
NUMERICAL ALGEBRA, doi:10.3934/naco.2020029
CONTROL AND OPTIMIZATION

NEURO-FUZZY ACTIVE CONTROL OPTIMIZED BY TUG OF

WAR OPTIMIZATION METHOD FOR SEISMICALLY EXCITED

BENCHMARK HIGHWAY BRIDGE

Mostafa Ghelichi∗, A. M. Goltabar and H. R. Tavakoli

Department of Civil Engineering

Noshirvani University of Technology, Babol, Iran

A. Karamodin

Department of Civil Engineering
Ferdowsi University of Technology, Mashhad, Iran

(Communicated by Gerhard-Wilhelm Weber)

Abstract. Control algorithms can affect the performance and cost-effectiveness

of the control system of a structure. This study presents an active neuro-fuzzy

optimized control algorithm based on a new optimization method taken from
Tug of War competition, which is highly efficient for civil structures. The

performance of the proposed control method has been evaluated on the finite

element model of a nonlinear highway benchmark bridge; which is consist-
ed of nonlinear structural elements and isolation bearings and equipped with

hydraulic actuators. The nonlinear control rules are approximated with a five-
layer optimized neural network which transmits instructions to the actuators

installed between the deck and abutments. The stability of control laws are

obtained based on Lyapunov theory. The performance of the proposed algo-
rithm in controlling bridge structural responses is investigated in six different

earthquakes. The results are presented in terms of a well-defined set of perfor-

mance indices that are comparable to previous methods. The results show that
despite the simple description of nonlinearities and non-detailed structural in-
formation, the proposed control method can effectively reduce the performance

indices of the structure. The application of artificial neural networks is a priv-
ilege, which in so far as which, despite their simplicity, they have significant

effects even on complex structures such as nonlinear highway bridges.

1. Introduction. Nowadays, in order to control the seismic behaviour of special
structures such as bridges and buildings, the stability of which should not be at risk
in earthquake, some techniques are widely utilized such as passive, semi-active and,
active or hybrid control. The related studies are mainly grouped in two categories:
(1) new control algorithms and (2) new control tools.
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As far as the cost of using an active control system in the construction of a
structure is extremely high, it is crucial to design an optimal algorithm as the brain
of control system.

Benchmark models have been provided as a suitable platform for comparing
the efficiency of the presented control methods. Benchmark problems were pro-
posed in the structural response control, firstly in the mid-1990s [38]. Then, they
dramatically developed in various fields such as seismically excited nonlinear build-
ings [34], wind-excited tall buildings [40], linear and nonlinear smart base-isolated
structures [29–31,37] and earthquake-excited cable-stayed bridge [3, 5].

A benchmark problem has been developed to control the seismically excited
nonlinear highway bridge based on an actual bridge in Southern California [32,39].
The reduction of bridge seismic responses with the installed friction piezoelectric
dampers was investigated [26]. These dampers are more successful in controlling
the bridge responses compared to MR dampers.

Instead of presenting control methods based on classical complex mathemati-
cal concepts to discover the nonlinear control rule, neural networks are presented
which, despite their simplicity in computing, are very successful in this area. Since,
in real-world applications, parameters of the mathematical formulation are due to
uncertainty, different numerical approaches have been proposed based on neural
networks to overcome the uncertainties. Basic Chance Constraint Programming
(BCCP) and Robust Fuzzy Chance Constraint Programming (RFCCP) models are
developed to handle uncertainties in both objective function and constraints. The
superiority of RFCCP over BCCP model is proven through solving examples [25].
An adaptive active control algorithm was presented for controlling the benchmark
nonlinear highway bridge [31]. Control force was calculated using a single layer
nonlinearly neural network including a derivative type controller. The neural net-
work was applied to estimate the nonlinear control laws rather than the system
nonlinearities. The results showed that the presented method can reduce the struc-
tural responses. To study the effectiveness of MR dampers controlled by semi-active
fuzzy controller subjected to near-fault ground motions, the genetic algorithm was
used to optimize the fuzzy rules and the fuzzy controller membership functions [8].
The results indicated that the optimized fuzzy controller could effectively reduce
the structural responses during near-fault earthquakes. Using neuro-fuzzy method
as a control algorithm also has a great influence on the control of structural behav-
ior [27].

Findings of these researches clearly indicate that the Neuro-fuzzy methods have
a very acceptable performance as a controller especially in optimized mode.

Despite the fact that several meta-heuristic optimization methods have been
presented, researchers have continued to improve the performance of these tech-
niques [6, 7, 10, 15–19, 36].In an effort to obtain non-dominated Pareto optimal so-
lutions, a novel meta-heuristic algorithm named Multi-Objective Dragonfly Algo-
rithm was utilized to optimize grinding process considering a tri-objective math-
ematical model. The results revealed that the proposed algorithm is able to find
non-dominated Pareto optimal solutions [21]. To solve the problem in medium
and large search space size, two novel hybrid metaheuristic algorithms, Sine Co-
sine Crow Search Algorithm (SCCSA) and Water Cycle Moth Flame Optimization
(WCMFO), are utilized. WCMFO uses very efficient operators which enable the
algorithm to explore and exploit the solution space very efficiently and decrease the
probability of trapping in local optima. [22]. Two novel meta-heuristics algorithms,
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named grey wolf optimization (GWO) and moth-flame optimization (MFO), are u-
tilized to solve the problems with different search space sizes. Based on the results,
MFO functions better in small and medium instances in terms of percentage of rela-
tive error; meanwhile, GWO is better in terms of relative percentage of deviation in
large-size test problems. [23]. A new hybrid algorithm called sinecosine crow search
algorithm that inherits advantages of two recently developed algorithms, including
crow search algorithm (CSA) and sinecosine algorithm (SCA) was presented. The
exploration and exploitation capabilities of the proposed algorithm have significant-
ly improved. [24].

Due to good performance of the adaptive neuro-fuzzy inference system (ANFIS)
in pattern recognition problems, in the proposed method an ANFIS was used as a
classifier at each level of separation which was trained by chaotic whale optimiza-
tion algorithm (CWOA). Intelligent utilization of new extracted features, improving
robustness of ANFIS and considering nine patterns in CCP recognition problem are
the main contributions of the proposed method [14]. Furthermore, ANFIS was used
to model the friction stir welding (FSW) process for automation. Few metaheuristic
algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO)
were applied to ANFIS system to fine-tune the internal parameters of ANFIS and
to make prediction more precise. PSO-ANFIS and GA-ANFIS models are in good
agreement with the experimental results [13]. The very immediate-short-term to
long-term influent flow rate are modelled and forecasted by a new developed hy-
brid model of ANFIS and Grey Wolf Optimizer (GWO). Concerning the influence
of ANFIS parameters on the forecasting accuracy, these parameters are adjusted
and optimized using Grey Wolf Optimizer (GWO). The results of this novel study
demonstrate that reliable estimates of influent flow rate from 5-min up to 10 days
in advance can be achieved using the developed direct and recursive hybrid GWO
models [4]. Artificial intelligence tools are improved with various meta-heuristic al-
gorithms including Particle Swarm Optimization (PSO), Genetic Algorithm (GA),
Invasive Weed Optimization (IWO), and Cultural Algorithm (CA) for accurate
prediction of demand for dairy products. From these, PSO exhibits a better perfor-
mance in feature selection and IWO shows the best performance in improving the
prediction tools by achieving the lowest error [9].

In a recent research, a new meta-heuristic population-based optimization algo-
rithm was introduced based on tug of war competition [20]. In this method, each
solution candidate is considered as a team that should participate in a series of com-
petitions. The numerical results have indicated that the Tug of War Optimization
(TWO) method has a better performance compared to other common methods. In
the present paper, given the expressed benefits of a neuro-fuzzy controller and the
appropriate performance of tug of war optimization approach, a new active opti-
mized controller is presented. Because of sever nonlinearity in bridge model and
uncertainties in predicting control laws, according to the results concluded from
literature, the stability of the control system is expected to increase with the pro-
posed method. Moreover, according to the results, the controller’s performance
has improved during various earthquakes and seismic responses have considerably
decreased compared to conventional methods.

This paper is organized as follow: the second section presents the dynamical
formulation of highway benchmark bridge structure. The details of the optimization
method are presented in the third section. The results of the simulation studies of
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the proposed method on the benchmark structure and discussion of key results are
presented in the fourth section, followed by the conclusions.

2. Benchmark highway bridge. A schematic of the benchmark structure con-
sidered in this study is shown in Fig. 1 [1]. The bridge structure is modeled after
the newly constructed 91/5 (m) over-crossing in Orange County, Southern Califor-
nia. This bridge is pre-stressed concrete, box-girder type. For a detailed description
of the structure, the readers can refer to the definition paper [1, 39]. Owing to its
location, this bridge is likely exposed to severe near-fault ground motions. No seis-
mic isolators have been used in its original construction. In order to improve the
seismic performance, for the purposes of the phase I benchmark study, the bridge
is isolated using four seismic isolators at each of the east and west abutments. Ad-
ditionally, for phase II of the benchmark study, the bridge deck is also isolated at
the two columns (north and south) using one isolator for each. In the present s-
tudy, phase I of the structure has been investigated. The soilstructure interaction
effects are included at both the abutments using linear springs and viscous dash-
pots. The vertical columns also exhibit nonlinear behavior, making this structure
highly nonlinear. The finite-element model of the bridge (evaluation model) has 430
degrees of freedom. The nonlinearity in the structure is attributed to the behavior
of the center columns and the isolation elements. The moment-curvature relation-
ship of the two columns has been modeled by a bilinear hysteresis model. Other
force-displacement relationships, such as axial, shear, and torsion are assumed to
be linear. Moreover, in order to model the material nonlinearity in the columns, a
concentrated plasticity model has been used.

The equations of motion (assumed for controller development only) for this sys-
tem, in both the orthogonal directions, can be written as:

M∆Ü(t) + C∆U(t) +K(t)∆U(t)

= Mη∆Üg(t) + b∆F (t), (1)

where ∆U is the incremental displacement vector; Üg is the vector of ground ac-
celerations, including two horizontal components; and ∆F (t) is the incremental
control force. η and b are loading vectors for the ground acceleration and control
forces, respectively and M is the mass matrix. The stiffness matrix of the structure,
K(t) , consists of the linear part KL and nonlinear part KN (t) . Eq. (1) can be
solved using the general Newmark integration method. The active devices used in
this study are modelled as ideal hydraulic actuators. The ideal actuator is assumed
to be able to instantly and accurately supply the force commanded by the control
algorithm. The control oriented model is given as:

Ẋr = ArXr +Bru+ Erüg

yz = Cz
rX

r +Dz
ru+ F z

r üg

ym = Cm
r X

r +Dm
r u+ Fm

r üg + v, (2)

where the subscript r in Eq. (2) refers to the reduced model. In the above equations,
X refers to the states of the system, A, B and E are the system state matrices, üg
is the ground acceleration vector in two directions. yz is the regulated output and
ym is the measurement output. The matrices C, D and F are mapping matrices of
appropriate dimensions and v denotes the measurement noise. The finite element
model of the bridge is shown in Fig. 2.
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3. Tug of war optimization.

3.1. Idealized framework of tug of war. Tug of war is a strength contest in the
rope pulling. Two competing teams are in an attempt to pull a rope to bring it to
their own side. Naturally, the amount of the losing team displacement determines
the amount of rope displacement. A tug of war tournament is shown in Fig. 3.

An idealized framework is utilized in this paper where the teams with the weights
of wi and wj are considered as two objects lying on a smooth surface as shown in
Fig. 4.
µk is the coefficient of kinematic friction and µs is the coefficient of static friction.

As a result of rope pulling, two opposite and equal forces (FP ) are applied to the
teams according to the third law of Newton. Until the pulling force for an object
i is smaller than the maximum force of static friction (Wiµs),it rests in its initial
place. Otherwise, the resultant force is non-zero and can be calculated as:

Fr = Fp −Wiµk. (3)

As a result, according to the second law of Newton, the object i moves towards the
object j with the acceleration of:

a =
Fr

Wi/g
. (4)

Since the start velocity of movement of an object i is zero, its new location can be
calculated as:

Xnew
i =

1

2
at2 +Xold

i . (5)

3.2. The algorithm of optimization. Each candidate’s answer Xi = xi,j in T-
WO population-based algorithm is considered as a team in a series of competitions.
The teams weight is defined based on the corresponding solution quality, and the
pulling force value of a team in the competition is considered to be proportional to
its weight. The lighter team moves to the heavier team so the convergence operator
of this method is formed. The step-by-step algorithm of TWO can be expressed as
follows:

• Step1: Initialization
A population of N initial solutions that contain the location of actuators is

generated randomly:

x0i,j = xj,min + rand(xj,max − xj,min) , j = 1, 2, ..., N, (6)

where x0i,j is the jth variable initial value for the ith candidate answer; xj,min and
xj,max are the permissible values of the lower and upper bounds for the jth variable,
respectively; rand is a random number from a uniform distribution in the interval
[0,1]; and N is the number of optimization variables.

• Step 2: Evaluation of candidate plans and weight assignment
The values of the objective function (introduced in Sect. 4) for the candidate

answers are evaluated by ATF (Active Tug of war Fuzzy proposed method) control
algorithm. The initial answers are sorted and saved in a memory named as league.
The weight of each answer is considered as follow:

Wi =
fit(i)j − fitworst,j

fitbest,j − fitworst,j
+ 1 , i = 1, 2, ..., N , j = 1, 2, ..., O, (7)
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where fit(i) is the value of fitness for the ith particle; fitworst and fitbest are the
values of fitness for the worst and best candidate answers of the current iteration. O
is the number of objectives. According to Eq. (7) the teams weights range between
1 and 2.

•Step 3: Competition and displacement
Each of the league teams compete with each other one by one in each iteration

to move to its new position. The pulling force applied by a team is equal to its
static friction force (Wµs). Therefore, the pulling force existing between two teams
i and j (Fp,ij) can be calculated as max{Wiµs,Wjµs}. Such a definition keeps the
position of the heavier team unaltered. When team i interacts with heavier team j
in the kth iteration, the resultant force can be calculated as follows:

F k
r,O,ij = F k

p,ij −W k
i µk. (8)

As a result, team i moves towards the team j with the acceleration of:

akij = (
F k
r,ij

W k
i µk

)gkij , (9)

where akij is the value of the team i acceleration towards the team j in the kth

iteration; gkij is the constant of gravitational acceleration defined as:

gkij = Xk
j −Xk

i , (10)

where Xk
i and Xk

j are the vectors of position for candidate answers i and j in the
kth iteration. Finally, after the competition of two teams i and j, the displacement
of the team i can be calculated as:

∆Xk
ij =

1

2
akij∆t

2 + αkβ(Xmax −Xmin)randn(1, n). (11)

The second term in Eq. (11) is considered as a random part of the algorithm. The
role of αk is to gradually decrease the random part of the team’s movement. α for
common applications could be chosen as a constant from the interval [0.9, 0.99];
the algorithm convergence speed decreases as the α value increases and help the
candidate answers investigate the search space more rigorously. β can be chosen as
a scaling factor from the interval (0, 1]. The steps of the candidate answers during
moving in the search interval are controlled by this parameter. When there is a
need to search with smaller steps, it is supposed to choose smaller values for this
parameter. Xmax and Xmin are the bounds of the permissible ranges of the design
variables. Therefore, the total displacement of the team i in iteration k is equal to
(i 6= j):

∆Xk
i = ΣO

t=1ΣN
j=1∆Xk

ij . (12)

So at the end of the kth iteration, the new position of team i is then calculated as:

Xk+1
i = Xk

i + ∆Xk
i . (13)

•Step 4: League updating
Once a full competition cycle was made between all the teams, the league should

be updated by comparing the current league teams with the new candidate answers.
Each of new candidate answers or Nth league team that is weaker in terms of the
value of the objective function shall be removed from the competition.
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•Step 5: Handling the side constraints
It is important to have a compensatory solution when a candidate answer leaves

the search space. This situation often occurs when δX for a lighter team is usually
bigger. The global best answer method is used in this paper. In the kth iteration,
the following formulation is used to define the new value for the jth optimization
variable from the ith team that crossed the side constraints:

Xk
ij = GBj +

randn

k
(GBj − x(k−1)

ij ), (14)

where GBj is the jth variable from the global best answer that has ever been ob-
tained.

•Step 6: Termination
Steps 2 to 5 must be repeated until an ending criterion is met. . For more

detailed information about the application of tug of war optimization method refer
to [20].

4. Selection of objective functions. To design and optimize the proposed active
control algorithm a single-objective optimization process is performed. As far as the
objective of the control system is to improve the seismic responses of the bridge with
the priority of the base shear and considering the impact of the bridge acceleration
on its base shear, the output of the fitness function must be the maximum base
shear of the bridge or its maximum acceleration. To this end, the output of the
fitness function for each of the accelerograms considered for optimization is one
criterion related to maximum base shear (J1) and again the criterion for maximum
acceleration (J4).

1. Option 1: The maximum of peak base shear force in the controlled structure
among all six earthquakes imposed to the bridge, normalized by the corre-
sponding shear in the uncontrolled structure;

J1 = Max︸ ︷︷ ︸
Elcentro

Northridge
ChiChi

NPlamSp
TorkBolu
Kobe-NIS

{
maxi,t|Fbi(t)|

Fmax
0b

}
, (15)

where Fbi(t) is the base shear in the controlled structure and Fmax
0b is the

maximum peak base shear force in the uncontrolled structure.
2. Option 2: The maximum of peak acceleration at mid-span of the controlled

structure among all six earthquakes imposed to the bridge, normalized by the
corresponding mid-span acceleration of the uncontrolled structure;

J4 = Max︸ ︷︷ ︸
Elcentro

Northridge
ChiChi

NPlamSp
TorkBolu
Kobe-NIS

{
maxi,t|

ÿmi(t)

ÿmax
0m

|

}
, (16)

where ÿmi(t) is the mid-span acceleration of the controlled structure and ÿmax
0m

is the maximum mid-span acceleration of the uncontrolled structure.
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It is necessary to control that optimization based on minimization of which of
above mentioned criteria will result in better seismic control of the bridge. This
will be discussed after the results in Section 6.

5. Proposed control scheme. The active tug of war-fuzzy optimized (ATF) con-
troller consists of two internal optimized ANFIS controllers; one for controlling the
seismic behavior of the bridge exposed to far-field earthquakes known as F-ANFIS
and the other for controlling the seismic behavior of the bridge exposed to near-field
earthquakes known as N-ANFIS.

5.1. Earthquake observer. One of the issues affecting the seismic behavior of
the structures is the nature of far-field or near-field earthquake. The distinctions
between near-field and far-field earthquakes are features such as high-velocity pulses
and long-period displacement [28]. In this study, the ground velocity is selected
as the distinction between far-field and near-field earthquakes. By defining two
S-shaped (near-field function named NF) and Z-shaped (far-field function named
FF) fuzzy membership functions, whose inputs consist of maximum velocity of
ground motions in last 3 seconds, the contribution of each internal controller in
the calculation of the amount of the control force is determined. The force of each
actuator is obtained from the following equation:

F =
wNFN + wFFF

wN + wF
, (17)

where F is the final force calculated by the earthquake observer, FN is the force
obtained from the optimized controller for the near-field earthquakes, FF is the
force obtained from the optimized controller for the far-field earthquakes, wN and
wF specify the weight of the magnitude of near-field and far-field earthquakes which
is the membership degree of the input velocity to the observer in the NF and FF
fuzzy functions. Regarding [12], maximum velocity of the ground motions in near-
field earthquakes usually reaches 0.5 m/s. Accordingly, the fuzzy functions FF and
NF are defined in a way that:

1. At the velocity of 0.5 m/s, the membership degree in both functions becomes
0.5. In other words, for the mentioned velocity, the ratio of each of the two
internal controllers in force determination would be 50%.

2. For the velocities less than 0.425, the earthquake is considered fully far-field.
3. For the velocities more than 0.575, the earthquake is considered fully near-

field.

The contribution of each internal controller in calculation of the force is deter-
mined separately for each of the directions based on Eq. (17). The membership
functions of earthquake observer are shown in Fig. 5.

5.2. Inputs. In order to avoid complexity and considering the accuracy required
to achieve the optimal solution, two inputs are considered for the desired controller
as follows:

1. The normalized acceleration, which is calculated based on the accelerometers
measured values. As far as the values are between -10 and +10 in volts after
passing through A/D converter, the normalized acceleration as the first ANFIS
controller input is obtained in range [−1 + 1] by multiplying these values by
0.1.
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2. The normalized displacement, which is calculated based on the measured val-
ues of the displacement gauges. As far as the values are between -10 and +10
in volts after passing through A/D converter, the normalized displacement as
the second ANFIS controller input is obtained in range [−1 +1] by multiplying
these values by 0.1.

5.3. Input membership functions. Six Gaussian membership functions are con-
sidered for each of the internal ANFIS controller inputs. The values of the mem-
bership functions parameters are shown in Table 1 and Fig. 6.

Table 1. Input membership functions parameters in ANFIS controller

N1 N2 N3 P1 P2 P3
σ 0.15 0.15 0.15 0.15 0.15 0.15
C -1.0 -0.6 -0.2 0.2 0.6 1.0

5.4. Result functions. The output of the controller is the normalized force in
range [0 1], multiplication of which by maximum applied forces of actuators (100
KN), gives the required force for each actuator. Each ANFIS network used in the
controller consists of 36 result functions. The values of the parameters of these
functions for each internal controller are obtained following optimization by TWO
algorithm.

5.5. Optimization of internal ANFIS controllers. To optimize the responses
of the internal F-ANFIS controller as the far-field earthquake, four accelerograms
have been selected including El-Centro earthquake with the coefficients of 1 and 1.5
and North Palm Springs earthquake with the coefficients of 1 and 1.5. Then, the
optimization process and adjustment of the parameters are separately performed for
each of these accelerograms. Finally, the optimized controller with the best perfor-
mance in far-field earthquakes is selected. Similarly two accelerograms are chosen
for the near-field earthquake including Northridge earthquake with the coefficients
of 1 and 1.5.

The result functions in ANFIS are zero or first-order functions. In this paper
linear result functions are used in ANFIS controller as Eq. (18):

fi = pix+ qiy + ri i = 1, 2, ..., 36, (18)

where x is the first network input (normalized acceleration), and y is the second
input (normalized displacement). p, q, and r are parameters of ith result function.
These parameters are teams in the presented optimization algorithm. So, the num-
ber of input parameters to the optimization algorithm for the controller adjustment
is 108. optimization of each internal ANFIS controllers is performed through opti-
mization algorithm and adjusting the parameters of the resulted functions (Eq. (18)
in N-ANFIS or F-ANFIS controllers). The optimization results will be discussed
in Sect. 6. In this process, the numerical model of the bridge with the proposed
control system should be taken under a desired earthquake and coded as a fitness
function. Fig. 7 shows ANFIS configuration of the proposed controller. The applied
methodology to design an active neuro-fuzzy optimized controller is presented in
Fig. 8.
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5.6. The stopping criteria of optimization. One of the major problems in
optimization method is the choice of an adequate stopping rule. In this article, the
following three terms have been selected as the stopping criteria:

1. The maximum number of generations is equal to 50.
2. The minimum objective function is equal to zero.
3. Generational recession is equals to fifteen generations.

6. controllers optimization results. Tables 2 and 3, respectively show the re-
sults of the optimization process for F-ANFIS and N-ANFIS controllers based on
criteria J1 and J4, separately (as described in Sect. 4). In order to make it possi-
ble to decide on the superiority of the optimization criteria the values for three of
the bridge response indices (J1, J3, J5) are considered. The comparison of eight
different cases listed in Table 2 implies, that the optimized controller under Palm
Springs earthquake with the coefficient of 1.5 and based on the minimization of
J1 criterion, with higher success rate compared to other scenarios, could optimally
reduce other criteria as a far-field controller. Fig. 9 shows the optimization process
in the mentioned scenario.

Furthermore, by the comparision of four different cases listed in Table 3, shows
that the optimized controller has been more successful in reducing the response
indices as a near-field controller under Northridge earthquake with the coefficient
of 1.5 and based on the minimization of J1 criterion. Fig. 10 shows the optimization
process in the mentioned scenario.

Table 2. The mean of criteria J1, J3 and J5 in a far-field earth-
quake, for different optimization scenarios of ANFIS controller (F-
ANFIS).

Optimization by minimizing criterion J1
Earthquake EL-Ce×1 EL-Ce×1.5 N.P.Spr.×1 N.P.Spr.×1.5

J1 1.1198 1.1153 0.8942 0.8867
J3 0.6153 0.5235 0.8856 0.8171
J5 0.3586 0.2684 0.6125 0.5928

Optimization by minimizing criterion J4
Earthquake EL-Ce×1 EL-Ce×1.5 N.P.Spr.×1 N.P.Spr.×1.5

J1 1.1336 1.1295 0.8895 0.9459
J3 0.5983 0.5467 0.8763 0.8543
J5 0.3347 0.2733 0.5826 0.6372

The results of structural analysis of the bridge under 6 earthquakes with the
proposed controller have been presented in Table (4). Moreover, in order to make
a comparison and verify the results, J1 and J4 performance indices are plotted
in Figs. 11, 12, and 13 along with the results of previous studies. The methods
compared in these figures are as follows:
ATF: Active Tug of War Fuzzy Proposed Method.
P-SAMP: Passive Sample Control Method [39].
A-SAMP: Active Sample Control Method [39].
A-ANF: Active ANFIS Controller [2].
SA-AFSMC: Semi Active Adaptive Fuzzy Sliding Mode Control [33].
SA-CLOP: Semi Active Sample Control Method [39].
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Table 3. The mean of criteria J1, J3 and J5 in a Near-field earth-
quake, for different optimization scenarios of ANFIS controller (N-
ANFIS).

Optimization by minimizing criterion J1
Earthquake Northridge×1 Northridge×1.5

J1 0.7321 0.7125
J3 0.3988 0.3846
J5 0.3833 0.3644
Optimization by minimizing criterion J4

Earthquake Northridge×1 Northridge×1.5
J1 0.7466 0.7389
J3 0.4038 0.6089
J5 0.3957 0.4782

Table 4. The results of the proposed controller.

NPalmspr ChiChi El Centro Northridge TurkBolu Kobe-NIS Avg
J1:Pk. base Shear 0.925 0.652 0.678 0.729 0.697 0.892 0.762
J2:Pk. Over.Mom. 0.693 0.878 0.595 0.786 0.587 0.547 0.681
J3:Pk. Mid. Disp. 0.684 0.701 0.667 0.572 0.661 0.607 0.648
J4: Pk. Mid. Acc. 0.997 0.912 0.788 0.783 0.812 0.822 0.852
J5: Pk. Bear. Def. 0.546 0.554 0.563 0.514 0.605 0.451 0.538
J6: Pk. Ductility 0.647 0.517 0.576 0.547 0.186 0.585 0.509
J7: Dis. Energy 0.000 0.087 0.000 0.120 0.05 0.000 0.042
J8: Plas. Connect. 0.000 0.500 0.000 0.500 0.000 0.000 0.166
J9:Nor.Base shear 0.839 0.567 0.610 0.594 0.743 0.718 0.678
J10:Nor.Over. Mom. 0.561 0.597 0.642 0.686 0.459 0.745 0.615
J11: Nor. Mid. Disp. 0.611 0.487 0.504 0.473 0.514 0.639 0.538
J12: Nor. Mid. Acc. 0.798 0.694 0.568 0.681 0.842 0.765 0.724
J13: Nor. Bear. Def. 0.397 0.456 0.415 0.616 0.214 0.324 0.404
J14: Nor. Ductility 0.615 0.623 0.561 0.802 0.123 0.683 0.567
J15: Pk. Con. Force 0.010 0.024 0.007 0.025 0.018 0.012 0.016
J16: Pk. Stroke 0.509 0.517 0.518 0.452 0.580 0.451 0.504
J17: Pk. Power 0.037 0.110 0.024 0.098 0.077 0.029 0.063
J18: Total Power 0.010 0.014 0.005 0.017 0.015 0.015 0.012
J19:No.Con. Devices 16 16 16 16 16 16 16
J20: No. Sensors 12 12 12 12 12 12 12
J21:Comp. Resources 16 16 16 16 16 16 16

As shown in Table 4, the proposed optimized control method has effectively
reduced the bridge performance indices using the same control devices as of pervious
researches [1]. The following points can be concluded;

• The proposed algorithm reduced the bridge peak base shear, overturning mo-
ment, mid-span displacement, mid-span acceleration, normed base shear and
normed mid-span acceleration under various earthquakes up to 35%. Among
these, the mid-span acceleration index (J4) had the lowest reduction (15%).

• The peak bearing deformation, ductility, normed overturning moment, normed
mid-span displacement, normed bearing deformation, and normed ductility
indices decreased by 40 to 60%, during the optimized control process. A-
mong these, the normed bearing deformation index (J13) showed the largest
decrease (60%).

• One of the prominently visible features of the proposed method is decrease
in the structural damage. Since the parameters such as curvature created
in columns, energy absorbed by nonlinear behavior and hysteresis loops and
the number of plastic joints directly affect the structural damage, the criteria
containing these parameters will be appropriate to measure the structural
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Table 5. Results of the Friedmans test.

Responce indices Friedmans mean rank P value
ATF P-SAMP A-SAMP A-ANF SA-CLOP SA-AFSMC

J1 1.6 5.2 5.6 1.8 4 2.8 8.95E-04
J2 1.2 1.8 4.6 5.4 4.4 3.6 1.10E-03
J3 1.4 1.6 5 4.7 4.7 3.6 2.00E-03
J4 3.8 5.9 1.4 1.7 3.2 5 3.34E-04
J5 2 1.8 5.5 5.5 4 2.2 2.16E-04
J6 1.2 1.8 5.5 3.9 5.3 3.3 4.07E-04
J7 1.4 1.6 4.9 5.6 4.5 3 3.80E-04
J8 1.2 1.8 4.1 4.8 3.5 5.6 4.95E-04
J9 2.9 1.9 4.3 4.6 4.1 3.2 1.67E-01
J10 2 2 5 6 4 2 3.78E-04
J11 1.4 1.6 5.5 3.9 5 3.6 7.31E-04
J12 1.4 5.7 2.1 2.5 4 5.3 3.87E-04
J13 2.6 1 5 6 4 2.4 1.89E-04
J14 3.3 2.9 6 2.8 5 1 4.02E-04
J15 5.3 5 1.5 2 2.7 4.5 4.02E-04
J16 2.2 1 5 6 4 2.8 4.02E-04
Average 2.18 2.66 4.43 4.20 4.15 3.38
SD 1.15 1.72 1.46 1.58 0.67 1.25

damage. Thus, J6, J7, J8 indices can indicate the potential for structural
damage to the bridge.

7. Statistical analyses. To make a reliable conclusion and to show the superiority
of the proposed control algorithm over state-of-the-art algorithms, in this section,
statistical tests are carried out. A multiple comparison test (Friedmans test) is
performed to determine significant differences between the properties of the control
algorithms. The average rankings obtained by Friedman test are used to show that
how successful is the proposed control ATF algorithm. Based on the Friedmans
test rankings, the lower the rank, the more efficient the algorithm is. Table 5
presents the mean ranks obtained by this test at 95% confidence level. Based
on the average and standard deviations, the ATF algorithm is the best solution
method which outperforms other state-of-the-art algorithms in majority of the test
problems. Fig. 14 presents a view of the results of the Friedmans test. Based on
Fig. 14, it becomes obvious that the ATF not only is the best solution method among
other state-of-the-art algorithms, but also is the most robust solution methodology
comparing to the other solution methods. For this purpose, comparing the worst
ranking of the ATF to other algorithms, it has the lowest worst rank among the
algorithms. Therefore, it can be inferred that the ATF is the most robust solution
methodology which performs well in all types of structural response indices.

8. Conclusions. The performance of a new optimized Nero-fuzzy controller for
the active control of the benchmark highway bridge with bi-linear isolation sys-
tem has been investigated. The advantages of the proposed control process are as
follow: it does not require complicated control rules, it does not need accurately
defining mathematical model of structure, and it has good ability to deal with the
uncertainties including input loading or structural parameters. Adaptive control
laws are derived using an ANFIS controller, whose output parameters are adjusted
by the meta-heuristic tug of war optimization algorithm. ANFIS controller is able
to identify the nature of near-field or far-field of the earthquake and calculates the
control force of each actuator at any moment. Simulation results show that the
new adaptive controller is effective in reducing the critical responses of the struc-
ture such as peak/normed base shear, peak/normed mid-span displacement, and
peak/normed acceleration. Furthermore, the parameters indicate that the index of
damages to the structure has significantly decreased. The comparison of the bridge
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response indices showed that the proposed method has yielded better results than
the other previous methods. Since the proposed controller is designed with respect
to a 3D model with the bending and nonlinear elements as well as the nonlinear
control laws, its application to the bridge structure has no limitations, but needs to
be investigated about other structures.

Figure 1. Elevation and plan views of 91/5 over-crossing [1].

Figure 2. Finite element model of the bridge
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Figure 3. Tug of war tournament

Figure 4. An idealized framework of tug of war [20]

Figure 5. Membership functions of earthquake observer

Figure 6. Input membership functions in ANFIS controller (Nor-
malized displacement or Normalized acceleration)
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Figure 7. ANFIS configuration of the proposed controller

Figure 8. The applied methodology to design a nero-fuzzy opti-
mized controller

Figure 9. F-ANFIS controller optimization under N.P.Spr. earth-
quake with a factor of 1.5 and J1 index
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Figure 10. N-ANFIS controller optimization under Northridge
earthquake with a factor of 1.5 and J1 index
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Figure 11. The J1 index comparison among the different control methods
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Figure 12. The J3 index comparison among the different control methods
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Figure 13. The J4 index comparison among the different control methods

Figure 14. A view of the results of the Friedmans test
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