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A B S T R A C T   

This study examines the trends in vegetation cover using the Growing Season NDVI (GSN) time series in mod-
erate spatial resolution (250 m) over Khorasan Razavi province, in northeast Iran, during the period 2004–2015. 
The province is largely desert, with extra-arid, arid, and semi-arid de Martonne climate zones dominating, while 
rangelands, shrublands and deserts cover most areas, making it an ideal territory for monitoring vegetation 
trends and implement future restoration projects. Most parts of the province and land-cover classes show no 
trends in vegetation cover, but large decreasing trends occur in areas covered by sand dunes, previously refor-
ested lands and clay pit areas. Trends in various land-cover types are also examined as functions of the climatic 
class and the Terrain Niche index (TNI), which is characteristic of the topography, revealing large decreasing 
trends in the extra-arid climatic zone. In addition, most of the areas exhibit Hurst exponent values around 0.5, 
implying stochastic time series without any consistency and a likelihood of random vegetation and land cover 
changes in the future. This study also aims to determine likely future vegetation status and the most favourable 
areas for restoration projects through analysis of two indexes (Future Restoration Dispersal Index, FRDI and 
Future Uncertainty Dispersal Index, FUDI). The results show that reforestation, sand dunes and clay pits areas are 
the most favourable for implementing restoration projects, while the spatial distribution of the potential resto-
ration classes reveals that the southern and northeastern parts of Khorasan Razavi province are the most 
favourable areas for establishing environmental restoration activities in order to avoid further degradation of 
ecosystems.   

1. Introduction 

Global ecosystems are constantly changing; this change may be a 
result of natural vegetation processes, such as sequencing and climatic 
variability or of human activities, such as land-use conversion, exploi-
tation of natural resources and any kind of environmental degradation 
(Baude et al., 2019; Boiral et al., 2019). Vegetation plays an important 
role at the global scale in regulating the carbon-cycle balance, reducing 
greenhouse gases and mitigating climate change (Arora, 2002; Fang 
et al., 2004; Hu et al., 2010), while in desert and arid areas changes in 
vegetation cover are especially important for land degradation and 
susceptibility to wind erosion and dust emissions (Gholami et al., 2020a; 

Miri et al., 2021). Vegetation dynamics have also been recognized as one 
of the key factors in the change of terrestrial ecosystems over the globe 
(Suzuki et al., 2007; Fu et al., 2010; Kelly et al., 2011) and, therefore, 
systematic monitoring of vegetation changes is fundamental for future 
land management initiatives. Monitoring is the process of determining 
the change in the status of an object or phenomenon by observing it at 
different time scales and includes the use of multiple data to quantita-
tively examine the impacts of time on natural or anthropogenic phe-
nomena (Hubbard and Hornsby, 2011; Yi et al., 2014). The cost of 
monitoring at executive levels is a prominent issue and, therefore, the 
use of new techniques for continuous environmental monitoring can be 
effective. 
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The use of reasonably-accurate remote sensing data and techniques 
is one of the most appropriate methods (in terms of cost, manpower and 
time) to monitor vegetation changes from local to global scales (Shataee 
and Abdi, 2007). Since space technology has been developed in recent 
decades, satellite remote sensing is an outstanding method for observing 
vegetation dynamics and land use - land cover (LULC) changes (Kharol 
et al., 2013; Svoray et al., 2013; Vadrevu et al., 2015). The normalized 
difference vegetation index (NDVI) exhibits highly dynamic and vari-
able measurements over land and it is widely used to monitor the health 
and production of vegetation over extensive areas and/or for desertifi-
cation monitoring (Myneni et al., 1997; Tucker et al., 2001; Nemani, 
2003; Ahmadi et al., 2019; Khusfi et al., 2020). In addition, NDVI and 
net primary productivity (NPP), along with other indices, have been 
commonly used to investigate vegetation changes as a part of moni-
toring or restoration projects (Zhang et al., 2012; Huang et al., 2013; Wu 
et al., 2013). Linear regression analysis has been a common method for 
examining the trends in NDVI time-series. The method has been ques-
tioned regarding its ability to capture non-linear characteristics of 
vegetation dynamics in arid environments (Shuang-cheng et al., 2008), 
but still continues to be popular in large-scale studies due to its 
simplicity (Fensholt et al., 2009). 

Several studies have focused on past patterns in vegetation change 
(Hague, 2016; Wang et al., 2018; Kelly et al., 2020), while recent ones 
have undertaken predictions for future trends (Tong et al., 2016; Lei 
et al., 2016; Xiao et al., 2018; Lu et al., 2019; Sun et al., 2020). Climate 
change and its uncertain impact on vegetation patterns over the globe 
have led to uncertainty regarding the linkage between vegetation 
development and vegetation change. The mutual impact of climate 
change and vegetation poses another challenge to predictions about 
future trends (Braswell et al., 1997; Piao and Fang, 2003; Fabricante 
et al., 2009). There are two main approaches for assessing future 
vegetation development, (i) by analyzing historic vegetation data and 
their response to changes using statistical methods such auto- 
covariance, and (ii) by modeling the response of vegetation to changes 
under different scenarios. Bunting et al. (2016) used the SAVANNA 
model to analyze future patterns of vegetation cover in Kruger National 
Park under changing climate, and they pointed out that landscape 
resilience is not only impacted by the severity of the changing climate 
but also by the degree of management of such systems. Scientists tried to 
find a suitable method for predicting the trend of vegetation changes in 
the future. One of the introduced methods is the Hurst Index. Because of 
its novelty and to determine its problems and efficiency, this index have 
been evaluated in different areas under different circumstances. 

Hurst (1951) introduced the H exponent in order to study the time- 
series of flow in the Nile River, while later on, Mandelbrot and Wallis 
(1969) theoretically refined it. Hurst Exponent (H) takes advantage of 
auto-covariance and has been commonly used to measure the stability of 
large data series in nature through the Rescaled Range Series Analysis 
(R/S). The rescaled range analysis is performed by dividing the range of 
the mean-adjusted cumulative deviate series (R) by the standard devi-
ation of the time series (S). The robustness of (R/S) analysis has rendered 
it a prime measure for non-parametric studies in economics (Sánchez 
Granero et al., 2008) and its potential has also been recognized in 
several studies of vegetation dynamics (Yue-cong et al., 2008; Peng 
et al., 2012; Jiang et al., 2015; Tong et al., 2016, 2018). 

Due to different topographic conditions, the large areas covered by 
diverse vegetation patterns and the effects of dust fallout and human 
interference, Khorasan Razavi province in northeast Iran constitutes an 
ideal area for studying vegetation changes and land restoration projects 
for different climatic classes and topographic characteristics. Several 
studies using various indices have examined the vegetation changes in 
this province (Azadbar et al., 2011; Bagherzadeh and Daneshvar, 2014; 
Shiravi and Sepehr, 2017; Ziyaee et al., 2018; Poorhashemi et al., 2019), 
but none of them has investigated the trend of vegetation changes for 
different topography and climate classes. Vaisi et al. (2016) studied the 
vegetation changes in Iran over a 17-year period (from 2000 to 2016) 

using two MODIS NDVI images with no spatial and temporal analysis, 
and they revealed an increase in vegetation degradation across the 
country. Concurrent analysis of the past vegetation changes and future 
predictions of the vegetation trends in Khorasan province is the main 
innovation of the current research, along with determination of areas 
suitable for future restoration projects. 

This paper aims to investigate the vegetation trends in Khorasan 
Razavi province in northeast Iran over the period 2004–2015 and to 
analyze the vegetation dynamics for different land-cover types, climatic 
classes and Terrain Niche Index (TNI). The main objectives of the study 
are to characterize the spatial differentiation of vegetation trends and to 
identify favourable areas for implementation of vegetation restoration 
projects, while it is the first study examining these ecological issues in 
northeast Iran. Identifying areas for restoring vegetation is very 
important and constitutes a critical step in national efforts that 
contribute to land degradation neutrality, a key target of Sustainable 
Development Goal (SDG) 15, which urges countries to protect, restore 
and promote sustainable use of terrestrial ecosystems, sustainable 
management of forests, combat desertification, reverse land degradation 
and halt biodiversity loss (Gilbey et al., 2019). In the previous related 
research conducted by Tong et al. (2016), only natural factors were 
considered, while human management factors, which also play a major 
role, were ignored. Therefore, in a way to increase the accuracy of the 
vegetation predictions in future, land use classes and climate classifi-
cation were added in the current research. This paper is also timely in a 
wider context, coming as it does on the eve of the UN Decade on 
Ecosystem Restoration (2021–2030). 

2. Material and methods 

2.1. Study area 

Khorasan Razavi province covers an area of ~117,000 km2, corre-
sponding to approximately 7% of the total area of Iran, and is located 
between 56◦19ˊ to 61◦16ˊ East and 33◦ 52ˊ to 37◦ 42ˊ North (Fig. 1). It is 
the second most populated province of Iran, with a total population of 
about 6 million people, including the metropolis of Mashhad (second 
most populated city in Iran with about 2.5 million) and other smaller 
cities. The climate is characterized as arid and semi-arid with an annual- 
mean temperature of 17 ◦C and average annual precipitation ranging 
from 75 mm in the south to 390 mm in the north (Boroughani et al., 
2020). The north part of the province is mostly covered by mountainous 
ranges, with fertile plains among them due to fair rainfall and avail-
ability of groundwater resources. In contrast, the southern part is mostly 
arid due to low rainfall and its proximity to the desert areas of southeast 
Iran and Afghanistan, with poor vegetation cover and limited agricul-
tural lands. Rangeland is the dominant land type with favourable con-
ditions for wind erosion. The mountain ranges are composed of 
sedimentary and volcanic rocks from the Mesozoic and Cenozoic pe-
riods, while the plain areas are mostly composed of Quaternary alluvium 
and extended playas (Ziyaee et al., 2018; Boroughani et al., 2020). The 
province is also downwind of dust flows originating from the Karakum 
desert in Turkmenistan and dried playas in the Aral basin during the 
summer season (Rashki et al., 2018; Ziyaee et al., 2018; Poorhashemi 
et al., 2019). 

2.2. Dataset 

2.2.1. NDVi 
NDVI retrievals over the study province were taken from the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) product 
(MOD13Q1) during the period 2004–2015. MOD13Q1 is available 
within 16 days at a spatial resolution of 250 m (about 130 NDVI satellite 
images were used in regressions and analyses and a total of 83000Biliun 
pixels). Using the Maximum Value Composite (MVC) technique, the 
monthly maximum NDVI values were calculated at each pixel for each 
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year, which greatly reduce the atmospheric and scan/angle effects, 
cloud contamination and the effect of the high solar zenith angle (Hol-
ben, 1986). For minimizing the effects of random changes in vegetation, 
the Growing Season NDVI (GSN) was proposed. For calculating GSN, 
monthly NDVI values were averaged at each pixel during the growing 
season (March to September) for each year between 2004 and 2015 and 
these values were used in the whole analysis. 

2.2.2. Digital elevation map (DEM) 
Shuttle Radar Topography Mission (SRTM) Digital Elevation Map 

(DEM) images were downloaded from (https://earthexplorer.usgs.gov/) 
website at 90-meter spatial resolution, covering the whole Khorasan 
Razavi province. In order to collocate the size resolution of these cells 
with those of MODIS-NDVI, the resample technique and the nearest 
neighbor approaches were applied, and the size of each pixel was 
rescaled to 250 m (Tong et al., 2016). Using topographic maps of the 
region, basic maps of slope and elevation were produced. 

2.2.3. Land use and land cover (LULC) 
The digitized land cover map of Khorasan Razavi province was ac-

quired from Forests, Range and Watershed Management Organization of 
Iran. These maps have been prepared for the whole Iranian territory 
with a scale of 1:250,000 since 2003. According to these maps, land is 
classified into 17 land-cover types as follows: no vegetation cover and 
rocky outcrops, saline lands, river beds, shrubland, sand dunes, dense 
forest, low-dense forests, semi-dense forests, reforestation, clay pits, 
irrigated farming, dry farming, desert, low-dense rangelands, dense 
rangelands, semi-dense rangelands and residential areas (Fig. 1). 

2.3. Linear regression of NDVI trends 

The linear regression of the averaged NDVI between March to 
September (Growing Season NDVI; -GSN) was performed over the whole 
province during the study period (2004–2015), in order to investigate 
the spatial pattern and intensity of the vegetation changes. The GSN was 
estimated as the average NDVI value at each pixel from March to 

September, which is considered as the growing season in this area. 
Positive slopes over the years indicate an increasing trend in vegetation, 
which could be attributed to climatic factors or the implementation of 
restoration projects, while negative values imply a decline in vegetation 
cover as a result of anthropogenic (exploitation, mining activities, 
abandoned cultivated lands, etc) and natural processes (desertification 
due to increased drought). To determine the significance of the GSN 
trends, the T-test was applied and p values were calculated for each 
pixel. A p value greater than 0.05 implies that the change is statistically 
meaningless at the 95% confidence level (C.L.) and the pixel falls into 
the category of “stable pixel” (unchanged). However, if p is<0.05, the 
change is statistically significant at the 95% C.L. Using this criterion, the 
examined area was divided into 3 classes corresponding to stable (p ≥
0.05), increasing (slope ≥ 0 and p < 0.05) and decreasing (slope ≤ 0 and 
p < 0.05) GSN. 

2.4. Terrain Niche index (TNI) 

The Terrain Niche Index is related to topographic conditions such as 
elevation and mountainous slope and is calculated based on the 
following formula (Tong et al., 2016). 

TNI = log
[(e

E
+ 1

)
+
(s

S
+ 1

) ]
(1) 

where: 
e = pixel elevation from above mean sea level (amsl) 
E = average sea-level elevation of the study area 
s = topographic slope of the pixel 
S = average topographic slope of the study area 
The larger TNI values represent a higher elevation and/or steep 

slopes such as peaks and rocky hills in the studied pixel. On the other 
hand, the lower TNI corresponds to areas with smooth slopes and low 
altitudes, such as plains. The median values of the TNI represent areas 
with a high slope and low elevation, or a low slope and high elevation, or 
an area that has moderate conditions for both factors. The TNI map for 
Khorasan Razavi province can be seen in Suppl. Fig. 1. 

Fig. 1. Location of Khorasan Razavi province and spatial distribution of the land cover types.  
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2.5. Climatic classification 

The de Martonne index (de Martonne, 1942) indicates the aridity 
conditions of an area and it is calculated by the Equation (2): 

I =
P

10 + T
(2)  

where P is the annual rainfall (in mm) and T is the annual mean tem-
perature (in Celsius). In our case, the P and T annual values were taken 
from 181 synoptic meteorological stations over the province during the 
period 1970 – 2005. The de Martonne index classification (Suppl. Fig. 2) 
was produced at spatial resolution of 250 m using the kriging regression 
method based on the data from the meteorological stations. In general, 
the province can be divided into 5 climatic classes: extra arid, arid, semi- 
arid, Mediterranean and semi-humid. Most areas are characterized by 
the “arid” climatic type, while a large part in the southwest is charac-
terized as extra arid (Rahimi et al., 2013). Central-north areas are mostly 
semi-arid, while the Mediterranean-type and semi-humid areas are very 
limited, located at the top of the two highest mountainous ranges, which 
receive more rainfall and are snow-covered for several months. 

2.6. Hurst exponent 

The Hurst exponent (H) is based on automated covariance and is 
estimated through the “Rescaled Range Series Analysis.” It quantitatively 
indicates the continuity or non-continuity of data series for natural 
phenomena in a specified time period (Hurst, 1951; Peng et al., 2012). 
For a time series of length N, the rescaled range analysis can be applied 
as follows (Lotfalinezhad and Maleki, 2020):  

1. First, divide time series of length N to d new subseries (Zim)of length 
n.  

2. For each subseries (m = 1,2,⋯,d) calculate (Xim) = (Zim) - (Em) for 
i = 1,2,⋯,n. In this formula, Emis the mean of subseries.  

3. Then calculate the cumulative sum of the subseries as Yim =
∑i

j=1Xim 

for i = 1,2,⋯,n.  
4. After that the range Rmand standard deviation Sm of each subseries 

were used to calculate the rescaled range(Rm/Sm).  
5. The mean rescaled ranges(Rm/Sm) were calculated for all subseries 

with length of n.  
6. By assuming a power-law relationship between R/S and subseries 

length (n), we can obtain (R/S) ≈ cnH, and the H values could be 
simply obtained via regression on increasing samples using Equation 
(3): 

log
(

R
S

)

n
= logc+Hlogn (3) 

The Hurst exponent ranges between 0 and 1. H values around or 
equal to 0.5 indicate a stochastic time series without any consistency, 
suggesting randomness of the vegetation changes in the area and no 
relationship between environmental factors and vegetation changes in 
the future. If H ranges between 0.5 and 1, it indicates a “persistence-
behavior” (auto-positive correlation), and as H approaches 1, more 
stability will be observed in the data. In contrast, H<0.5 represents 
“non-persistence behavior” (auto-negative correlation), while as H ap-
proaches 0, the anti-stability behavior in the data series will increase. 

H index was applied in the GSN time series at the various pixels 
covering the whole Khorasan Razavi province. Based on the vegetation 
trends and H values, the study area was divided into six classes. If H is 
greater than 0.5 with a positive trend, the class is supposed to have a 
continuous increasing (Positive Development, PD), while if H is greater 
than 0.5 and the trend is negative, the class is considered as continuous 
decreasing (Negative Development, ND). In the case of H < 0.5 and a 
positive trend, vegetation is likely to stop increasing (Anti Positive 
Development, APD), whereas if H is<0.5 with a negative vegetation 

trend, the declining of vegetation will likely stop (Anti Negative 
Development, AND). Finally, if H greater than 0.5 and the trend is not 
significant, the pixel is categorized in the stable development class (SD) 
and if H < 0.5 is associated with a non-significant trend, the class is 
undetermined (UD) (see Suppl. Table 1). 

2.7. Assessing restoration potential 

To determine the future vegetation status in the area, two compre-
hensive indices were used. The Future Restoration Dispersal Index 
(FRDI) specifies which areas (classes) have more potential for a resto-
ration project, while the Future Uncertainty Dispersal Index (FUDI) 
determines the rate of this uncertainty. These indices are calculated as 
follows (Tong et al., 2016): 

FRDIi =

(
ei1+ei2+ei3

ai

)

(
E1+E2+E3

A

) (4)  

FUDIi =

(
ei4+ei5+ei6

ai

)

(
E4+E5+E6

A

) (5)  

where eij correspond to j = 1(PD), 2(SD), 3(ND), 4(UD), 5(APD), 6(AND) 
taken from the categories of the H exponent (section 2.6) and i = TNI 
interval, de Martonne class and the land-cover classes, while 
aicorresponds to the area of each class and A is the total study area. 

FRDIiand FUDIi indices are dimensionless and standardized. If FRDIi 
is greater than 1, it is supposed that the studied class exhibits more 
favourable conditions for restoration compared to other classes. In other 
words, the higher the FRDIi, the greater potential for restoration. For 
larger FUDIi the prediction of the changes in that class is more uncertain; 
therefore, the lower theFUDI, the more reliable conditions for restora-
tion. These combined results are included in Suppl. Table 2. Therefore, 
Class 4 exhibits the most favourable conditions in terms of restoration 
prospects and Class A has the least uncertainty (most definite), sug-
gesting that A4 is the most favourable class with the lowest degree of 
uncertainty and F1 is the most unfavourable class with the highest de-
gree of uncertainty (Suppl. Table 2). After combining the two FRDI and 
FUDI indices, the studied classes of LULC, de Martonne and TNI were 
categorized based on the favourability of the factors for development of 
vegetation, as well as its uncertainties. Finally, a map of the restoration 
potential was constructed for the Khorasan Razavi province. 

3. Results 

3.1. Vegetation dynamics and trends 

The spatially-averaged NDVI over Khorasan Razavi province during 
the growing season (March to September) of the study period 
(2004–2015), was found to be 0.17, ranging from 0.14 (in 2008) to 0.19 
(in 2009). The decadal variability (Suppl. Fig. 3) does not display a 
statistically-significant (95% C.L.) trend, although presenting a slight 
decreasing tendency. The spatial distribution clearly shows that GSN is 
heterogeneously scattered throughout the study area, with a general 
decreasing gradient from the northern to southern parts of the province 
(Fig. 2). The high-elevation areas such as the Hezar Masjed and Binalood 
mountains exhibited GSN values usually above 0.5, due to higher pre-
cipitation in the mountains. The vegetation in these mountainous areas 
is scattered trees and semi-dense forests or rangelands. In the northern 
parts of the province, there is a significant increase in vegetation cover 
after seasonal rainfall due to sufficient seed banks. However, this in-
crease lasts for about 40 days, mostly reflecting the growth of annual 
grasses. The lowest GSN values are detected in the south and southwest 
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parts of the province, which are mostly covered by sand dunes, shrub-
lands and low-dense rangelands (Fig. 1) and are characterized by extra- 
arid climate (Suppl. Fig. 3). The total area and the spatial–temporal- 
averaged GSN values for each vegetation type are summarized in 
Table 1. The low-dense and semi-dense rangelands are the vegetation 
types with the largest coverage, followed by dry farming, while the semi- 
dense and dense forests cover the lowest areas in Khorasan Razavi. In 
addition, saline lands displayed the lowest GSN (0.07), followed by 
deserts and clay pits, while the highest GSN values were shown for 
irrigated farming (0.292) and dense forests (0.261) (Table 1). 

Using linear regression analysis, the spatially-averaged GSN values 
showed an overall slight decreasing trend during the study period but 
without any statistical significance (p = 0.47). Further analysis revealed 

that fifteen out of the seventeen LULC types presented mostly a declining 
trend during 2004 – 2015, while the desert areas and the semi-dense 
forests revealed mostly increasing vegetation cover (Table 1). Refores-
tation was found to exhibit the largest downward trend, being statisti-
cally significant at 95% confidence level (p = 0.016). Regarding the 
reforestation, much more pixels (38.1%) displayed a downward rather 
than upward (0.6%) trend, while a significant decrease mainly occurred 
in Gonabad county, located in the southern province. This decreasing 
trend in reforestation is likely attributed to the fact that previous 
restoration projects were generally not well supported for a long term 
and were practically abandoned after implementation. Unfortunately, 
this operation destroyed the current vegetation cover and made the soil 
and vegetation vulnerable to degradation. In addition, droughts have 

Fig. 2. Growing season NDVI (March to September) maps in the Khorasan Razavi province from 2004 to 2015. To the left, the mean map for the entire study period is 
shown. Grey area is not regularly covered by the satellite overpass and was excluded from the analysis. 

Table 1 
Total area, average growing season NDVI (March to September) (Mean from 2004 to 2015), Hurst values and trends in vegetation for each LULC type in Khorasan 
Razavi province from 2004 to 2015.   

Land cover Area (ha) GSN Trend (%) Hurst(H) 

Stable Increasing Decreasing 

1 No vegetation cover lands and rocky outcrops 137,427  0.113  87.0  2.6  10.5  0.466 
2 Saline lands 73,437  0.07  82.5  3.0  14.6  0.499 
3 River beds 34,299  0.114  85.4  2.0  12.5  0.454 
4 Shrublands 415,569  0.112  79.2  1.2  19.6  0.467 
5 Sand dunes 43,924  0.102  47.7  1.1  51.2  0.528 
6 Dense forests 4080  0.261  99.3  0.1  0.6  0.426 
7 Low dense forest 484,072  0.251  91.5  2.6  5.8  0.463 
8 Semi-dense forests 29,477  0.214  93.4  0.9  5.7  0.45 
9 Reforestation 203,378  0.114  61.3  0.6  38.1  0.506 
10 Clay pits 72,599  0.092  67.8  1.3  30.9  0.506 
11 Irrigated Farming 162,646  0.292  85.7  2.1  12.1  0.455 
12 Dry farming 1,934,227  0.186  91.9  0.8  7.3  0.437 
13 Desert 362,278  0.078  85.5  13.8  0.7  0.488 
14 Low density rangelands 4,816,849  0.126  81.0  2.3  16.7  0.476 
15 Dense rangelands 315,871  0.240  97.5  1.8  0.7  0.435 
16 Semi-dense rangelands 2,231,149  0.173  90.1  3.5  6.5  0.454 
17 Residential areas 57,692  0.210  76.7  8.1  15.2  0.486  
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had a greater impact on this degradation. In addition, statistically- 
significant decreasing trends were also found for the sand dunes, 
shrublands and clay pit lands (Table 1). Similarly, saline lands, shrub-
lands and low-dense rangelands exhibited much larger decreasing-area 
fractions, while the dense forests exhibited the highest area with no 
trend among the land-cover types (99.3% of the pixels are characterized 
as stable), which implies good management and protection of the 
forested areas. 

By applying the de Martonne climate classification (Suppl. Fig. 2) in 
order to investigate the influence of climate conditions on vegetation, 
the extra-arid regions show a minimum GSN of 0.096, while the 
Mediterranean-climate type and the humid regions (although very 
limited in space) indicated the maximum GSN values (Table 2). Exam-
ining the vegetation trends according to the climatic classes, the semi- 
arid class exhibited the most stable conditions, so that in 93.9% of this 
class, the vegetation had no significant change (Table 2). The GSN 
exhibited a decreasing trend in 23.6% of the extra-arid class (statisti-
cally-significant at the 95% C.L.), while the highest level of increasing 
GSN was shown in the semi-humid class (19.2%). In general, the arid 
climate types exhibited a large decreasing fraction of GSN, while the 
Mediterranean-type and semi-humid climates displayed mostly 
increasing trends. 

Furthermore, the whole province was divided into seven TNI classes, 
in order to examine the changes in GSN as a function of topography 
(Table 3). TNI Class 1 (areas with combination of lowest slope and 
lowest altitude) exhibited a moderate GSN (0.207), likely attributed to 
the larger coverage of agricultural lands in this class. Class 2 exhibited 
the lowest GSN of 0.148, since it includes areas with relatively low 
elevation and low slope, which are mostly lied in the extra-arid and arid 
climate classifications (Suppl. Fig. 1). GSN progressively increases with 
increasing TNI until Class 7 (areas with combination of the high slope 
and/or highest altitude), reflecting an increasing tendency of vegetation 
cover with altitude, whereas a slight decrease occurs for Class 8 
(Table 3). This decrease is likely attributed to very high elevation 
(mountain tops) and/or very steep mountainous slopes, which are 
unfavourable for vegetation growth. Concerning the vegetation trends 
as a function of TNI class, GSN decreased in 18.6% of the TNI Class 2, 
while the lowest decreasing area (0.6%) in vegetation, also associated 
with the highest increasing fraction (11%), was recorded in Class 7, 
indicating a GSN increase in the high-elevated areas. 

The GSN trends at each pixel over the study area were grouped into 
four categories, according to the statistical significance of the increasing 
or decreasing trends (Fig. 3). The results display a spatial differentiation 
in the vegetation trends from 2004 to 2015, revealing a predominance of 
decreasing trends in the south and increasing ones in the central-north 
parts of the province, especially along the mountainous ranges 
(Fig. 3). However, areas with statistical significant trends in vegetation 
cover (GSN) were limited, since 12% of the province displayed 
decreasing and only 2.6% increasing trends. Apart from the natural 
causes, mismanagement of land and water resources through construc-
tion of storage dams, diversion channels, changing patterns of cultiva-
tion and LULC changes have exacerbated vegetation loss, creating land 
areas susceptible to wind erosion and vulnerable to dust-storm out-
breaks (Mosavi Baygi and Ashraf, 2011; Gholami et al., 2020b). 

3.2. Spatial distribution of the Hurst exponent 

This section analyzes the vegetation trends in Khorasan Razavi 
province based on the Hurst Exponent values. Fig. 4 shows the spatial 
distribution of H, which presents a remarkable spatial variability, 
ranging from 0.07 to 0.69. The spatially-averaged annual mean value 
during 2004–2015 was found to be 0.46, indicating a relative instability 
of the trends in vegetation cover. H values above 0.5 were detected in 
33.6% of the area, mostly in the southern parts of the province, indi-
cating that the vegetation cover will continue its existing trends, which 
were found to be highly decreasing in the most of these areas (see Fig. 3). 
H values above 0.6 are also detected in some parts of the north Khorasan 
Razavi (Chenaran, Sarakhs and small parts of Quchan county) (Fig. 4), 
which were mostly associated with increasing GSN trends (Fig. 3). Thus, 
this increasing vegetation trend has great possibility to be continued in 
the future. In 7.7% of the province, the future changes in vegetation 
would be completely random. Areas with H index below 0.5 are spread 
throughout the province covering the 58.7% of its area, implying that 
the sign of the vegetation trend is likely to change. 

On the other hand, the averaged H values were found to vary slightly 
among the different land-cover types (Table 1). Sand dunes exhibited 
the highest mean H value (0.528), followed by clay pits and reforesta-
tion, while the lowest mean H values were recorded for dense forests 
(0.426), dense rangelands (0.435) and dry farming (0.437), indicating 
rather random and uncertain changes in GSN in most of these land-cover 
types (Table 1). Studying the H values as a function of the climatic 
classes (Table 2), the results showed random and rather uncertain 
changes for all climatic classes, since the H values were close to 0.5, 
ranging slightly from the semi-humid class (0.525) to the semi-arid class 
(0.446). Similarly, the H values did not present large fluctuations be-
tween the various TNI classes (Table 3). TNI Class 1 indicated random 
vegetation trends in the future (H = 0.503), while all the other classes 
exhibited H values slightly below 0.5, meaning that the vegetation trend 
may change. 

3.3. Perspectives for environmental restoration 

Identification of areas appropriate for environmental restoration is 
very important for maximizing benefits in terms of cost and time and has 
been given greater emphasis as part of national efforts towards 
achieving land degradation neutrality (Kiani-Harchegani and Sadeghi, 
2020). The best way to select an area for restoration projects is to 
monitor the behavior of vegetation in the past, and then identify those 
areas likely displaying the same trends in the future (Hanson et al., 2013; 
Burnett et al., 2019). 

As explained in section 2.6, combining the spatial distributions of the 
trends in vegetation cover (Fig. 3) and the H exponent (Fig. 4), the whole 
province can be divided into six classes representing various environ-
mental restoration scenarios (PD, ND, APD, AND, SD and UD) (Fig. 5). 
The analysis showed that in 25.7% of the province area, stable condi-
tions dominated, including mostly the eastern and southern parts. In 
2.3% of the study area, such as the southern hillsides of Binalood, GSN 
will likely increase steadily (PD), while in 0.4% of the province, it is 
more likely that the positive trend will reverse (APD). The vast areas of 
the southern part of the province are likely to continue their decreasing 

Table 2 
Total area, average growing season NDVI (March to September) (Mean from 2004 to 2015), Hurst values and trends in vegetation for the de Martonne classes in 
Khorasan Razavi province from 2004 to 2015.  

Class De Martonne Zone Area (ha) GSN Trends (%) Hurst(H) 
Stable Increasing Decreasing 

1 Extra Arid 2,400,540  0.096  72.92  3.44  23.64  0.495 
2 Arid 5,990,993  0.153  84.29  1.30  14.4  0.462 
3 Semi-Arid 28,912  0.229  93.92  3.69  2.39  0.525 
4 Mediterranean 143,167  0.283  88.97  10.99  0.04  0.501 
5 Semi Humid 4,279,191  0.258  80.73  19.17  0.1  0.446  
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tendency in vegetation, since about 9.4% of the study area will experi-
ence vegetation degradation (ND). On the contrary, the analysis showed 
that in 2.6% of the province area the current GSN reduction would 
disrupt, which implies that the vegetation cover will increase or have a 
stable condition (AND) in the future. Finally, the tendency of the un-
certain vegetation development (UD class) covers the most part (56.6%) 
of the province (Fig. 5). 

The analysis revealed that 79.4% of the dense forests and 77.4% of 
the dense rangelands did not indicate a specified trend, implying that 
changes in these land-cover types will not be stable, making it impos-
sible to predict future changes using the current model (Table 4). 
Furthermore, in 73% of the dry farming class, the vegetation was also 
characterized as undetermined, which could be due to the unstable 
nature of this type of agriculture activity. The highest fractions of a land- 
cover type with stable conditions were recorded for saline lands (38.4%) 
and desert (34.6%). According to the analysis, it was predicted that the 
vegetation would present a continuous decreasing trend in 33% of 
reforestation areas, which shows that prior restoration projects have not 
been so successful. In addition, roughly the half of the sand-dunes will 
suffer from degradation in the future. Unlike sand dunes, only 0.2% of 
the dense-forests class will have a negative trend in vegetation. As 
mentioned above for the AND scenario, the pixels within this class are 
likely to show a different trend in the future (stable or increasing). The 

highest rate of change was predicted for the sand dunes (9.2% of the 
class area) followed by shrublands (6.4%), whereas the least fraction 
area of change was found for the dense rangelands (0.1%). APD is the 
reverse condition of AND, on which the current positive trend is ex-
pected to change to negative or stable. Desert exhibits by far the highest 
fraction of area for APD (3.4%) (Table 4). 

For defining the restoration potential of the various LULC types 
(Suppl. Table 3), six conditions (A3, A4, B2, B3, C1 and D1) were 
observed in the study area. Seven LULC types including river beds, low- 
dense forest, semi-dense forest, irrigated farming, dry farming, dense 
rangeland and semi-dense rangeland were categorized as class C1, 
which means that they don’t have a good potential for restoration and 
the restoration uncertainty is rather high. This may be likely attributed 
to the climate-change scenario in Iran and the Middle East with a 
decrease in precipitation pattern and increase in temperature (Mathew 
et al., 2002; Soltani and Gholipoor, 2006; Sharifikia, 2013; Zoljoodi and 
Didevarasl, 2013). Dense forest was labeled as D1, suggesting even 
higher uncertainty in comparison to C1 class. In contrast, reforestation, 
sand dunes, clay pits were tagged as A4 areas, suggesting that these 
classes are the most favourable for proposing restoration projects 
(Suppl. Table 3). The spatial distribution of the potential restoration 
classes in Khorasan Razavi province is shown in Fig. 6, where specific 
regions in the southern and western parts of the province (B3 to A4) 

Table 3 
Total area, average growing season NDVI (March to September) (Mean from 2004 to 2015), Hurst values and trends in vegetation for the TNI classes in Khorasan 
Razavi province from 2004 to 2015.  

Class TNI Area(ha) GSN Trends (%) Hurst(H) 
Stable Increasing Decreasing 

1 0.07–0.2 121,670  0.207  92.7  4.4  2.9  0.503 
2 0.2–0.4 5,370,252  0.148  79.1  2.3  18.6  0.477 
3 0.4–0.6 3,551,313  0.159  87.1  0.8  12.1  0.447 
4 0.6–0.8 1,672,884  0.186  93.6  1.9  4.5  0.440 
5 0.8–1 1,100,795  0.210  93.1  4.9  2.1  0.461 
6 1–1.2 726,074  0.233  90.8  8.2  0.9  0.475 
7 1.2–1.4 296,377  0.246  88.4  11.0  0.6  0.483 
8 1.4–1.97 3437  0.236  88.8  10.0  1.2  0.488  

Fig. 3. Spatial distribution of the trends in vegetation cover in Khorasan Razavi province between 2004 and 2015. The significance of the trends corresponds to 95% 
confidence level. 
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have been identified as appropriate for establishing environmental 
restoration activities in order to avoid further degradation of the eco-
systems and environment. It should be mentioned that these areas are 
covered by sparse vegetation (low GSN values) (Fig. 2) and the long- 
term trends revealed mostly significant decreasing vegetation trends 

(Fig. 3). 
Studying the perspectives for environmental restoration as a function 

of the de Martonne climatic classes, the results showed that 70.6% of the 
semi-arid class is likely to have an unspecified trend (Table 5). Due to an 
increase in dry-farming cultivation during the last decade, and 

Fig. 4. Spatial distribution of the Hurst exponent in Khorasan Razavi province. Hurst exponent measures the stability of large data through the Rescaled Range Series 
Analysis (R/S). 

Fig. 5. Expected direction of vegetation development in the future over Khorasan Razavi province. [see text for details]  
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considering that these lands are mainly located in arid regions, local 
people abandoned these lands after cultivation for two - three years. As a 
consequence, it is predicted that 17.8% and 11.9% of the extra arid and 
arid areas respectively will have negative development in the future. On 
the contrary, areas of negative development were much less for semi- 
humid (0.1%) and Mediterranean (0.04%) climatic classes. Especially 

for the semi-humid and Mediterranean classes, the effects of precipita-
tion in vegetation development are important, so that at 18.8% and 
10.8% of these areas, respectively, the vegetation will be increasing 
(Table 5). Concerning the restoration potential in the various climatic 
classes, the extra-arid, semi-humid and Mediterranean types were clas-
sified as F2, F3 and F3, respectively (Suppl. Table 4). In these classes, 

Table 4 
The perspectives for environmental restoration for different LULC types in the Khorasan Razavi province.   

LULC Area Ratio of Vegetation Development (%) Restoration Potential Class (see Supplementary Table 2) 

UD SD ND PD AND APD 

1 No vegetation cover lands and rocky outcrops  58.5  28.1  7.7  2.5  2.9  0.3 B2 
2 Saline lands  43.0  38.4  12.8  2.9  2.5  0.3 A3 
3 River beds  64.4  20.6  8.7  1.8  4.1  0.3 C1 
4 Shrublands  55.8  23.4  13.1  1.2  6.4  0.2 B2 
5 Sand dunes  20.6  27.9  41.3  0.8  9.2  0.3 A4 
6 Dense forests  79.4  19.6  0.2  0.2  0.5  0.0 D1 
7 Low dense forest  62.6  28.8  4.6  2.1  1.4  0.6 C1 
8 Semi-dense forests  70.8  22.5  2.8  0.6  3.1  0.2 C1 
9 Reforestation  34.8  26.8  33.0  0.4  4.8  0.2 A4 
10 Clay pits  35.3  32.7  25.2  1.1  5.5  0.3 A4 
11 Irrigated Farming  62.0  23.6  8.9  1.8  3.3  0.5 C1 
12 Dry farming  73.0  18.8  5.9  0.7  1.5  0.1 C1 
13 Desert  47.7  34.6  0.6  13.2  0.5  3.4 B3 
14 Low density rangelands  52.2  28.6  13.4  2.1  3.5  0.3 B2 
15 Dense rangelands  77.4  20.0  0.7  1.6  0.1  0.2 C1 
16 Semi-dense rangelands  65.3  24.7  5.5  3.1  1.1  0.4 C1 
17 Residential areas  48.6  28.1  11.5  7.8  3.1  0.9 B3  

UD ¼ Undetermined SD ¼ Stable Development ND ¼ Negative Development PD ¼ Positive DevelopmentAND ¼ Anti Persistence Negative Development APD ¼ Anti 
Persistence Positive Development  

Fig. 6. Map of potential vegetation restoration in Khorasan Razavi province.  
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despite the relatively favourable conditions for restoration, there is a 
significant degree of uncertainty that restricts these areas from resto-
ration projects. In contrast, in the arid and semi-arid classes the uncer-
tainty is much lower and, although the FRDI is lower (1.14 – 1.23), these 
areas – classified as A2 – could be suggested for restoration projects 
(Suppl. Table 4). 

The vegetation trends and perspectives for environmental restora-
tion were also studied for different TNI classes (Table 6). Apart from 
Class 1, the other classes mostly displayed no specific trend in the 
vegetation (UD greater than 50%). 50.2% of Class 1 will show a stable 
behavior in the future, while Class 2 exhibited the most negative 
development (ND = 15.5%) and this is likely attributed to overlapping 
with areas of rather low elevation and low slope, which were mostly 
covered by deserts, sand dunes and rangelands. Class 7 revealed the 
highest fraction (9.6%) of positive development (Table 6). In terms of 
restoration potential in TNI classes, the Class 1 was tagged as A4, which 
indicates favourable conditions for proposing restoration projects, but 
with high uncertainty (Suppl. Table 5). On the other hand, Classes 3 and 
4 were subjected of high uncertainty with very low restoration potential. 
Classes 2, 7 and 8 were tagged as D3, exhibiting a satisfactory restora-
tion potential, but with relatively high uncertainty. Classes 5 and 6 were 
grouped as E2 and E3, respectively, indicating some areas with good 
restoration potential associated with moderate-to-high uncertainty 
(Table 6; Suppl. Table 5). 

3.4. Method validation 

The GSN time series was divided into two sub-periods (2004–2009 
and 2010–2015) and the pixels that exhibited a statistically-significant 
trend (p < 0.05) were selected for both periods to validate the tech-
nique for future trend predictions. Therefore, the vegetation trends were 
calculated in the first sub-period (2004–2009), and then, the regression 
slopes were compared to those in the second sub-period (2009–2015) 
(Table 7). The regression slope of vegetation change in APD class 
decreased from 46.2% to 5.36% between the two sub-periods, which 
indicates that the vegetation behavior was as we expected. Furthermore, 
in AND class the large decreasing trend in the first sub-period (-49.0) 
disrupts in the second (-3.5), which also meets the definition of the AND 
(Table 7). Therefore, in areas characterized by a negative trend during 
2004–2009, the vegetation continued its decreasing tendency during 
2009–2015, but contrary to our predictions, the vegetation stopped 
increasing in the PD class during the second sub-period (change of the 

signal from positive to negative). These results show that the Hurst 
exponent can be used for predicting future changes and is a useful tool 
for identification of potential areas for establishing environmental 
restoration projects. 

4. Discussion 

The importance of environmental restoration has become a major 
issue in Iran over the last decade (e.g. Monjezi et al., 2009; Abdollahi 
et al., 2019; Hosseini et al., 2019a, 2019b; Qaderi Nasab and Rahnama, 
2019; Balkanlou et al., 2020), due to anthropogenic impacts and 
drought conditions under a warmer world scenario that have resulted in 
vegetation decline, land degradation and increase in dust storms (Rashki 
et al., 2012; Abbasi et al., 2019; Middleton, 2019). In general, there are 
two approaches for vegetation restoration: (1) natural restoration and 
(2) artificial restoration. In natural restoration, the goal is to develop the 
conditions of the area to improve the current vegetation cover using 
management actions such as preservation, controlling unauthorized 
livestock grazing, etc. But in artificial restoration using intervention 
methods such as seeding, removal of invasive species, fertilization, etc., 
efforts are made to return the vegetation to its former climax conditions. 
In this study, the term restoration includes a combination of natural and 
artificial restoration techniques with more emphasis on natural tech-
niques. Therefore, it is clear that the implementation of restoration 
projects at the local level requires additional studies and the selection of 
appropriate species and methods in each region. 

Anthropogenic and natural processes may change vegetation cover 
over time and, in turn, negatively affect ecosystems and biogeochemical 
cycles (Sun et al., 2009; Mahowald et al., 2017; Kanakidou et al., 2018). 
Therefore, predicting and – where appropriate – protecting against such 
deleterious changes in an ecosystem is of vital importance (Pettorelli 
et al., 2005). Various factors may affect the vegetation dynamics, such as 
changes in precipitation as well as in topography (Fu et al., 2004, 2009; 
Sun et al., 2010). Climate change under a warmer world scenario has 
stronger impacts on arid and semi-arid regions (Middleton, 2018, 2019) 
and may also negatively affect the inter-relationships between envi-
ronment, society and human health (Goudie, 2020; Shahsavani et al., 
2020). The physical geography of central-south Asia in general, and east 
Iran in particular, makes these areas more vulnerable to climate change 
since they have experienced declining precipitation and extensive 
droughts in recent decades (Mathew et al., 2002; Masoudi et al., 2018; Li 
et al., 2020; Miri et al., 2021; Rashki et al., 2021). In this respect, the 
current results showed that 65% of the Khorasan Razavi province area 
displayed a decreasing trend in vegetation cover, of which 12% 

Table 5 
The perspectives for environmental restoration according to the de Martonne classes.   

De Martonne Zone Area Ratio of Vegetation Development (%) Restoration Potential Class 

UD SD ND PD AND APD 

1 Extra Arid  41.37  31.33  17.83  2.63  6.01  0.83 F2 
2 Arid  59.11  24.81  11.89  1.10  2.86  0.23 A2 
3 Semi Humid  32.05  48.67  0.10  18.77  0.00  0.41 F3 
4 Mediterranean  46.33  42.60  0.04  10.81  0.00  0.22 F3 
5 Semi-Arid  70.61  23.30  2.02  3.26  0.38  0.43 A2  

Table 6 
The perspectives for environmental restoration according to the TNI classes.   

TNI 
class 

Area Ratio of Vegetation Development (%) Restoration 
Potential Class UD SD ND PD AND APD 

1 0.07–0.2  42.2  50.2  2.8  4.1  0.2  0.4 A4 
2 0.2–0.4  51.3  27.3  15.5  1.9  3.5  0.5 D3 
3 0.4–0.6  66.3  20.7  9.1  0.7  3.1  0.1 F2 
4 0.6–0.8  71.8  21.8  3.1  1.7  1.4  0.2 F1 
5 0.8–1  63.3  29.7  1.4  4.4  0.7  0.5 E2 
6 1–1.2  56.7  34.1  0.6  7.3  0.4  1.0 E3 
7 1.2–1.4  52.6  35.8  0.3  9.6  0.3  1.4 D3 
8 1.4–1.97  49.6  39.1  0.9  9.1  0.2  1.0 D3  

Table 7 
Method validation using the regression slopes in GSN time series for two periods 
2004–2009 and 2010–2015.  

Predicted Trend(based on 
2004–2009 period) 

Regression Slope of 
GSN(2004–09) 

Regression Slope of 
GSN(2009–15) 

Anti-Persistent positive trend  46.2  5.35 
Anti-Persistent negative trend  − 49.01  − 3.53 
Positive trend  47.92  − 13.03 
Negative trend  − 6.32  − 7.02  
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exhibited a statistically significant decrease, mostly observed at the 
southern and southwestern parts. In contrast, only 2.6% of the province 
area displayed a statistically-significant increase in GSN, including some 
parts of the Neyshabur and Chenaran counties, as well as limited areas in 
the western part of the province (Fig. 3). In addition, some few northern 
regions of Khorasan Razavi province exhibited an increasing trend in 
vegetation cover during the last decades, likely attributed to an increase 
in the cultivated areas. Recurrent drought periods during recent years 
have severely impacted the hydrological regime resulting in less surface 
and ground-water availability in Iran (Emadodin et al., 2019). Natural 
causes, like increase in temperature and decrease in precipitation, may 
accelerate the vegetation loss and desertification, especially in the 
mostly arid parts of the southern Khorasan Razavi province (Pashaei 
et al., 2017). On the other hand, a significant decrease in the desert areas 
was observed in the Thar Desert, India due to the construction of water 
canals for transferring water from other regions, thus resulting in in-
crease of greenery and vegetation cover, decrease in soil erosion and 
dust outflows (Kharol et al., 2013). Such actions may also have benefi-
cial results in preventing land degradation and susceptibility to wind 
erosion and in improving air quality and human health in Khorasan 
Razavi province (Najmeddin et al., 2018; Ziyaee et al., 2019; Gholami 
et al., 2020c). Furthermore, topography has a significant effect on the 
regional climate by changing the spatial patterns of the local hydro-
thermal conditions that control vegetation and this was also supported 
by the current results regarding the changes in vegetation trends for 
different TNI classes. 

As different vegetation types exhibited a contrasting response to 
climate change, the spatial differentiation of vegetation dynamics has 
been analyzed for different terrain areas. For a better understanding of 
the relationship between vegetation and climate change, it is important 
to investigate the effect of topography and terrain characteristics on 
vegetation dynamics, along with information on the climatic types. 
Since a large part of Khorasan Razavi province is located in the arid and 
semi-arid zones, changes in the temporal and spatial distribution of 
rainfall would have a drastic effect on the inter-annual variability of 
NDVI. However, these changes may be interrelated with the growth of 
perennial vegetation, and for minimizing the effect of temporary vege-
tation changes, the average vegetation index during the growing season 
(GSN) was used in this study. Considering the low vegetation cover in 
northeast Iran, using of NDVI that fails to investigate the soil impacts, 
would lead to considerable biases in the trend analysis. This is because 
NDVI is not well-suited to monitoring vegetation changes in dry areas. 
However, by using the GSN, which covers the entire growth period, such 
biases would be decreased. 

For specific vegetation types in the study area such as sand dunes and 
clay pits, the vegetation cover has been decreasing markedly, which may 
have a dramatic effect on the increase in frequency and intensity of dust 
events (Webb et al., 2016; Middleton, 2018; Duniway et al., 2019; 
Karimi et al., 2017). Thus, decreasing vegetation cover can increase the 
surface between wind and soil, and consequently, even weak winds can 
increase the dust mobilization and emissions (Lim and Chun, 2006; Kim 
et al., 2017; Parajuli et al., 2019), resulting in degradation of air quality 
and serious health effects for the local population (Najmeddin et al., 
2018). 

Studying the perspectives for environmental restoration by 
analyzing the vegetation trends, highlighted some parts in the Khorasan 
Razavi province, as the most favourable for implementation of restora-
tion projects. The perceptiveness for restoration was found to decrease 
for high-elevation areas and steep topographic slopes, considering these 
terrains rather inappropriate for future restoration projects, since the 
land surfaces are prone to soil erosion under heavy rains. Implementing 
restoration projects in certain areas could protect land degradation, and 
improve the overall quality of the air, soil and water as well as human 
health and societal indexes. 

5. Conclusions 

This study analyzed the long-term trends in vegetation cover over 
Khorasan Razavi province in northeast Iran over the period 2004–2015 
using linear regressions of the growing-season NDVI (GSN). MODIS- 
NDVI time series and GIS applications were synthesized, while the 
vegetation trends were also examined for different LULC, climatic 
classes based on the de Martonne climate classification and as a function 
of the elevation and slope of the area, expressed via the Terrain Niche 
index (TNI). Furthermore, the vegetation-cover types and the areas that 
are most favourable for implementing restoration projects were identi-
fied, based on combining the Future Restoration Dispersal Index (FRDI) 
and the Future Uncertainty Dispersal Index (FUDI). The main findings of 
this study can be summarized as follows:  

(1) Generally, vegetation decreased over the period from 2004 to 
2015, particularly in southern parts of the province. The topog-
raphy was found to play an important role in vegetation cover 
and trends.  

(2) Most of the vegetation types displayed no significant trend during 
the study period. The percentage of pixels showing a decreasing 
trend in vegetation was greater than pixels with an increasing 
trend. The Binalood Mountains exhibited mostly increasing 
trends in vegetation.  

(3) The vegetation trends in southern and in some northern parts of 
the province were found to be mostly stable. The predicted future 
vegetation showed an unstable trend, especially in the central 
part of the province. The percentage of vegetation with negative 
development was greater than vegetation with positive devel-
opment. Reforestation was found to have the most significant 
downward trend, which was found to be statistically significant 
at 95% confidence level (p = 0.016). In addition, statistically- 
significant decreasing trends were also found for the sand 
dunes, shrublands and clay pits.  

(4) In the future, most vegetation-cover decrease is likely to occur in 
areas affected by human activities, rather than in areas of rough 
terrain. Some parts in the southwest province were found as the 
most appropriate for implementation of environmental restora-
tion projects, but with considerable uncertainty. It is suggested 
that restoration projects should be properly considered to prevent 
further damage of vegetation and land degradation, since areas 
that had been restored in the past, exhibited a significant loss of 
vegetation. 
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