
A new memroyless online routing algorithm for
Delaunay triangulations

Ashkan Rezazadeh
Computer Engineering Department
Ferdowsi University Of Mashhad

Mashhad, Iran
Email: ashkan.rezazadeh@mail.um.ac.ir

Mostafa Nouri-Baygi
Computer Engineering Department
Ferdowsi University Of Mashhad

Mashhad, Iran
Email: nouribaygi@um.ac.ir

Abstract—We consider 1-local online routing on a special class
of geometric graphs called Delaunay triangulations (DTs). A
geometric graph G=(V,E) of a point set consists of a set of points
in the plane and edges between them, where each edge weighs as
the Euclidean distance between it’s end-points. DTs are one of
the useful classes of these graphs because of some good properties
which can help during the navigation process, therefore over the
years DTs have been widely proposed as network topologies for
several times.

In this paper, we present an MOR1 algorithm for DTs which
is simple, elegant, and easy to implement, while having an
acceptable performance.

The set of MOR algorithms are suitable for cases where we
want to find a path using only local information, our proposed
algorithm is memoryless or 1-local, in k-local routing, we find a
path between a source vertex s to a destination vertex t while
our knowledge at each step is limited to the locations of s and t,
the location of current vertex and it’s k-neighborhood vertices.

We also evaluate and compare the perforamnce of our pr-
popsed algorithm with existing MOR algorithms. Our exper-
imental results implied that our proposed algorithm has an
acceptable performance in both Euclidean and link metrics and
it outperforms all of the existing MOR algorithms in Euclidean
metric, and some of them in the link metric as well. Finally, we
pose two open problems to solve in the future.

Keywords— Online routing, Delaunay triangulation, Geometric
routing, Memoryless online routing

I. INTRODUCTION

Finding a path between a given source vertex s to a desti-
nation vertex t in a graph is a well-known and fundamental
problem in computer science, it is central to several fields like
urban planning, robotics, and communication systems.

In most of the cases, we have a geometric setting that can
be modeled by a geometric graph, so the problem becomes
the problem of finding a path from a source vertex s to a
destination vertex t in a geometric graph G. Note that in
geometric graphs, each vertex is identified by it’s coordinates
in the plane.

We focus on a particular and useful class of geometric
graphs called Delaunay triangulation(DT). DTs are widely
used in scientific computing in many diverse applications.
While there are numerous algorithms for computing triangu-

1Memoryless online routing

Fig. 1: An example DT with 400 nodes

lations, it is the favorable geometric properties of DTs that
make them so useful.

The DT is the dual graph of the Voronoi diagram. The DT
of a set of points P in the plane is a triangulation of P so that
there are no points of P in the interior of the circumcircle of
any of its triangular faces. An example DT of 400 points in
the plane is illustrated in Fig. 1.

DTs have some good properties which help during navi-
gation process and because of that, they have been proposed
as the network topologies several times [1], [2], [3]. Some of
those properties are listed below:

1) DTs are planar graphs.
2) For any triangulation, the number of edges is equal to

3n − 3 − k [4], while n denotes the number of nodes
and k denotes the number of convex hull edges.

3) If the length of the shortest path between any two node
in a graph G is no longer than c times the Euclidean
distance between those two nodes, G is a c-spanner and
c is it’s spanning ratio, moreover, If G is a geometric
graph, then it is a geometric spanner. Dobkin et al. [5]

proved that DTs are geometric spanners, and later it
has been proved that c is between 1.5846 and 1.998
for DTs.[6], [7]

When the full knowledge of the underlying network topol-
ogy is available beforehand, there exists numerous routing
algorithms which can find the shortest paths in a graph, but
the problem is more challenging when we try to find a route in
the Online settings. Online routing is also called local routing
which means that the full knowledge of the underlying network
topology is not available beforehand and the robot/message
should explore the graph as it tries to find a route to the
destination using only local information available.

Bose and Morin [8] have classified online routing algorithms
based on their use of memory and/or randomization, they call
a routing algorithm memoryless if the desicion of selecting
the next forwarding node is made according to the loation of
the current vertex, it’s 1-hop neighbors and the location of
destination vertex.

The set of MOR algorithms are very useful in many
scenarios like communication systems or robotics where the
whole network topology is not known beforehand. The MOR
algorithms are simple, elegant, scalable and energy efficient.
Therefore, they have received a lot of attention in litera-
ture. [8], [9], [10], [11]

We say an online algorithm A works for a graph G, if it
can find a path between any two vertice of G.

In this paper we present a new MOR algorithm that works
for DTs, our experimental results implied that it outperforms
the existing MOR algorithms in Euclidean metric and most of
them in link metric. Our main idea is based on the combination
of two of the MOR algorithms presented by Kranakis [12], and
Si and Zomaya [11].

We have organized the paper as follows. Section 2 discusses
related work; Section 3 will explain our new MOR algorithm;
In section 4 the experimental results will be presented and
we will evaluate our algorithm’s performance by comparing it
with existing MOR algorithms in two common metrics(i.e.
Euclidean and Link metric); finally, In section 5 we will
conclude the paper and discusses about some open problems
and future works.

II. RELATED WORK

Let us begin by introducing some notations. We will use s
to denote the source, t to denote the destination, p to denote
current forwarding node, N(p) to denote the 1-hop neighbors
of p, d(u, v) to denote the Euclidean distance between vertex
u and vertex v, and 6 uvw to denote the angle between the
line segment vu and vw which is less than or equal 180◦.

If the length of the path produced by an algorithm A on a
graph G from any source vertex s to any destination vertex t
is no longer than c times the shortest path from s to t in G,
then A is a c-competitive algorithm and c is it’s competitive
ratio.

To the best of our knowledge, There exist seven MOR and
two 1 − local online routing schemes that have been proved
to work for DTs to this date. We briefly describe them below.

d(w1,t)

d(w2,t)

d(v,w1)

d(v,w2)

Fig. 2: The basic idea of Two-step Routing. In this example
d(v, w1) + d(w1, t) is smaller than d(v, w2) + d(w2, t), hence, the
node v will forward the packet to the node w1.

The first seven algorithms are in the set of MOR algorithms
and their competitiveness has not been proved yet, while the
others are competitive 1− local online routing algorithms.

1) Greedy routing algorithm [8]
In Greedy routing, the node w ∈ N(p) which has the
smallest d(w, t) will be selected as the next forwarding
node and a tie is broken arbitrarily.

2) Compass routing algorithm [12]
In Compass routing, the node w ∈ N(p) which mini-
mizes 6 tpw will be selected as the next forwarding node
and a tie is broken arbitrarily.

3) Greedy-Compass routing algorithm[13]
cw(p) denotes the node w ∈ N(p) which minimzes
6 tpw clockwise from the line pt, and ccw(p) denotes
the node w ∈ N(p) which minimzes 6 tpw counter-
clockwise from the line pt. If a node w ∈ N(p) lies on
the line segment pt, then we have cw(p) = ccw(p) = w.
In Greedy-Compass routing, p first finds the two nodes
cw(p) and ccw(p), then the node w ∈ {cw(p), ccw(p)}
which minimizes d(w, t) will be selected as the next
forwarding node, and a tie is broken arbitrarily.

4) Two-step routing algorithm [11]
In Two-step routing, the node w ∈ N(p) which has
a smaller d(w, t) than d(p, t) and minimzes d(p, w) +
d(w, t) will be selected as the next forwarding node,
and a tie is broken arbitrarily. Because of the condition
of d(w, t) < d(p, t), the robot/packet is guaranteed to
reduce it’s distance to t in each step and reach t at
the end. Fig. 2 illustrates the main idea of Two-step
routing, and Fig. 3 gives us further details about how
the algorithm works.

5) Apex-angle routing algorithm [11]
In Apex-angle routing, the node w ∈ N(p) which has a
smaller d(w, t) than d(p, t) and maximizes 6 pwt (apex
angle) will be selected as the next forwarding node, and
a tie is broken arbitrarily.
Using Lemma 2 in [11] can helps us to prove that p has
at least one neighbor w with d(w, t) < d(p, t), Si and
Zomaya [11] used this to prove that Apex-angle routing
algorithms works for DTs.

6) Distance Referencing algorithms [11]
If we consider a point in Cartesian coordinate system

Algorithm 1 The Two-step routing

for all w ∈ N(p) do
if w has a smaller d(w, t) than d(p, t) then
sum← d(p, w) + d(w, t)
if w has a smaller sum than previous neighbors then
next(p)← w

end if
end if

end for

Fig. 3: The Two-step routing

as a vector from the origin to the point, then we can
express any point l on the line segment pt by:

l = (1−α) · p+α · t, α ∈ R (the set of real numbers).
Si and Zomaya [11] called l “the reference point“, and α
“the distance coefficient“. It has been shown in [11] that
when α < 1/2 or when α > 3/2, the set of Distance
Referencing algorithms do not work for DTs. Theorem
4 in [11] implies that when 1/2 ≤ α ≤ 1, the Distance
Referencing algorithms work for DTs.
As you can see, any selection of α ∈ R gives us
an MOR algorithm. In the set of Distance Referencing
algorithms, we try to minimize the distance to the point
l at each step, hence, the node w ∈ N(p) which
minimizes the distance to the point l will be selected as
the next forwarding node, and a tie is broken arbitrarily.
For example, when α = 1/2, we get the Midpoint
algorithm [11] and when α = 1, we get the Greedy
routing algorithm [8].

7) Deterministic Compass algorithms [11]
The Greedy-Compass routing algorithms is a special
case of Deterministic Compass algorithms, Thus, this
set of algorithms have a similar approach.
In this set of MOR algorithms, If p does not have a
neighbor w that lies on the line segment pt, the node
p first finds the two node cw(p) and ccw(p), then will
select one of them as the next forwarding node based on
a deterministic rule, otherwise, cw(p) = ccw(p) = w,
hence, w will be selected directly as the next forwarding
node. The deterministic rule that we mentioned above
can be any rule that always chooses the same vertex in
the same state. For example, if the deterministic rule is
to select the node w with the smallest d(w, t), we will
get the Greedy-Compass routing algorithm.
Si and Zomaya [11] presented the Compass Mid-
point routing algorithm by selecting the node w ∈
{cw(p), ccw(p)} which minimizes d(w,m) as the de-
terministic rule, while m is the midpoint of the line
segment pt.

8) Chew’s routing algorithm on DTs [14]
The empty region in the definition of DT that we men-

tioned above is a circle, if we replace it with square,
the triangulation is called L1-Delaunay triangulation.
If the length of any path founded by an algorithm A
between any two vertices is no longer than c times the
Euclidean distance between those two vertices, c is the
routing ratio of A.
Bonichon et al. [14] introduced a generalization of the
Chew’s deterministic 1-local routing algorithm on the
L1-Delaunay triangulation [15] which works on DTs
with competitive and routing ratios of 5.90.
In this algorithm, we consider only the sequence of
triangles that intersect the line segment st. Ti denotes
the rightmost triangle that intersects line segment st and
has p as a vertex, Ci denotes the circle circumscribing
Ti, wi denotes the leftmost point of Ci, ri denotes the
rightmost intersection of Ci with st, and x and y denotes
the other two vertices of Ti.
In this algorithm, the line segment wiri splits Ci in two
arcs, if p lies on the upper arc we will walk clockwise
on Ci to reach x, otherwise we walk counterclockwise
on Ci to reach y, we repeat these steps until we reach
t.

9) MixedChordArc routing algorithm [16]
Bonichonet al. [16] presented a 1-local routing algorithm
on the Delaunay triangulation with a routing ratio of
3.56, improving the previous algorithm with a routing
ratio of 5.9.
Note that by the routing ratio is an upper bound on the
competitive ratio of a graph G for any routing algorithm.
Like the previous algorithm, we find a route between a
source vertex s to a destination vertex t along the edges
of triangles that intersect the line segment st using only
local knowledge and the location of s and t.
Let T be the rightmost triangle that intersects line seg-
ment st and has p as a vertex. Let C be the circumcircle
of T , tC the rightmost intersection of C on st, u and
v be arbitrary points on C. Then AC(u, v) denotes the
clockwise arc of C from u to v and BC(u, v) denotes
the counterclockwise arc of C from s to t, q 6= p denotes
the vertex of T which is below the line segment st, and
r denotes the other vertex of T .
The MixedChordArc algorithm works as follows. If p =
s, If the center of C is on or below the line segment st,
we select r, otherwise we select q as the next forwarding
node. If p 6= s we repeat the following steps until we
reach t:
If |AC(p, tC)| ≤ |pq| + |BC(q, tC)| we select r as the
next forwarding node, otherwise we set p = q.

III. TWO-STEP-COMPASS ROUTING ALGORITHM

The experimental results and comparisons in [11] showed
that the Two-step routing has the best performance when we
rate algorithms by the Euclidean length of the paths founded
by an algorithm. Therefore, we tried to focus on improving
the performance of this algorithm while keeping simplicity. It
is woth noting that analyzing the experimental results in [11]

Algorithm 2 Two-step-Compass routing

for all w ∈ N(p) do
if w has a smaller d(w, t) than d(p, t) then
sum← (α · (d(p, w) + d(w, t))) + (β · 6 tpw)
if w has a smaller sum than previous neighbors then
next(p)← w

end if
end if

end for

Fig. 4: Two-step-Compass routing

shows that an algorithm’s performance in Euclidean metric is
in contrary with it’s performance in link metric, hence, the
Two-step routing performs worse in link metric.

In most scenarios like robotics, reducing the Euclidean
length of the path is our main goal, while in some other
scenarios like WSNs2, it is more important to reduce the
number of hops in a path.

Some of the algorithms presented in [11] use the Euclidean
distance, some others use angles, and some uses the combi-
nation of the two to decide the next forwarding node. Our
algorithm will fit into the latter set, combining these two to
improve the performance of Two-step in both metrics.

Our algorithm is an MOR 1-local routing algorithm for
DTs based on two of MOR algorithms we mentioned in the
previous section: Two-step [17] and Compass [12] routing
algorithms. Compass Routing outperforms Two-step in link
metric while Two-step outperforms Compass in the Euclidean
metric. Hence, combining them results an algorithm that has an
acceptable performance on both metrics, specially in Euclidean
metric.

We call the algorithm “Two-step-Compass“ as it combines
the Two-step and Compass routing scheme while adding some
extra parameters so it can perform well in different scenarios.

Two-step-Compass has all the benefits of the set of MOR
algorithms and works as follows: At each step, the node w ∈
N(p) which has a smaller d(w, t) than d(p, t) and minimizes

(α · (d(p, w) + d(w, t))) + (β · 6 tpw)

will be selected as the next forwarding node.
α, β ∈ [0, 1] and 6 tpw is measured in degrees. It is clear

that the selection of α and β is effective on the performance of
the algorithm. In cases that we want to reduce the Euclidean
length of the path, α should be increased and be higher than
β, while in cases that we want to reduce the number of hops
of the path, β should be increased and be higher that α.

Fig. 4 illustrates the details of the algorithm in form of a
pseudo-code.

It has been proven in [17], [8] that the Two-step and
Compass routing algorithms works for DTs and since our
main idea is based on Two-step and can be considered as a

2Wireless sensor network

combination of the Two-step and Compass routing algorithms,
we can conclude that it also works for DTs.

IV. EVALUATION

A good metric for the path quality is stretch. The stretch
by a routing algorithm A for any pair of vertices (u, v) in a
graph G is defined by the ratio of the length of the path found
by A from u to v to the shortest path from u to v which can
be found by an offline algorithm like Dijkstra.

We use average stretch as our metric for the path quality in
order to evaluate and compare the performance of the routing
algorithms. It is clear that the average stretch by a routing
algorithm A on a geometric graph G is defined by the average
of the stretches of all (u, v) pairs in G by A.

The two common path length metrics that we have used are
listed below:

1) Euclidean distance:
Defined as the sum of all Euclidean distances of all
edges traversed in a path.

2) Link distance:
Defined as the number of hops in a path.

Note that in some scenarios like robotics, the smaller Eu-
clidean distance is more important , while it is more important
to reduce the number of hops in a path in some other cases
like WSNs, therefore evaluating the performance of routing
algorithms in these two metric can helps us to choose the
better option in each case.

We used these five routing algorithms with our proposed
algorithm in our experiments for comparing the performance
of them in terms of average stretch in both Euclidean and link
metric:
• Greedy
• Midpoint
• Two-step
• Apex-angle
• MixedChordArc
The reasons that made us use these algorithms in our

experiments in order to evaluate the performance of Two-step-
Compass are as follows:

1) The experimental results presented in [11] showed that
in terms of average stretch and max stretch, Two-step
and Apex-angle routing algorithms have the best perfor-
mance in the Euclidean metric, and in the link metric,
Greedy and Midpoint routing algorithms performs better
than the others.

2) The competitiveness of the algorithms presented by Si
and Zomaya [11] have not been proven yet, hence,
we have added the MixedChordArc [16] routing to our
experiments, since it has the smallest routing ratio(3.56)
on DTs to this date.

A. Experiment setup

We have generated 100 random DTs with 100, 200, 400,
600, 800, and 1000 nodes which were distributed uniformly
in a square area, then we implemented the algorithms in a

100 200 300 400 500 600 700 800 900 1000
Nodes Number

1.02

1.04

1.06

1.08

1.1

Av
er

ag
e

Eu
cl

id
ea

n
av

g_
st

re
tc

h
Euclidean avg_stretch by node count

Greedy

Two-step

Midpoint

Apex-angle

Twostep_Compass

MixedChordArc

Fig. 5: The average Euclidean average stretches of the algorithms

program and run each of them on every DT. You can see one
of our randomly generated DTs with 400 vertices which used
in our experiments in figure 1.

We run the Two-step-Compass routing algorithm while
setting α = β = 1 in our experiments, but they can be changed
in order to get the desired result base on differenct cases.

As mentioned before, we use average stretch in order to
evaluate and compare the quality of paths found by algorithms
in both Euclidean and link metric.

In order to calculate the stretch and average stretch, we
need to have the shortest path between any two vertice in
the graph, therefore, we used BFS and the famous Dijkstra’s
shortest path algorithm to get the shortest paths in link and
Euclidean metrics, respectively.

B. Experimental results

In this section, we will present the results of our experiments
in order to evaluate and compare the performance of the
algorithms in terms of average stretch on DTs.

We can see the average Euclidean average stretch of the
algorithms in Fig. 5.

As you can see, our experimental results imply that while
maintaining simplicity and elegance of the MOR algorithms,
the Two-step-Compass routing outperforms the other algo-
rithms in terms of average Euclidean average stretch.

We can take a closer look to the comparison between these
three algorithms in Fig. 6.

The average link average stretch of the algorithms is illus-
trated in Fig. 7. It can be understood that although the Two-
step-Compass has the best performance in Euclidean metric,
it’s performance in link metric is not as good as the Greedy,
Midpoint, and Apex-angle routing algorithms.

We can summarize our experimental results as follows:
• The Two-step-Compass routing outperforms the other

algorithms in Euclidean metric.
• In Euclidean metric, the Two-step-Compass routing per-

forms better than both Two-step and Apex-angle which
had the best performance in Euclidean metric to this date.

100 200 300 400 500 600 700 800 900 1000
Nodes Number

1.01

1.012

1.014

1.016

1.018

Av
er

ag
e

Eu
cl

id
ea

n
av

g_
st

re
tc

h

Euclidean avg_stretch by node count

Two-step

Apex-angle

Twostep_Compass

Fig. 6: The average Euclidean average stretches of the Two-step,
Apex-angle, and Two-step-Compass

100 200 300 400 500 600 700 800 900 1000
Nodes Number

1.2

1.3

1.4

1.5

1.6

1.7

A
ve

ra
g

e
lin

k
av

g
_s

tr
et

ch

Link avg_stretch by node count

Greedy

Two-step

Midpoint

Apex-angle

Twostep_Compass

MixedChordArc

Fig. 7: The average link average stretches of the algorithms

• The Greedy, Midpoint, and Apex-angle routing algo-
rithms performs better than the Two-step-Compass in link
metric.

• the Greedy routing algorithm outperforms the other algo-
rithms in link metric.

• The Two-step-Compass routing algorithm improves the
performance of both Two-step and MixedChordArc in
both Euclidean and link metrics.

• The performance of the Two-step-Compass routing is
acceptable in both metrics on DTs, it’s average stretch is
below 1.017 in Euclidean metric, and below 1.55 in link
metric, therefore, it can be applicable in various fields.

• The Two-step-Compass performs better in Euclidean met-
ric, hence it can be more suitable choice for scenarios like
robotics, where reducing the Euclidean distance is more
important.

Table I and II gives us the percentage of improvement of
each algorithm by the Two-step-Compass in Euclidean and
link metrics, respectively.

Algorithm

Nodes No.
100 200 400 600 800 1000

Greedy 87.82 86.26 85.16 84.38 83.98 83.47

Midpoint 69.89 71.90 74.21 74.68 75.21 75.33

Two-step 11.72 9.96 7.09 5.67 4.11 3.20

Apex-angle 11.20 10.79 10.07 9.06 8.63 7.85

MixedChordArc 72.89 70.86 70.04 69.40 68.8 68.67

TABLE I: The percentage of improvement of the algorithms by the
Two-step-Compass routing in Euclidean metric.

Algorithm

Nodes No.
100 200 400 600 800 1000

Greedy -75.17 -60.62 -48.48 -43.94 -39.94 -37.75

Midpoint -35.38 -35.20 -33.30 -32.56 -30.97 -30.06

Two-step 7.79 8.13 8.08 7.96 7.82 7.81

Apex-angle -2.94 -1.95 -1.38 -1.13 -0.99 -0.84

MixedChordArc 26.96 25.34 24.17 23.29 22.27 22.11

TABLE II: The percentage of improvement of the algorithms by the
Two-step-Compass routing in link metric. It is clear that a negative
value indicates deterioration of performance by Two-step-Compass.

V. OPEN PROBLEMS

In this section we will discuss two open problems which
can be solved as future work:
• It remains to be seen whether the Two-step-Compass rout-

ing algorithm is c-competitive or not. Bose and Morin [8]
proved that The Greedy and Compass routing algorithms
are not c-competitive in Euclidean metric by running
these two algorithm on a zig-zag triangulation.
Although that the four algorithm presented in [11], as
well as our algorithm will not trap in a zig-zag triangu-
lation like the one constructed in [8] to prove that the
Greedy and Compass algorithms are not c-competitive,
it has not been proven yet wether these algorithms are
c-competitive or not.

• The experimental results presented by Si and
Zomaya [11] implied that the performance order
of the algorithms in Euclidean metric is reversed in link
metric, but our proposed algorithm is in the 1st and
3rd rank in the Euclidean and link metric, respectively,
which means that it has improved the performance of
two algorithms in both metrics, so the question is, can
we design an MOR algorithm that outperforms other
MOR algorithms in both Euclidean and link metric?

VI. CONCLUSION

In this paper, we preseneted an MOR algorithm that will
find a path from any source vertex s to any destination vertex
t on any graph G of a special class of geometric graphs, called
Delaunay triangulations. This algorithm is inspired by two of
the previous presented MOR algorithms, the Two-step [17]
and Compass [12], hence we call it ”Two-step-Compass”.

We also evaluated our proposed algorithm by compare it’s
performance with four existing MOR algorithms (Greedy,

Midpoint, Two-step, and Apex-angle) and an O(1)-memory
competitive routing algorithm (MixedChordArc) in terms of
the average Euclidean and link average stretches. Our ex-
perimental results implied that while maintaining simplicity,
the Two-step-Compass routing improves the performance of
previous MOR algorithms in Euclidean metric, but not all of
them in link metric, so it can be practically used in different
scenarios.

Based on our experiments, the Two-step-Compass routing
algorithm performs well in both Euclidean and link metric in
terms of average average stretch, but it performs better in
Euclidean metric, therefore it can be more suitable choice in
scenarios that we would like to reduce the Euclidean length
of the path rather than the number of hops.

REFERENCES

[1] M. B. Haider and K. Sugihara, “Almost delaunay triangulation routing
in wireless sensor networks,” in 2007 10th international conference on
computer and information technology, Dec 2007, pp. 1–7.

[2] Jie Gao, L. J. Guibas, J. Hershberger, Li Zhang, and An Zhu, “Geometric
spanners for routing in mobile networks,” IEEE Journal on Selected
Areas in Communications, vol. 23, no. 1, pp. 174–185, Jan 2005.

[3] D. Satyanarayana, R. SV et al., “Constrained delaunay triangulation
for ad hoc networks,” Journal of Computer Systems, Networks, and
Communications, vol. 2008, 2008.

[4] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf, Computational
Geometry: Algorithms and Applications, second ed.Springer, 2000.

[5] D. P. Dobkin, S. J. Friedman, and K. J. Supowit, “Delaunay graphs
are almost as good as complete graphs,” Discrete & Computational
Geometry, vol. 5, no. 4, pp. 399–407, 1990.

[6] P. Bose, L. Devroye, M. Löffler, J. Snoeyink, and V. Verma, “The
spanning ratio of the delaunay triangulation is greater than pi/2,” 01
2009, pp. 165–167.

[7] G. Xia, “The stretch factor of the delaunay triangulation is less than
1.998,” SIAM Journal on Computing (SICOMP), vol. 42, no. 4, pp.
1620–1659, 2013.

[8] P. Bose and P. Morin, “Online routing in triangulations,” SIAM Journal
on Computing (SICOMP), vol. 33, no. 4, pp. 937–951, 2004.

[9] P. Bose, P. Carmi, and S. Durocher, “Bounding the locality of
distributed routing algorithms,” in Proceedings of the 28th ACM
Symposium on Principles of Distributed Computing, ser. PODC ’09.
New York, NY, USA: Association for Computing Machinery, 2009, p.
250–259. [Online]. Available: https://doi.org/10.1145/1582716.1582756

[10] D. Chen, L. Devroye, V. Dujmovic, and P. Morin, “Memoryless
routing in convex subdivisions: Random walks are optimal,” CoRR, vol.
abs/0911.2484, 2009. [Online]. Available: http://arxiv.org/abs/0911.2484

[11] W. Si and A. Y. Zomaya, “New memoryless online routing algorithms
for delaunay triangulations,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 23, no. 8, 2012.

[12] E. Kranakis, H. Singh, and J. Urrutia, “Compass routing on geometric
networks,” in Proceedings of the Canadian Conference on Computa-
tional Geometry (CCCG), Conference Proceedings, pp. 51–54.

[13] P. Bose, A. Brodnik, S. Carlsson, E. D. Demaine, R. Fleischer, A. López-
Ortiz, P. Morin, and J. I. Munro, “Online routing in convex subdivisions,”
International Journal of Computational Geometry & Applications,
vol. 12, no. 4, pp. 283–296, 2002.

[14] N. Bonichon, P. Bose, J.-L. D. Carufel, L. Perković, and A. v. Renssen,
“Upper and lower bounds for online routing on delaunay triangulations,”
In: Bansal N., Finocchi I. (eds) Algorithms - (ESA), Lecture Notes in
Computer Science (Springer), vol. 9294, pp. 203–214, 2015.

[15] L. P. Chew, “There is a planar graph almost as good as the complete
graph,” in Proceedings of 2nd Annual Symposium on Computational
Geometry (SOCG), Conference Proceedings, pp. 169–177.

[16] N. Bonichon, P. Bose, J. D. Carufel, V. Despré, D. Hill, and M. H. M.
Smid, “Improved routing on the delaunay triangulation,” In 26th Annual
European Symposium on Algorithms (ESA), p. 22:1–22:13, 2018.

[17] W. Si, A. Y. Zomaya, and S. Selvakennedy, “A geometric deployment
and routing scheme for directional wireless mesh networks,” IEEE
Transactions on Computers, vol. 63, no. 6, pp. 1323–1335, June 2011.

