ACM; 2010. p. 143–8.

[36] Garg H, Sharma S. Multi-objective reliability-redundancy allocation problem using
particle swarm optimization. Comput Ind Eng 2013;64(1):247–55.

[37] Kleinberg J, Tardos É. Algorithm design. India: Pearson Education; 2006.
[38] Omranian-Khorasani S, Naghibzadeh M. Deadline constrained load balancing level

based workflow scheduling for cost optimization. 2017 2nd IEEE International
Conference on Computational Intelligence and Applications (ICCIA). IEEE; 2017. p.
113–8.

[39] Kanagaraj K, Swamynathan S. Structure aware resource estimation for effective
scheduling and execution of data intensive workflows in cloud. Future Gener
Comput Syst 2018;79:878–91.

[40] Arabnejad V, Bubendorfer K, Ng B. Budget and deadline aware e-science workflow
scheduling in clouds. IEEE Trans Parallel Distrib Syst 2018;30(1):29–44.

[41] Adhikari M, Amgoth T. An intelligent water drops-based workflow scheduling for
IaaS cloud. Appl Soft Comput 2019;77:547–66.

[42] Ramezani R, Clemente JA, Franco FJ. Analytical Reliability Estimation of SRAM-
based FPGA Designs against Single-bit and Multiple-cell Upsets. Reliab Eng Syst
Safety 2020;202. https://doi.org/10.1016/j.ress.2020.107036.

[43] Shooman ML. Reliability of computer systems and networks: fault tolerance, ana-
lysis, and design. John Wiley & Sons; 2003.

[44] Liu G, Zeng Y, Li D, Chen Y. Schedule length and reliability-oriented multi-objective
scheduling for distributed computing. Soft Comput 2014:1–11.

[45] Singh V, Gupta I, Jana PK. A novel cost-efficient approach for deadline-constrained
workflow scheduling by dynamic provisioning of resources. Future Gener Comput
Syst 2018;79:95–110.

[46] Al-Sharaeh S, Wells BE. A comparison of heuristics for list schedules using the Box-
method and P-method for random digraph generation. 28th Southeastern
Symposium on System Theory. IEEE; 1996. p. 467–71.

[47] XilinxCorporation, "Virtex-5 FPGA Configuration User Guide, UG191 (v 3.11),"
online at:www.xilinx.com/support/documentation/user_guides/ug191.pdf, 2012.

[48] O'Regan G. Concise guide to software testing. Springer; 2019.
[49] Ramezani R, Sedaghat Y, Clemente JA. Reliability Improvement of Hardware Task

Graphs via Configuration Early Fetch. IEEE Trans Very Large Scale Integr (VLSI)
Syst 2017;25(4):1408–20.

[50] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182–97.

[51] Khalili-Damghani K, Abtahi A-R, Tavana M. A new multi-objective particle swarm
optimization method for solving reliability redundancy allocation problems. Reliab
Eng Syst Safety 2013;111:58–75.

[52] Zhao J-H, Liu Z, Dao M-T. Reliability optimization using multiobjective ant colony
system approaches. Reliab Eng Syst Safety 2007;92(1):109–20.

[53] Jahromi AE, Feizabadi M. Optimization of multi-objective redundancy allocation
problem with non-homogeneous components. Comput Ind Eng 2017;108:111–23.

R. Ramezani, et al. Reliability Engineering and System Safety 205 (2021) 107223

13

https://doi.org/10.1007/s11227-020-03281-3
https://doi.org/10.1007/s11227-020-03281-3
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0002
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0002
https://doi.org/10.1007/s11227-020-03153-w
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0007
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0007
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0007
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0013
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0013
https://doi.org/10.1109/TR.2020.2968884
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0015
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0015
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0016
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0016
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0022
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0022
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0028
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0028
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0028
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0028
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0034
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0034
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0034
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0035
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0035
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0037
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0038
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0038
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0038
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0038
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0039
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0039
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0039
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0040
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0040
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0041
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0041
https://doi.org/10.1016/j.ress.2020.107036
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0043
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0043
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0044
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0044
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0045
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0045
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0045
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0046
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0046
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0046
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0048
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0049
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0049
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0049
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0050
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0050
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0051
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0051
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0051
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0052
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0052
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0053
http://refhub.elsevier.com/S0951-8320(20)30724-9/sbref0053

	Exact and efficient reliability and performance optimization of synchronous task graphs
	1 Introduction
	2 Related work
	3 System model and illustrative examples
	3.1 Preliminary concepts
	3.2 Task and task graph model
	3.3 Reliability model
	3.4 Illustrative example

	4 Problem formulation
	4.1 Problem definition
	4.2 Outline of segment-technique
	4.3 Additive reliability objective function
	4.4 Additive makespan objective function

	5 True Pareto set generation for synchronous task graphs
	6 Experiments
	6.1 Experimental setup
	6.2 Comparison with no FT technique (MTTF improvement)
	6.3 Comparison with optimal FT technique (Time complexity)
	6.4 Comparison with evolutionary algorithms (GA, PSO, ant colony)
	6.5 Comparison with adaptive technique

	7 Conclusions
	Declaration of Competing Interest
	References

