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Abstract
Network security risk management is comprised of several essential processes, 
namely risk assessment, risk mitigation and risk validation and monitoring, which 
should be done accurately to maintain the overall security level of a network in an 
acceptable level. In this paper, an integrated framework for network security risk 
management is presented which is based on a probabilistic graphical model called 
Bayesian decision network (BDN). Using BDN, we model the information needed 
for managing security risks, such as information about vulnerabilities, risk-reducing 
countermeasures and the effects of implementing them on vulnerabilities, with the 
minimum need for expert’s knowledge. In order to increase the accuracy of the pro-
posed risk assessment process, vulnerabilities exploitation probability and impact of 
vulnerabilities exploitation on network assets are calculated using inherent, temporal 
and environmental factors. In the risk mitigation process, a cost-benefit analysis is 
efficiently done using modified Bayesian inference algorithms even in case of budget 
limitation. The experimental results show that network security level enhances sig-
nificantly due to precise assessment and appropriate mitigation of risks.

Keywords Risk assessment · Risk mitigation · Risk management framework · Cost-
benefit analysis · Decision making · Bayesian decision network

1 Introduction

In today’s complex computer networks, one of the main challenges of the network 
security administrators is to identify, assess and prioritize the security risks to their 
network assets and also to determine appropriate mitigation strategies to address 
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these risks. The net negative impact of the exploitation of a security vulnerability 
is called security risk which considers both the probability and the impact of vul-
nerability exploitation. Security risk management is the process of risk assessment, 
risk mitigation and risk validation and monitoring with the aim of minimizing or 
eliminating the potential risks in the systems [1–3]. Risk assessment process refers 
to identification and evaluation of risks, and also recommendation of risk-reducing 
countermeasures. In this classification, the risk assessment process includes risk 
analysis, which is the process of measuring the probability of vulnerabilities exploi-
tation and their expected impact. Risk mitigation process includes prioritizing, 
implementing and maintaining the appropriate countermeasures recommended from 
the risk assessment process. Risk validation and monitoring is a continual process 
which determines whether the residual risk is at an acceptable level or whether there 
is a need to implement additional countermeasures to further reduce or eliminate the 
residual risk.

Several techniques for identifying and measuring the characteristics of individ-
ual vulnerabilities are available, such as the Common Vulnerability Scoring System 
(CVSS) [4]. While these techniques are helpful to assess vulnerabilities, they have a 
major limitation, which is that they only focus on individual vulnerabilities and do 
not consider the interactions between them. This limitation is serious, because in 
order to compromise network assets, attackers generally exploit sequences of related 
vulnerabilities. Such attacks are called multi-step attacks which can be clearly dem-
onstrated using security models such as attack graphs (AGs) [5, 6].

One of the main drawbacks of AGs is that they give no information about the 
probability of exploiting vulnerabilities, nor their severity level [7]. These two 
parameters are essential factors for doing risk assessment. So, it is difficult to assess 
the risks caused by multi-step attacks on the network assets using only AGs.

Bayesian networks are powerful tools that can represent information about causal 
relationships between vulnerabilities. They also provide a more compact represen-
tation of AGs, yet still keep necessary information about vulnerabilities such as 
their probability of exploitation. Moreover, these networks provide a formalism for 
reasoning about partial beliefs under conditions of uncertainty [8]. To take advan-
tage of the benefits of Bayesian network concept, we can convert AGs into Bayes-
ian Attack Graphs (BAGs) [9], so possible multi-step attacks can be demonstrated 
and the uncertainties about probabilities of attacker actions can be captured in the 
model.

The main shortcoming of BAG is that it doesn’t provide any information about 
essential characteristics of possible security countermeasures such as their coverage, 
implementation cost and expected outcome, which are needed for performing risk 
mitigation. In the proposed framework, using BDN, the BAG model is modified and 
augmented to make the risk mitigation possible in an integrated manner.

Exploitation probability of vulnerabilities may change during network lifetime. 
For instance, public availability of tools and techniques for vulnerability exploitation 
increases the number of potential attackers by including those who are unskilled; 
thereby, the exploitation probability of the vulnerability increases. Also, the current 
available options for vulnerability remediation, the confidence level about vulner-
ability existence, the technical knowledge about exploitation available to the public 
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and their credibility are important factors which influence the number of potential 
attackers and thereby, the exploitability of vulnerabilities changes [4]. In the pro-
posed framework, these changes are handled considering temporal characteristics of 
vulnerabilities. So the result is more accurate and closer to the reality.

There are also various environmental factors which can affect the impact that a 
vulnerability imposes to an organization assets [4]. Therefore, the security admin-
istrator may want to modify and adjust the impact of vulnerability exploitation 
according to the importance of confidentiality, integrity and/or availability require-
ments of the affected IT assets. In the proposed framework, the impact of vulner-
ability exploitation is calculated considering the environmental factors affecting the 
security requirements of the assets.

In this paper, BDN is used to model the security properties of computer networks, 
therefore, in addition to demonstrating potential multi-step attacks, it is also possi-
ble to model the security countermeasures and their characteristics for performing 
risk mitigation. Also by employing Bayesian network concept in the model, it is 
possible to capture uncertainties about attacker actions. Moreover, by using BDNs, 
security administrators are able to define risk-reducing countermeasures covering 
vulnerabilities in the network, the cost of implementing these countermeasures and 
their expected outcome. Finally, using the BDN model employed in the proposed 
framework, a cost-benefit analysis is conducted which enables the network security 
administrators to identify the optimal subset(s) of security countermeasures even if 
the allocated budget for network hardening is limited.

Briefly, the main contributions of this paper are as follows:

– A BDN-based integrated framework for security risk management is proposed 
which encompasses all the information required for managing risks within it.

– The uncertainty in countermeasures coverage level is modeled as a probabilistic 
value, rather than just a Boolean value.

– An algorithm for converting BAG model into the BDN model, along with a 
formal definition for utility tables in BDN model and a method for filling their 
entries are proposed.

– A variable elimination-based algorithm for conducting cost-benefit analysis is 
also presented on the proposed BDN model which identifies the optimal subset(s) 
of countermeasures even in case of budget limitation.

– Finally, a feasibility analysis is conducted using a case study.

The rest of the paper is organized as follows: The next section presents a brief 
review on related work. Section 3 presents the proposed framework for security risk 
management. Results of applying the proposed method on a test network are pre-
sented in Sect. 4. A discussion is presented in Sect. 5. Finally, in the last section we 
conclude the paper and point out our future research.
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2  Related Work

Our related work includes two streams of literature: (1) security risk assessment and 
(2) security risk mitigation. These are presented in Sect. 2.1 and 2.2, respectively.

2.1  Security Risk Assessment

A variety of cybersecurity risk management methodologies have been developed for 
assessing risks in IT systems, thereby, enabling systems security administrators to 
make correct decisions towards mitigating the most important risks in the opera-
tional environments.

AG-based security assessment models are becoming an important part in both 
qualitative and quantitative risk management activities since they can model multi-
step attacks by representing possible paths attackers can use to penetrate into IT sys-
tems [10–14]. Most of quantitative AG-based methods use CVSS scores [4] as the 
probability of successful exploitation of vulnerabilities [9, 15–17]. Among them, 
some methods propagate these probabilities (CVSS scores) through the AG accord-
ing to its conjunctive and disjunctive dependencies, such as [18–20], and some oth-
ers use the probabilistic approaches like Bayesian networks.

Liu and Man are one of the pioneers in applying Bayesian networks for network 
vulnerability assessment [8]. They model potential attack paths using Bayesian net-
works and represent the security of the network by a quantitative value. Frigault and 
Wang [21] use Bayesian networks with AGs to calculate general security metrics 
regarding information system networks. The resulting model is called Bayesian 
attack graph (BAG) which contains all nodes of the original AG. These nodes are 
populated based on CVSS Base Scores as the probability values encoded in the con-
ditional probability tables. There are some other works that use Bayesian network 
concept for assessing network security risks and capturing uncertainties in unknown 
attacker behaviours, such as [22, 23]. Later, in 2012, Poolsappasit et al. [9] revisited 
the BAG model and extended it by assigning a disjunctive or a conjunctive identifier 
to nodes with at least two incoming edges. They also proposed a method to assess 
the security risk of vulnerability exploitations based on CVSS Base metrics. Moreo-
ver, they provide a platform for static and dynamic analysis of risks in networked 
systems. In [24], authors propose a security risk analysis model based on Bayes-
ian networks which determines the attack paths with the highest probability and the 
largest estimated risk value using ant colony optimization algorithms. Bayesian net-
works are also used in [25, 26] to implement Factor Analysis of Information Risk 
(FAIR) which is one of the popular models for security risk assessment.

Most of recent works on risk assessment use the Base Score of CVSS as the 
vulnerability exploitation probability, such as [7, 15, 16, 27, 28]. According to the 
CVSS’s documentation [4], the CVSS’s Base Score, like its Temporal and Environ-
mental Scores are risk values. The risk of a vulnerability exploitation can be calcu-
lated by multiplication of its probability in its impact [29, 30]. A Bayesian network 
is a probabilistic graphical model in which its nodes are assigned Conditional Prob-
ability Tables (CPTs)[31, 32]. These tables list the probability values for each joint 
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assignment to nodes and their parents. In fact, each CPT is a table that has one prob-
ability value for every possible combination of parent and child states. Therefore 
Bayesian networks should be applied only on the probability values.

The probability of vulnerabilities exploitation may change over time. Different 
environments can also have an influence on the impact of vulnerability exploita-
tions. Using only the Base Scores of CVSS is not enough to evaluate these changes, 
since the Base metrics of CVSS only capture the inherent properties of vulnerabili-
ties. Hence, we need to take into account temporal and environmental characteristics 
of vulnerabilities.

The proposed risk assessment method decomposes the risk into probability and 
impact and propagates only the vulnerability exploitation probability through the 
model. Then the risk can be calculated by multiplying the propagated probability 
in the exploitation impact. The vulnerability exploitation probability is calculated 
using appropriate Base and Temporal metrics of CVSS and the result is then propa-
gated throughout the model. The impact on organization’s assets caused by exploit-
ing vulnerabilities is computed considering the appropriate Environmental metrics 
of CVSS which adjusts the impact of exploitation on the security requirements, such 
as confidentiality, integrity and availability.

2.2  Security Risk Mitigation

Several approaches have been presented for addressing the risk assessment process, 
such as [33–38], while ignoring the risk mitigation process, which is a crucial step 
in security risk management. In order to successfully manage the identified risks, 
security administrator needs a thorough understanding of the magnitude of the risks 
in the network and also their covering countermeasures. Only in this case he can 
conduct a cost-benefit analysis to find appropriate countermeasures to mitigate the 
most risky threats.

In the field of security risk mitigation, several methods have been proposed to 
determine safeguards and countermeasures to improve the security level of net-
works, such as [39–41]. In [42], minimum-cost hardening measures are identified 
using exploit dependency graphs. In [43], the minimal subset of attacks that are nec-
essary for reaching a goal is determined. After that, the minimal subset of counter-
measures that covers the subset of attacks is identified.

The mentioned techniques are useful, but they miss out one major issue. Most of 
the times, the allocated budget for network security hardening is limited, which may 
preclude the security administrators from implementing all possible countermeas-
ures or even certain measures that cover all of the vulnerabilities. Therefore, there 
is a need to find a trade-off between the implementation cost of a subset of counter-
measures and the residual damage after the security decisions have been made and 
these countermeasures are implemented. This problem is first formulated by Dewri 
et al. [44] as a multi-objective optimization problem on the attack tree model of the 
networked system. After that, an evolutionary algorithm is used to solve the prob-
lem. The main shortcoming about this work is that the modeling of the problem is 
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static. The probability of vulnerability exploitation may change during the lifetime 
of a network. Therefore, the model should be dynamic and be able to consider these 
changes and their effects. This problem is solved in [9] by revisiting the framework 
of BAG. The authors augment BAG with additional nodes and values representing 
defenses. After that, they solved the problem of finding the set of optimal defenses 
using a multi-objective optimization problem.

The main shortcoming of the aforementioned methods is that they don’t provide 
an integrated framework for network security risk management which contains all the 
information needed for risk assessment and risk mitigation within itself. Therefore, 
there is a necessity for expert’s knowledge for doing risk mitigation. Moreover, these 
methods need special algorithms, i.e. heuristic algorithms, for inferring the best set of 
countermeasures.

A BDN model [45] is an extension of BAG model [9] which allows administrators to 
model security countermeasures and their properties using the nodes and their assigned 
data structures provided by the model. We use this model as part of the proposed secu-
rity risk management framework. Therefore, we can take advantage of standard Bayes-
ian inference algorithms in the proposed framework.

In this paper, an integrated security risk management framework is presented which 
utilizes the BDN model for efficiently doing both risk assessment and risk mitigation 
processes together. Formal definition of BDN model along with an algorithm for con-
verting BAG models into their corresponding BDN models is proposed. Moreover, an 
algorithm for conducting Cost-Benefit Analysis over the BDN models is presented. In 
fact, the proposed framework covers most of the aforementioned drawbacks and can be 
used independently to conduct a complete risk management without the need for extra 
information from experts.

3  Proposed Risk Management Framework

The proposed risk management framework is made up of three main steps, namely, risk 
assessment, risk mitigation and risk validation and monitoring. The risk assessment 
phase starts with modeling network attacks using AG. Then, the temporal probability of 
successful vulnerability exploitation is calculated for each vulnerability in the network. 
After that, the AG model is converted into BAG to change it into a quantitative model. 
Finally, the adjusted environmental impact of vulnerabilities exploitation is calculated. 
The risk mitigation phase starts with identifying and assessing possible countermeas-
ures to mitigate the exploitability of vulnerabilities. Then, using this information, the 
BAG model can be converted into the BDN model by adding countermeasures to it and 
filling its utility tables. Finally a cost-benefit analysis is conducted to recommend the 
optimal subsets of countermeasures even if the allocated budget for network hardening 
is limited. In the risk validation and monitoring phase, the changes in network states are 
continually tracked to make sure that the residual risk matches the desired risk level. 
The data flow diagram of the main phases of the proposed security risk management 
framework is depicted in Fig. 1.

In the following sections, each step shown in Fig. 1 is explained in detail.
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3.1  Security Risk Assessment

The proposed security risk assessment process consists of four steps, namely, mod-
eling network attacks using AG, probability calculation, BAG construction and 
impact calculation which are described in the following.

3.1.1  Modelling Network Attacks

AGs are useful tools for modeling network security vulnerabilities and their interac-
tions which form multi-step attacks. These tools are widely used in several areas of 
network security, including security risk assessment, such as [35, 46], because they 
can depict paths in which an attacker can exploit vulnerabilities to compromise a 
security policy in a network. Each of these paths consists of one or more vulnerabili-
ties in the form of a chain in which some of them are prerequisites of some others to 
exploit.

To generate an AG for a given network, the information about existing vulner-
abilities and network topology and hosts connectivity is required. Vulnerabilities 
existing on hosts can be discovered using available network vulnerability scanners 
such as Nessus [47], OpenVAS [48] and Retina [49] or searching the online vulner-
ability repositories such as the US National Vulnerability Database (NVD) [50] and 
MITRE’s Common Vulnerabilities and Exposures (CVE) [51]. Network hosts con-
nectivity and topology can be determined according to either the network security 
administrator’s knowledge or by using available network discovery tools, such as 
Nmap [52]. With this information available, AGs can be automatically generated 
using tools such as MulVAL [53].

Fig. 1  Proposed security risk management framework
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Definition 1 Attack Graph. An attack graph (AG) is a tuple AG = (S, s0, sg, �) , where

– S is a set of states in the network. Each state is the result of exploiting one or 
more vulnerabilities. Exploitation of each vulnerability changes the state of the 
AG.

– s0 ⊆ S is the leaf node of the AG. It denotes the attacker’s entry points to the net-
work and hence is the initial state.

– sg ⊆ S is the set of root nodes in the AG. Each root node represents a goal for 
attackers. In fact attackers start from leaf node and exploit sequences of vulner-
abilities to reach their goals. Therefore each AG can have multiple root nodes 
depending on the potential attractive targets for attackers.

– 𝜏 ⊆ S × S is the set of transition relations. Each transition between two states rep-
resents a vulnerability exploitation which changes the state of the network from 
Sprecondition to Spostcondition.

3.1.2  Probability Calculation

AGs are powerful tools for modeling potential attacks targeting network assets, but 
they are unable to measure the security level of networks quantitatively. To make 
AGs quantitative, security administrator should add the exploitation probability of 
each vulnerability to its nodes. Because of today’s vast networks consisting of many 
hosts connected together, each of which containing several vulnerabilities, number 
of existing vulnerabilities in networked systems is very high. Therefore extracting 
the probability of successful exploitation of each vulnerability from expert’s knowl-
edge is an error prone, tedious and time consuming task. To overcome this prob-
lem, we use CVSS’s metrics to calculate the probability of successful vulnerabilities 
exploitation.

CVSS provides sets of metric groups, namely, Base, Temporal and Environmen-
tal, to quantitatively assess the severity level of existing IT security vulnerabilities 
[4]. Regarding various attributes, each of these groups produce a numeric score 
ranging from 0 to 10. The Base Score is used to describe the intrinsic characteristics 
of vulnerabilities using two subscores: (1) the exploitability subscore and (2) the 
impact subscore. The Temporal Score quantifies the characteristics of vulnerabili-
ties that change over time. The Environmental Score captures the characteristics of 
vulnerabilities that are associated with a specific IT environment. Each CVSS metric 
can be assigned with several values which are listed and defined in [4]. In this paper, 
metrics from Base and Temporal groups of CVSS are selected to calculate the prob-
ability of exploiting vulnerabilities. Therefore, the calculated probabilities are more 
accurate and closer to the reality in the time of assessment.

Exploitability of a vulnerability is calculated using the metrics of the Base group 
of CVSS as bellow:

where AV is access vector, AC is access complexity and AU is authentication 
instances [4].

(1)Exploitability = 2 × AV × AC × AU
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Exploitability only reflects the inherent properties of vulnerabilities, i.e. the prop-
erties that are constant with time and across different environments. Therefore it 
cannot represent the current state of vulnerabilities exploitation. This is important, 
because for doing a precise and accurate risk assessment, the characteristics of vul-
nerabilities at the time of risk assessment must be considered. Vulnerabilities have 
versatile nature and their exploitability changes over time depending on factors such 
as the available tools for exploiting vulnerabilities, current remediation level of vul-
nerabilities, the degree of confidence in the existence of vulnerabilities and the cred-
ibility of the known technical details.

To take into account the properties of vulnerabilities which change over time, 
Temporal metrics of CVSS are also used [54]. These metrics adjust the value of 
Exploitability (Equation 1) to the time of assessment as below:

where TP stands for temporal probability and is the probability of exploiting a vul-
nerability at the time of risk assessment. E measures the current state of exploitable 
tools and techniques, RL is the remediation status of the vulnerability and RC is the 
report confidence [4].

3.1.3  BAG Construction

In this step, AG is converted to BAG by adding CPTs to each of its nodes. The only 
constraint for this conversion is that the AG should be a directed acyclic graph. This 
can be guaranteed by monotonicity assumption which states that the attacker never 
needs to backtrack [5].

Definition 2 Conditional Probability Table. A Conditional Probability Table (CPT) 
is a tabular form of a conditional probability distribution representing the values 
of Pr(si|Pa[si]) . Where si denotes a state in the BAG and Pa[si] denotes its parents 
nodes. Each node in a BAG has an associated CPT which specifies the chances of 
compromising a network state given different combination of states of its parents. 
The entries of a CPT are filled with the conditional probabilities of vulnerabilities 
exploitations, i.e. TP values.

Definition 3 Bayesian Attack Graph. Let AG be an attack graph. A Bayesian attack 
graph associated with AG, denoted by BAG, is a Bayesian network over the same 
set of nodes, S, such that there exists a CPT for each state node. Formally, a BAG 
is defined as a tuple BAG = (S, �, �,P) where S denotes the set of nodes (i.e. the set 
of states in the network). The edges connecting the nodes in the graph are reflected 
with a set of ordered pair � . The conjunctive or disjunctive relations between mul-
tiple edges pointing to a node are represented by � with possible values of {AND, 
OR}. P represents the set of CPTs associated with the BAGs nodes.

In a BAG, each node has an associated CPT which shows the probability of the 
node given the states of its parents. The CPT of each node is generated as follows.

(2)TemporalProbability(TP) = (E × RL × RC) × Exploitability
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The exploit which changes the state of the network from si to sj for si ∈ Pa[sj] 
is called ei . The conditional probability distribution function of sj is Pr(sj|Pa[sj]) 
which is defined as below.

In the case when sj has more than one parent, if the relation between incoming 
edges to node sj is AND (� = AND) , the product rule is used.

If the relation between incoming edges to node sj is OR (� = OR) , the noisy OR 
operator is used [8].

3.1.4  Impact Calculation

To calculate the impact of vulnerabilities in the environment under assessment, first, 
the Base metrics of the impact subscore (i.e. C, I and A) for each vulnerability are 
measured (available at the existing vulnerability databases like national vulnerability 
database (NVD) [50]). After that, in order to consider the environmental impact of 
vulnerabilities, CVSS’s Environmental metrics are measured by security administra-
tors. These metrics are confidentiality requirement (CR), integrity requirement (IR) 
and availability requirement (AR) metrics, which are used to customize the CVSS 
Base impact subscore. More details about CVSS metrics can be found in [4].

Finally, using the Eq. 5, the adjusted impact of exploiting vulnerabilities in the 
network under assessment will be calculated [54].

Considering environmental impact of vulnerabilities in the network under assess-
ment, more precise results will be produced which are more compatible with current 
situation.

3.2  Security Risk Mitigation

The proposed security risk mitigation process consists of several steps, namely, 
countermeasure analysis, BDN construction, filling utility tables and cost-benefit 
analysis which are described in the following.

(3)Pr (sj| Pa[sj]) =

⎧
⎪⎨⎪⎩

0, ∃ si ∈ Pa[sj], si = 0

Pr

�
∩

si = 1
ei

�
=

�
si = 1

TP(ei), otherwise

(4)Pr (sj| Pa[sj]) =

⎧
⎪⎨⎪⎩

0, ∀ si ∈ Pa[sj], si = 0

Pr

�
∪

si = 1
ei

�
= 1 −

�
si = 1

�
1 − TP(ei)

�
, otherwise

(5)AdjustedImpact(AI) = 1 − (1 − C × CR) × (1 − I × IR) × (1 − A × AR)
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3.2.1  Countermeasure Analysis

A security countermeasure or a security control (SC) is a risk-reducing measure 
which can be implemented on vulnerabilities to further reduce or eliminate the resid-
ual risk by reducing the exploitability of the affected vulnerabilities [2]. Therefore, 
SCs prevent attackers from reaching their goals, i.e. compromising the IT assets.

The status of SCi is defined as a Boolean variable with the possible states of 
{True, False}. The True state implies that the SC is implemented (Status(SCi)

= True) 
and the False state implies that the SC is not implemented as part of the security risk 
mitigation plan (Status(SCi)

= False) . Each SCi also has an associated cost of imple-
mentation (Cost(SCi)

) . Cost of each SC is an organization dependent factor which 
should be determined by security administrators.

By implementing a SC on a vulnerability, the amount of effort an attacker needs 
to do for exploiting that vulnerability will increase, resulting the reduction of the 
exploitability of that vulnerability. The ability of SC in reducing the exploitation 
probability of covered vulnerabilities is measured by Coverage(SCi)

.
The coverage of each SC can either be acquired from available security reports 

and documents about the effectiveness of security patches, updates, workarounds 
and etc. or the security administrator can determine it manually.

Definition 4 Security Countermeasure. A security countermeasure is a tuple 
SC = (Status,Cost,Coverage) where, Status is a Boolean value representing 
whether the SC is implemented or not, Cost represents the implementation cost of 
SC and Coverage is the reduction percentage of exploitation probability of covered 
vulnerabilities.

3.2.2  BDN Construction

BAG itself is not a complete model for doing risk mitigation, because basically it 
does not consider SCs and their properties. Therefore we need a more comprehen-
sive and general model. In this paper, BDN model is used which is compatible to 
other graph based models like AG and BAG and is suitable for doing the processes 
needed in the risk management framework, especially risk mitigation process.

Definition 5 Bayesian Decision Network. Let BAG be a Bayesian attack graph. A 
Bayesian decision network associated with BAG, denoted by BDN, is an extension 
of a BAG which has three types of nodes:

– Chance nodes, representing the same states (S) existing in BAG. Each chance 
node is associated with a CPT, representing Pr(si|Pa[si]) . These node types are 
represented as ovals.

– Decision nodes, representing the security countermeasures (SC) covering the 
states (S). The security administrator can choose to whether select these nodes 
(SCs) as part of the security risk mitigation plan or not, with values of {True, 
False}. These node types are represented as rectangles.
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– Utility nodes, representing the effects of each SC (decision node) on its affected 
states (chance nodes) in the form of a utility table. These node types are repre-
sented as diamonds.

A BDN is a directed acyclic graph over these nodes, such that the utility nodes 
have no children. An example of a BDN model is depicted in Fig. 3. Each utility 
node in a BDN is associated with a utility table, which gathers the preferences for all 
decision choices about SC implementation. The parents of a utility node represent 
the set of nodes on which the utility node depends.

In order to convert BAG model of a network into its corresponding BDN 
model, it is just needed to add decision and utility nodes to it. The procedure of 
converting BAG to BDN is described below. 

Algorithm 1- Converting BAG to BDN

Input:
   -BAG model of the network under assessment

Output:
   -BDN model of the network under assessment

Step 1. For each SC covering a vulnerability, a decision node must be added to the BAG model of the 
network under assessment. A directed arc should be pointed from this decision node to the state, s, 
representing the covered state.

Step 2. By implementing each SC on its covered vulnerability, the vulnerabilities exploitation prob-
ability will be reduced. Therefore implementing each SC has a specific effect on its covered vulner-
abilities. The amount of this effect is modeled using utility nodes. Each utility node has an associated 
table called utility table. This table quantifies the effect of implementing each SC on its covered 
vulnerabilities. Therefore, a utility node must be added to the network wherever there is a SC cover-
ing vulnerabilities. Two directed arcs should be placed pointing at the utility node, one from covered 
state (i.e. chance node) and the other from the SC (i.e. decision node) covering that vulnerability.

Step 3. Fill each utility table associated with existing utility nodes in the BDN according to Sect. 3.2.3.

3.2.3  Filling Utility Tables

Network security administrator as a decision maker has to choose between two 
possible actions: implement or not to implement a given SCj . There are also two 
possible events: either vulnerability Vi is exploited by attackers or not.

– If Vi is exploited by attackers, the targeted network assets will suffer from 
attack damage, which is proportional to the AI of Vi . And if Vi is not exploited 
by attackers, no adverse effects will occur.

– If security administrator implements covering SCj on Vi , he will reduce the 
attack damage of Vi , which is relative to the benefit of SCj , but he incurs the 
cost of implementing SCj . And if security administrator does not implement 
SCj , then he incurs no cost of implementation.
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As mentioned before, each utility node has a utility table which quantifies the 
effect of implementing each SC on its covered vulnerabilities. Therefore the 
entries of these tables must be filled according to the effectiveness of the SCs and 
the impact level of the covered vulnerabilities. The proposed definition of utility 
tables is shown in Table 1. Note that, it is assumed that the attack damage is a 
negative value.

Table 1 demonstrates that if vulnerability Vi is exploited while security counter-
measure SCj is implemented on it, the damage of Vi exploitation ( Vi.AttackDamage ) 
is reduced based on benefit of SCj ( SCj.Benefit ). Therefore, the total utility is equal 
to the residual damage of Vi , minus implementation cost of SCj.

In the case where vulnerability Vi is exploited while no countermeasures is imple-
mented on it, the total utility is equal to the damage incurred because of Vi exploitation, 
which is considered as a negative value.

In the case where Vi is not exploited but SCj is implemented on it, the utility is equal 
to the negative value of SCj implementation cost.

In the case where no security countermeasure is implemented and no vulnerability is 
exploited, the utility is equal to zero.

Providing these values for each combination of SCs and vulnerabilities requires the 
judgment of experts (i.e. security administrators) which indeed is a tedious and time-
consuming process. To reduce the need of expert’s knowledge, the AI value (a value in 
the interval of [0, 1] calculated using Eq. 5) is used to calculate attack damage by mul-
tiplying it in Damage Criterion which is assigned by experts. The attack damage value 
represents the damage caused by exploiting a vulnerability on affected assets. Therefore 
the attack damage can be calculated using Eq. 6.

Similarly, to determine the benefit of implementing a security countermeasure ( SCi ) 
on a vulnerability, the coverage percentage of SCi , i.e. Coverage(SCi)

 is multiplied in 
a Benefit Criterion which is assigned by experts using Eq. 7.

As the result, regardless of the size of the network under assessment and the number 
of vulnerabilities and countermeasures, the experts only need to determine two val-
ues of Damage Criterion and Benefit Criterion.

(6)AttackDamage = DamageCriterion × AdjustedImpact(AI)

(7)SCBenefit = BenefitCriterion × SecurityControlCoverage

Table 1  Utility table definition

Security control ∖ exploitation V
i
 is exploited V

i
 is not exploited

SCj is implemented ((Vi.AttackDamage) + (SCj.Benefit)) − SCj.Cost −SCj.Cost

SCj is not implemented Vi.AttackDamage 0
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3.2.4  Cost‑Benefit Analysis

The goal of this phase is to find the optimal subset(s) of SCs in which by implementing 
them, the security level of the network maintains in an acceptable level. Each subset of 
SCs is called a security risk mitigation plan (SRMP). A SRMP is defined as a Boolean 
vector ( ����������⃗SRMP ) that represents which SCs are chosen to be implemented and which are 
not. The cost of implementing a SRMP ( Cost

(�������⃗SRMP)
 ) is calculated by summing up the 

implementation costs of the selected SCs, as shown in Eq. 8.

By implementing a SRMP, the exploitation probability of a subset of existing vul-
nerabilities on network assets will be reduced. Therefore, we need to combine the 
utility values of different outcomes; hence, we ascribe an expected utility (EU) value 
to each SRMP. Thus, it is possible to compare different SRMPs using their EU val-
ues. As the result, the network security administrator’s objective is to identify the 
most effective SRMPs, i.e. the plans with the highest EU. However, sometimes, due 
to the budget limitation, it is not possible to implement all of the SCs; therefore the 
plans with the highest EU and the implementation cost lower than the limited budget 
should be identified.

To conduct a cost-benefit analysis over the BDN model, a simple algorithm 
(Algorithm  2) is proposed which slightly changes the variable elimination (VE) 
algorithm. VE algorithm is of the simplest and the most general inference algo-
rithms used in probabilistic models such as Bayesian networks [32]. This algorithm 
is computationally much more efficient than the basic Bayesian inference algo-
rithms, because it uses the caching of dynamic programming to save redundant com-
putation. Therefore, VE algorithm can perform inference even for large and complex 
networks in a very reasonable time. For more information about VE algorithm and 
its operators refer to [32].

In the proposed algorithm (Algorithm 2), we slightly modified the VE algorithm 
to further improve its efficiency by:

– Restricting the calculations only over the subsets of security controls which their 
implementation costs are lower than the allocated budget.

– Using Max-Product operator instead of standard VE’s simple Product operator.

Algorithm 2- Cost-Benefit Analysis

Inputs:
   - BDN model of the network under assessment
SecurityControls
{(SC1,Cost(SC1)

), (SC2,Cost(SC2)
), ..., (SCn,Cost(SCn)

)} // Set of security controls and their implemen-
tation costs

   - Budget; // allocated budget for network hardening

(8)Cost
(�������⃗SRMP)

=
∑
i

SCi × Cost(SCi)
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Algorithm 2- Cost-Benefit Analysis

Output:
   - Subsets of SCs with total implementation costs lower than the allocated Budget for network 

hardening
Step 1. Find all subsets of the set SecurityControls while the condition bellow holds and store the 

results in a table named Combinations.∑
i Cost(SCi)

≤ Budget            (9)
Step 2. Use VE algorithm on the BDN while:

   1. Calculations are restricted to the Combinations entries.
   2. Max-Product operator is used instead of Product operator.

As seen in the algorithm above, the Max-Product operator is substituted for the 
simple Product operator used in standard VE algorithm [32]. When multiplying two 
factors, this operator multiplies only the factors which have the greatest value and 
discards other factors. Hence space, time and computational complexity are reduced.

The output of Algorithm 2 is the SRMPs with the highest EU and the implemen-
tation costs lower than the allocated budget.

3.3  Security Risk Validation and Monitoring

Risk validation and monitoring is a continual process which determines whether the 
residual risk is at an acceptable level or whether there is a need to implement addi-
tional countermeasures to further reduce or eliminate the residual risk. Since this is 
a continual process during the lifetime of the network (once the BDN model is con-
structed), it is not depicted in the framework shown in Fig. 1.

In this phase, the BDN model is continually updated based on the observations of 
changes in network states. We have two types of observations: observing weather a 
vulnerability is exploited or not, and observing weather a SC is implemented or not. 
In case where a vulnerability is exploited by attackers and therefore a BDN state is 
reached, the TP of that state in its CPT is changed to 1. In case where SCi is imple-
mented by security administrator ( SCi = True ), the entries of relevant utility table 
with SCi = False will not be participated in calculations. After each observation, the 
algorithm 2 is applied on the modified BDN model to find the best SRMPs regard-
ing the current situation.

4  Experimental Results

In this section, the results of applying the proposed framework on a test network 
used in [9] is presented.

4.1  The Test Network

The proposed framework is applied to a test network which is shown in Fig. 2 [9]. 
There are several hosts in this network which are located within two zones: (1) 
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the DMZ zone which contains the mail server, DNS server and web server and is 
accessible to the public through a firewall; (2) the trusted zone which contains SQL 
server, administrative server, gateway server and several local desktops. All accesses 
from external sources to the trusted zone are restricted and also all communications 
to external parties are delivered through the gateway server. A DMZ tri-homed fire-
wall is installed with preset policies to ensure that the DMZ zone is separated from 
the trusted zone. According to the policies, the web server is allowed to send SQL 
queries to the SQL server. Also, the remote desktop service of all local desktops, 
including the administrative server, is enabled to make employees able to communi-
cate from remote sites via wired or wireless mediums. The remote connections are 
monitored by SSHD protocol which is installed in the gateway server.

Network hosts connectivity and topology are determined by using Nmap network 
discovery tool [52] and hosts vulnerabilities are discovered by using Nessus network 
vulnerability scanner [47]. Information about existing vulnerabilities in this network 
including their CVE IDs [51] is listed in Table 2.

Fig. 2  Topology of the test network [9]
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4.2  The Risk Assessment Results

Having network topology and information about existing vulnerabilities, we model 
network attacks by generating AG model of the network using MulVAL network 
security analyzer [53] (as mentioned in Sect. 3.1.1).

In order to convert the AG model into BAG model, we need to populate its CPT 
tables with Temporal Probability (TP) of vulnerability exploitations. The TP of each 
vulnerability existing in the test network with its relevant CVSS metrics values are 
calculated using Eq. 2 and are listed in Table 3. The CVSS metrics values (which 
are described in detail in [4]) are obtained from available online databases, such as 
NVD database [50]. With these information available, the BAG model of the net-
work can be constructed (as explained in subsection 3.1.3).We have implemented 
BAG model using GeNIe Modeler [55].

When a temporal characteristic of a vulnerability changes during system lifetime, 
CVSS Temporal metrics (E, RL and RC metrics) are changed accordingly. There-
fore, based on Eq.  2, the TP of the affected vulnerability is recalculated. As the 
result, the probability of corresponding nodes in the model should be recalculated 
using Eq. 3 and 4. Finally, using Bayesian inference algorithm, the probability of all 
nodes in the model are updated.

The adjusted impact (AI) of vulnerabilities existing in the test network with their 
relevant impact metrics of CVSS are listed in Table 4. The AI values of these vul-
nerabilities are calculated using Eq. 5. The CVSS metrics values are obtained from 
available online databases, such as NVD database [50]. Note that the Environmental 
metrics are organization dependent and should be determined by the network secu-
rity administrator itself. Therefore, here, the values of CR, IR and AR metrics are 
hypothetically assigned.

Table 2  List of vulnerabilities in the test network

Host Vulnerability CVE ID

Administrative server MS SMV service Stack BOF CVE 2008-4050
DNS server DNS Cache Poisoning CVE 2008-1447

Heap corruption in OpenSSH CVE 2003-0693
Gateway server Improper cookies handler in OpenSSH CVE 2007-4752

Open SSL uses predictable random CVE 2008-0166
Remote login CA 1996-83

Local desktops LICQ Buffer Overflow (BOF) CVE 2001-0439
MS Video ActiveX Stack BOF CVE 2008-0015
Squid port scan vulnerability CVE 2001-1030

Mail server Remote code execution in SMTP CVE 2004-0840
Error message information leakage CVE 2008-3060

SQL server SQL Injection CVE 2008-5416
Web server IIS vulnerability in WebDAV service CVE 2009-1535
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4.3  The Risk Mitigation Results

After generating the BAG model of the network under assessment and calculating 
the impact of vulnerabilities exploitation, we should identify and assess the available 

Table 4  List of AI values of the test network vulnerabilities

CVE ID C I A CR IR AR Adjusted impact

CA 1996-83 Complete Complete Partial Low Low Low 0.6128
CVE 2001-0439 Partial Partial Partial Medium Low Low 0.4607
CVE 2008-0015 Complete Complete Complete High High High 1.0
CVE 2008-4050 Complete Complete Complete High Medium Medium 0.9996
CVE 2008-0166 Complete None None Medium Low Low 0.66
CVE 2003-0693 Complete Complete Complete Medium Medium Medium 0.9607
CVE 2007-4752 Partial Partial Partial Medium Low Low 0.4607
CVE 2008-5416 Complete Complete Complete High High Medium 1.0
CVE 2004-0840 Complete Complete Complete High High Medium 1.0
CVE 2008-3060 Partial None None Low Low Low 0.1375
CVE 2001-1030 Partial Partial Partial Medium Medium Medium 0.6189
CVE 2008-1447 None Partial Partial High High Low 0.4957
CVE 2009-1535 Complete Complete Complete High Medium High 1.0

Table 5  List of SCs covering the test network vulnerabilities

Security countermeasure (SC) Covered vulnerability(ies) Implementation 
cost

Coverage

CA 1996-83
SC0-filtering external traffics CVE 2004-0840 70 0.62

CVE 2009-1535
SC1-apply MS workaround CVE 2008-0015 14 0.65
SC2-disable WebDAV CVE 2009-1535 250 0.44
SC3-patch OpenSSH CVE 2003-0693 63 0.75

CVE 2007-4752
SC4-disable port scan CVE 2001-1030 11 0.45

CVE 2001-1030
SC5-add network IDS CVE 2008-3060 102 0.38

CVE 2009-0568
SC6-gateway firewall CVE 2001-0439 205 0.33
SC7-query restriction CVE 2008-5416 84 0.28
SC8-apply MS09-004 work around CVE 2008-5416 31 0.43
SC9-encryption CVE 2008-1447 34 0.31
SC10-limit access to DNS server CVE 2008-1447 53 0.5
SC11-digital signature CVE 2008-3060 33 0.3
SC12-use POP3 CVE 2008-3060 153 0.25
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security countermeasures (SCs) covering network vulnerabilities. The SCs covering 
network vulnerabilities with their implementation costs and coverage percentages 
are listed in Table 5.

Some countermeasures cannot completely eliminate the exploitability of vulner-
abilities; i.e. there is uncertainty in the coverage level of SCs. Therefore, the pro-
posed method, allows the security administrator to define the coverage percentage 
of the SC with uncertainty. The coverage level of SCs can be directly determined by 
the security administrator or can be inferred using the information available in the 
security databases and reports.

The output of Algorithm 2 for the test network is depicted in Fig. 3. In this BDN 
model, the ovals represent attacker exploits which are the states of the network, the 
edges represent their pre-conditions and post-conditions, SCs which prevent the 
exploits are shown as rectangles and diamonds represent utility nodes. Note that we 
have implemented BDN model using GeNIe Modeler [55].

Equations  3 and  4 are used to fill the CPTs of the chance nodes in the BDN 
model. To fill the utility tables of utility nodes, the definition presented in Table 1 
is used. The value of attack damage is determined using Eq. 6. In this equation, the 
damage criterion value is considered as 100. Therefore the damage to the network 
assets is ranged between 0 and 1000.

By applying Algorithm 2 on the BDN model, we can run multiple inferences with 
different goals. Three scenarios are considered here as examples. Scenario number 1 
runs inference algorithm with the aim of finding the optimal SRMP(s) with the high-
est EU regardless of any implementation cost limitations. Scenario number 2 infers 

Fig. 3  BDN model of the test network (Fig. 2)
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the optimal SRMP(s) with the highest EU with the implementation cost lower than 
the limited budget. Scenario number 3 tries to identify the SRMP(s) with implemen-
tation costs exactly equal to a pre-specified value and determines the best one which 
has the highest EU.

Scenario 1: In this scenario, we have no limitations for budget. Therefore, the 
output of algorithm  2 is a SRMP with the highest EU. The results show that the 
highest expected utility ( EUhighest = 4986.198 units) is accessible by implement-
ing ����������⃗SRMPhighest = {SC0, SC1, SC3, SC4, SC8, SC9, SC10} with the overall cost of 
MPC(����������⃗SRMPhighest ) = 276 units.

Scenario 2: In this scenario, the allocated budget for network harden-
ing is considered as 240 units. In this case, the algorithm will not calculate 
the EU of the plans with the MPC more than 240 units. Therefore, the high-
est expected utility ( EUhighest = 4910.54 units) is accessible by implementing 
����������⃗SRMPhighest(240) = {SC0, SC1, SC3, SC4, SC8, SC9} with the overall cost of MPC 
( ����������⃗SRMPhighest(240))=223 units. Comparing to the previous scenario, the SC10 is 
not selected here. This means that SC10 is not as important as countermeasures in 
����������⃗SRMPhighest(240) , so, in order to keep the overall implementation cost lower than the 
predefined value, the algorithm chooses not to select this countermeasure.

Scenario 3: In this scenario, we try to identify the SRMP(s) with implementation 
costs exactly equal to 220 units and determine which one of them is the best and has 
the highest EU. To do so, we modify the Equation 9 to 

∑
i Cost(SCi)

= 220 . There-
fore, all subsets of the set SecurityControls which their total implementation costs 
are exactly equal to 220 are identified and are stored in Combinations table. The 
results show that there are six SRMPs with implementation costs equal to 220 units. 
These SRMPs are listed in Table 6.

The Table 6 shows that there are six SRMPs which their implementation costs are 
equal to 220 units, but their EU are different from each other. SRMP1 has the highest 
EU among others, while SRMP6 has the lowest EU which is a negative value. Nega-
tive EU for a SRMP implies that the SRMPs benefit is lower than its implemen-
tation cost. Therefore, implementing these SRMPs is not economically reasonable. 
The reason about SRMP’s negative EU is that the SRMP contains SCs with low 
coverage implemented on vulnerabilities with high exploitation probabilities and 
hence they cannot cover the vulnerabilities efficiently. Another reason is that SCs 
are implemented on less important vulnerabilities, so, the allocated budget is not 

Table 6  SRMPs with 
implementation costs equal to 
220 units

Number SRMP Expected utility (EU)

1 {SC0, SC1, SC5, SC9} 3931.66
2 {SC0, SC3, SC9, SC10} 3592.84
3 {SC1, SC10, SC12} 1137.00
4 {SC5, SC7, SC9} 65.68
5 {SC5, SC8, SC9, SC10} 643.48
6 {SC9, SC11, SC12} − 341.64
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efficiently used and therefore, more important vulnerabilities with higher exploita-
tion probabilities are not covered.

5  Discussions

This paper presents an integrated framework for security risk management of com-
puter networks which utilizes a powerful probabilistic model, i.e. Bayesian decision 
network (BDN), as the core model for doing risk management. The proposed frame-
work can be applied to organizations caring for their assets security. It helps security 
administrators to assess and prioritize existing vulnerabilities on networks hosts and 
guides them to determine appropriate sets of security countermeasures to combat 
potential cyber attacks. The approach used in this study brings several advantages 
and needs several improvements which are discussed in this section.

First of all, we have proposed an integrated framework for network security risk 
management which encompasses all the information needed for managing identified 
risks within it.

The model is based on effective well known model called attack graph used widely 
in recent researches and therefore it utilizes its benefits, such as its ability to repre-
sent scenarios of multistep attacks targeting attackers’ goals. Therefore, it can be con-
verted to BAG and BDN models using the proposed algorithms with almost no cost of 
incompatibility.

Understandability of the BDN model is achieved by using standard representation 
concepts used in Bayesian theory, i.e. the representation of various nodes are identified 
as the standard shapes presented in Bayesian theory. The data structures definitions like 
CPTs and utility tables are well defined which increases the comprehensibility of the 
model.

The data required for feeding the model can be acquired automatically from the 
existing data sources and repositories. Moreover, by using the proposed equations, the 
need for expert’s knowledge is minimized for doing both security risk assessment and 
risk mitigation.

The proposed BDN model is generated once and can be reused several times for 
managing identified risks when needed without the need for reconstructing the model. 
Moreover, the exploitation probabilities of vulnerabilities can be updated as new infor-
mation become available and can be propagated through the BDN model during net-
work lifetime using the standard Bayesian forward and backward propagation algo-
rithms [32]. Therefore, the BDN model is dynamic and is able to consider changes in 
exploitation probability of vulnerabilities.

In the risk assessment phase, the exploitation probability and impact values of vul-
nerabilities are precisely calculated considering temporal characteristics of vulnerabili-
ties and properties of environment under assessment. Therefore, the results are more 
accurate and closer to the reality in the time of assessment.

In the risk mitigation phase, we assumed that the SCs do not have just Boolean effect 
on their covered vulnerabilities. This assumption is valid; because one cannot guarantee 
that a SC can fully cover and mitigate all aspects of a vulnerability. Hence, we modeled 
this uncertainty by considering SC’s coverage as a probabilistic value. Moreover, by 
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using standard Bayesian inference algorithms and slightly modifying them to be able to 
consider budget limitation, the optimal subsets of SCs are inferred as part of the cost-
benefit analysis.

We slightly modified the VE algorithm to further reduce its time and computational 
complexity.

Although the proposed inference algorithm for finding the optimal subsets of SCs is 
simple and practical, but it is not efficient for large networks with huge number of SCs. 
Therefore it is desired to propose more scalable algorithms for doing cost-benefit analy-
sis over the large BDN models.

The proposed framework cannot deal with zero-day attacks, because unknown vul-
nerabilities and zero-day exploits cannot be modeled using the proposed BDN model.

6  Conclusions and Future Work

In this paper, an integrated framework for network security risk management is 
proposed. BDN model is used for modeling the information needed for network 
security risk management. The proposed framework can be adapted according to 
the current time conditions and the specific network security requirements, which 
produces results closer to the reality. For the risk mitigation process, a cost-bene-
fit analysis is conducted to identify the optimal subsets of risk-reducing counter-
measures. To do so, VE algorithm is slightly changed to take into account budget 
limitation. In future, we try to further improve the accuracy of the risk assess-
ment process by considering attacker capabilities in estimating vulnerability 
exploitation probabilities using metrics presented in [56]. Also, we could use the 
revisions to the CVSS Base metrics presented in [57] to increase the accuracy of 
the proposed security risk assessment process. In order to conduct a cost-benefit 
analysis over the BDN model in the risk mitigation process, a more scalable and 
efficient algorithm needs to be proposed in future studies. Moreover, we intend 
to evaluate the applicability of the proposed framework on preventing targeted 
attacks like advanced persistent threats (APTs).
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