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A new capability index for non-normal distributions based on linex
loss function

Mahdiyeh Erfanian and Bahram Sadeghpour Gildeh

Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran

ABSTRACT
Capability indices are the most common tools in process capability analysis, measuring how
much the product meets the costumer expectations. One type of capability indices are loss-
based indices that consider the cost of the difference between the product characteristic
and its target value. In this work, we apply an asymmetric loss function to construct a new
loss-based capability index for non-normal processes allowing a more customized way of
considering the costs in capability analysis. The performance of the proposed capability
index is studied by simulation results. Three real examples are given to show the utilization
of the proposed index.
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Introduction

In the capability analysis a process is assessed by cer-
tain statistical methods to determine whether it meets
a set of specifications or requirements. Suppliers and
manufacturers use these methods to assure costumers
that their products are of high quality with the least
amount of non-conformities. Capability indices are
the most widely used tools among all available cap-
ability analysis methods. A process capability index
measures how much the process fulfills the costumer
expectations. Costumer expectations are usually
numerical values within which the process is expected
to operate.

The earliest process capability index was proposed
by Kane (1986) as

Cp ¼ USL� LSL
6r

, [1.1]

where USL and LSL are the upper and lower specifica-
tion limits respectively, and r denotes the standard
deviation of the process. In [1.1] the denominator
shows the actual process capability while the numer-
ator shows the consumer’s quality requirements, and
can be thought of as indicating the potential of the
process to produce conforming product (Anis 2008).
If a shift in the mean of the process happens, a large
proportion of items might fall out of the specification
limits while Cp is still high, meaning that the Cp index
only relates the process spread to the specification

limits and does not consider the possible shifts of the
process mean away from the target value (Anis 2008).

Another capability index was introduced by Kane
(1986) as

Cpk ¼ min

�
USL� l

3r
,
l� LSL

3r

�
, [1.2]

where l stands for the process mean and

k ¼ l�M
ðUSL� LSLÞ=2 , [1.3]

with M ¼ ðLSLþ USLÞ=2: The index k represents a
measure of the distance that the process lies offcenter,
and Cpk shows the reduction in process capability
caused by the lack of centering (Anis 2008).

As can be seen, Cp and Cpk indices consider the
reduction of variability as a criterion for quality
improvement. They are not concerned with the qual-
ity loss, which is the consequence of failing to meet
customer’s requirements. Indeed, a wide range of cap-
ability indices concentrates only on determining the
capability of processes without taking into account
any loss perspective and loss functions. Loss functions
are quite versatile, they are utilized in different fields
of industrial engineering such as quality engineering,
tolerances design and capability analysis (Abdolshah
et al. 2011). In order to consider the quality loss, loss-
based indices were developed.
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In this work, we introduce a new loss-based cap-
ability index which permits a more customized way
of including costs in comparison to the previous
indices available in literature. This index can be
applied for non-normal processes. In the literature,
so far, all the proposed loss-based indices use sym-
metric approach for counting the loss. That is, only
the difference between the process mean and the cos-
tumer expectation is measured as the loss, while the
direction of this difference has always been ignored
in the measurements (e.g., Johnson (1992), Hsieh
and Tong (2006) and Eslamipoor and Hosseini-
Nasab (2016)). Some practitioners find it unfair to
assign equal costs to the differences only based on
their equal values, whereas the differences might
have been located in different directions. Our pro-
posed index considers the direction of the location
process mean around the costumer expectation in
addition to its distance.

The present article is structured as follows. In
the following section, one of the most well-known
loss-based capability indices is recalled and its fea-
tures are discussed. The motivation for introducing
the new index is also stated. Then, the new index
and its estimator are proposed. Next, the perform-
ance of the proposed capability index is assessed by
simulation studies. In addition, three real data
examples are presented for illustrating the applica-
tion of the proposed index. In the final section, the
conclusions offered and suggestions for future stud-
ies are made.

Cpm and Cpmk indices

One of the important purposes in quality management
is quantifying and controlling the losses stemmed
from noncompliance with customer specifications. In
order to evaluate these losses, Cpm index was intro-
duced by Hsiang (1985) which is also known as
Taguchi index. This index assumes the actual per-
formance of process characteristics in relation to the
target value and the specification limits as

Cpm ¼ USL� LSL

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðl� TÞ2

q , [2.1]

where T is the target value of the quality characteris-
tic. As seen, Cpk is derived from Cp by modifying the
numerator, whereas Cpm is obtained by modifying the
denominator (Anis 2008). By combining the two
modifications, a new index Cpmk is obtained and was
first presented by Pearn, Kotz, and Johnson (1992) as

Cpmk ¼ min
USL� l

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðl� TÞ2

q ,
l� LSL

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðl� TÞ2

q
8><
>:

9>=
>;:

[2.2]

Cpm and Cpmk employ quadratic loss function

L1ðxÞ ¼ ðx � TÞ2, [2.3]

to represent the quality loss. Figure 1 shows the functional
behavior of L1 with respect to ðx � TÞ, where x is the pro-
cess location. L1 rises with jx� Tj, meaning that loss value

Figure 1. Plots of loss functions L1 and L3 for selected values of c.
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increases as x goes farther from T. This is the basic feature
of a loss function that considers the distance between the
quality measure and the target value. However, the quad-
ratic loss function only focuses on the distance and is not
sensitive to its sign. Say jx � Tj ¼ a > 0 for some x. Then
the loss value is L1ðaÞ regardless x� T ¼ a or x � T ¼
�a: This could be a fault for measuring the capability of
processes in which the location of x around T is important
as well as its distance. For example in the average weight of
antiviral medicine tablets, x � T ¼ �a could mean just
not enough dose to cure the infection, whereas x� T ¼ a
could mean overdosing with sever ramifications for the
patient. So here we need a class of loss functions that are
sensitive to the location of x around T. These functions are
known as asymmetric loss functions. Some of mostly used
asymmetric loss functions are double linear (LinLin), dou-
ble quadratic (QuadQuad) and linear-exponential (linex)
functions. Consider a loss function of the general form as

L2ðx � TÞ ¼ 2 bþ ð1� 2bÞIðx� T < 0Þ½ �jx � Tja,
[2.4]

where b 2 ð0, 1Þ is a parameter representing the
degree of asymmetry and Ið�Þ is a unit indicator if
x � T < 0, and zero otherwise. For a¼ 1 the function
is the LinLin loss and for a¼ 2 it is the QuadQuad
loss. For b < 0:5 L2 assigns higher cost to negative
differences (x – T< 0); for b > 0:5 higher cost is
instead given to positive differences, and for b ¼ 0:5
L2 penalizes symmetrically positive and negative dif-
ferences. See Granger (1999) for a review on [2.4].

Linex loss function was originally introduced by
Varian (1975) and Zellner (1986) as

L3ðx� TÞ ¼ 2
ecðx�TÞ � cðx� TÞ � 1

c2
, [2.5]

where c is a constant. The parameter c determines the
degree of asymmetry. In Figure 1, L3 is plotted versus c.
When c ¼ 1, 5 in this graph, L3 is quite asymmetric
with positive ðx� TÞ values being more costly than neg-
atives. More generally when c > 0, L3 rises almost expo-
nentially for x� T > 0 and almost linearly for
x � T < 0: The opposite happens for c < 0 (e.g., c ¼
�1, � 5 in Figure 1); L3 increases almost linearly for
x � T > 0 and almost exponentially for x � T < 0: For
small values of c (e.g., c ¼ :01 in Figure 1), L3 is almost
symmetric and presents a very close curve to the quad-
ratic loss function L1. Indeed, we have

lim
c!0

L3ðx� TÞ ¼ ðx� TÞ2,

by twice the application of L’Hopital’s rule (See
Parsian and Kirmani (2002) for a discussion about
key properties of (2.5)).

All the asymmetric loss functions introduced here
have been widely used in different areas (e.g., econ-
omy, econometrics, forecast theory, etc) and can be
considered as good choices in processes that the loca-
tion of the quality measure is important. In this work,
we select linex. In this function, the value of c speci-
fies whether positive or negative values of ðx � TÞ
should cost more and if so, what will be the rate of
increase in cost. Select a value for c as follows: In case
of having a process in which positive values of ðx �
TÞ are more costly than negative values, select a posi-
tive c. Choose a negative c in case negative values of
ðx� TÞ are more costly than positive values. In any
case, choose greater values for jcj to include higher
rates of increase in costs in the process. As seen in
[2.5], c can take any value over real numbers except
zero. However we used values over ½�10, 10� � f0g
for the present work.

A new S0pmk index

In this section we introduce a new capability index
based on linex loss function. Before that, we recall
Spmk index suggested by Chen and Ding (2001) as

Spmk ¼
U�1ð1þFðUSLÞ�FðLSLÞ

2 Þ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl�T

r Þ2
q ¼ U�1 1� P

2

� �
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl�T

r Þ2
q , [3.1]

where U�1 is the inverse of the standard normal dis-
tribution function, F(x) is the cumulative distribution
function (c.d.f) of the process and P is the percentage
of nonconforming items. Spmk is used for non-normal
distributions and considers departures from the target
value using the quadratic loss function. An estimator
Ŝpmk of Spmk is determined by replacing l and r2 with
their unbiased estimators �X and S2.

The new index, S0pmk, requires the same assump-
tions and is defined as

S0pmk ¼
U�1ð1þFðUSLÞ�FðLSLÞ

2 Þ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

r2
ecðl�TÞ�cðl�TÞ�1

c2

q , [3.2]

where again an estimator Ŝ0pmk of S0pmk is determined
by replacing l and r2 with their unbiased estimators
as

Ŝ0pmk ¼
U�1ð1þFðUSLÞ�FðLSLÞ

2 Þ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

S2
ecð�X�TÞ�cð�X�TÞ�1

c2

q : [3.3]

Note that the process must be under control and sta-
ble in order to use capability indices.

To construct confidence intervals, we will use the
nonparametric bootstrap method of Efron (1982) as
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the distribution of Ŝ0pmk is unknown. This method is
based on a resampling procedure for estimation pur-
poses. The percentile method is explained in next and
will be used for bootstrap confidence interval
calculations.

Suppose that the quantity h is of interest and there
is an estimator ĥ which is used for estimation of h.
We have a sample of observed data (main sample). B
bootstrap samples are drawn from the main sample
and the estimations ĥ

�
1, :::, ĥ

�
B are calculated for each.

A 100ð1� aÞ% percentile confidence interval is
obtained as

ĥ
�
a
2�B, ĥ

�
1�a

2ð Þ�B

h i
:

Hence a percentile bootstrap confidence interval for
S0pmk is calculated as

Ŝ
0 �
pmk, a2�B, Ŝ

0 �
pmk, 1�a

2ð Þ�B

h i
: [3.4]

Note that a process will be interpreted inadequate if
S0pmk < 1 and capable if S0pmk � 1:

Performance evaluation

The performance of the suggested index is evaluated
using simulation in R. The simulations will be per-
formed for three probability distributions: normal,
Poisson and Weibull with specified parameters. For
each distribution, random samples of sizes 25, 50, 100
and 150 are generated. The number of simulation

runs is set to 1000 and Ŝ0pmk is calculated by replacing

l and r2 with mean and the variance of the generated
samples in [3.2]. For comparison results, only positive

values 0.01, 0.5, 1, 5 and 10 are considered for c,
because negative values will give similar results but
just in a reverse manner. Finally, a 95 percent confi-
dence interval for the coverage ratio is computed. As
described in Alevizakos, Koukouvinos, and Castagliola
(2019), a 95 percent lower limit of the stated nominal
value for the coverage rate is obtained as

0:95�1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05�0:95=1000

p �100%
� �

¼93:64%: In

the tables, the average of Ŝ0pmk over the 1000 runs as

well as the average mean of quadratic error (MSE) of
estimations are reported.

The simulation results for the normal distribution
are presented in Table 1. Although S0pmk index is
designed for non-normal distributions, it is worth to
study its performance under the normal distribution.
Data are simulated for l ¼ �2, � 1, 1, 2 and r¼ 1.
The target value T is set to 0 with LSL ¼ � 5 and
USL¼ 5. The table is partitioned into four panels for
different n values. The trend within each panel is
similar to other panels, so we concentrate on the
panel with n¼ 25 as an example. For negative values
of ðl� TÞ i.e., l ¼ �2, � 1, S0pmk increases as c
increases, while for positive ðl� TÞ i.e., l ¼ 1, 2, the
trend goes into reverse. Now let c be fixed and l
change. For instance, let c¼ 1. S0pmk decreases from
0.5908 for l ¼ �2 to 0.3417 for l¼ 2; while Spmk

remains the same 0.4778. Indeed, both indices
behaved as expected: Spmk considers an equal capabil-
ity for the process when the mean locates at the same
distance from T. Whereas S0pmk detects the process less
capable when the mean causes a positive ðx � TÞ,
even if it locates at the equal distance from T taken

Table 1. Simulation results for normal distribution with r¼ 1, T¼ 0, LSL ¼ –5 and USL¼ 5.
n¼ 25 n¼ 50 n¼ 100 n¼ 150

Spmk, l c S0pmk Ŝ
0
pmk CR(%) MSE Ŝ

0
pmk CR(%) MSE Ŝ

0
pmk CR(%) MSE Ŝ

0
pmk CR(%) MSE

0.4778 0.01 0.4791 0.4828 94.2 0.0047 0.4796 94.3 0.0023 0.4797 95.2 0.0011 0.4793 94.8 0.0007
�2 0.5 0.5380 0.5414 93.5 0.0048 0.5384 94.0 0.0023 0.5385 95.0 0.0011 0.5381 95.1 0.0007

1 0.5908 0.5940 93.6 0.0049 0.5910 93.9 0.0024 0.5911 94.5 0.0011 0.5908 94.9 0.0008
5 0.8146 0.8203 91.1 0.0077 0.8160 93.4 0.0037 0.8153 94.7 0.0018 0.8149 95.5 0.0012
10 0.9095 0.9192 90.8 0.0112 0.9127 92.7 0.0053 0.9109 94.7 0.0025 0.9103 95.3 0.0016

0.9808 0.01 0.9816 0.9930 93.6 0.0262 0.9844 93.8 0.0125 0.9832 94.7 0.0059 0.9822 95.1 0.0039
�1 0.5 1.0191 1.0309 92.8 0.0246 1.0222 93.7 0.0117 1.0208 94.5 0.0055 1.0199 95.1 0.0036

1 1.0528 1.0650 92.1 0.0235 1.0562 93.6 0.0111 1.0545 94.3 0.0052 1.0536 95.5 0.0034
5 1.2070 1.2240 91.1 0.0242 1.2131 92.8 0.0113 1.2098 94.6 0.0053 1.2087 95.4 0.0034
10 1.2769 1.2981 90.3 0.0285 1.2851 92.7 0.0132 1.2806 94.6 0.0063 1.2792 95.2 0.0041

0.9808 0.01 0.9800 0.9971 92.6 0.0264 0.9910 94.8 0.0127 0.9845 94.4 0.0064 0.9837 94.4 0.0043
1 0.5 0.9373 0.9548 93.2 0.0287 0.9488 95.0 0.0139 0.9421 94.8 0.0070 0.9412 94.6 0.0047

1 0.8886 0.9069 93.2 0.0316 0.9008 94.5 0.0154 0.8937 94.8 0.0078 0.8927 95.2 0.0053
5 0.3940 0.4431 93.8 0.0518 0.4237 94.8 0.0249 0.4079 95.2 0.0119 0.4041 95.2 0.0080
10 0.0660 0.1113 93.9 0.0200 0.0890 94.8 0.0059 0.0766 95.3 0.0021 0.0733 94.9 0.0013

0.4778 0.01 0.4765 0.4829 93.7 0.0047 0.4810 95.0 0.0023 0.4784 95.1 0.0012 0.4780 95.4 0.0008
2 0.5 0.4113 0.4183 93.8 0.0046 0.4161 94.6 0.0023 0.4133 95.3 0.0011 0.4129 95.3 0.0008

1 0.3417 0.3492 93.9 0.0045 0.3467 94.7 0.0022 0.3438 95.3 0.0011 0.3433 94.9 0.0007
5 0.0255 0.0299 94.2 0.0003 0.0280 94.7 0.0001 0.0266 95.3 0.0001 0.0263 94.6 0.0000
10 0.0003 0.0006 93.9 0.0000 0.0005 94.7 0.0000 0.0004 95.4 0.0000 0.0004 94.8 0.0000
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by the mean with a negative ðx � TÞ: The same hap-
pens when l goes from –1 to 1, but more strictly.
When l ¼ �1, S0pmk ¼ 1:0528 > 1 determines the pro-
cess as capable, while Spmk ¼ 0.9808 shows incapabil-
ity. For l¼ 1, S0pmk ¼ 0:8886 < 1 interprets the
process incapable, so does Spmk. Furthermore, MSE
values are indicative of the good performance of Ŝ0pmk
in estimating S0pmk, as all the values are less than 0.01
and decrease as the sample size n gets larger. The
coverage ratio (CR) is greater than or close to the
nominal value (93.64%) for all cases and improves
with increasing n.

Figure 2 is presented to offer a better understand-
ing of these results. In this figure, the indices estima-
tions are plotted versus l for n¼ 150. The curve of
Ŝ0pmk is very similar to Spmk when c ¼ 0:01, but gets
more and more different as c increases. The values at
the left of T are greater than the corresponding values
at the right and with the same distance from T.

Next simulations are run for Poisson distribution
as a discrete distribution. Mean values for Poisson
data generation are as l ¼ 6, 7, 9, 10: The same pro-
cedure of the normal simulations is used but with
LSL¼ 0, USL¼ 16 and T¼ 8. The results are summar-
ized in Table 2. Again only the panel with n¼ 25 is
discussed as the trend is the same within all the four
panels. The proposed index behaves as expected in
this case, too. S0pmk values for l ¼ 9, 10 are smaller
than the values for l ¼ 6, 7, because they cause posi-
tive ðx� lÞ: For l ¼ 6, 7, S0pmk increases as c gets
larger, while for l ¼ 9, 10 it decreases as c rises.
However, there is one main difference between these
results and those obtained for normal distribution.
Spmk does not remain the same for equal jx � Tj’s,

because variance of the underlying distribution affects
the indices in addition to the mean. In the normal
distribution simulations, mean and variance were
unrelated and l changed while r was fixed, whereas
for Poisson distribution l ¼ r: The performance of
Ŝ0pmk is somehow weak for some cases in n¼ 25, 50
regarding coverage ratios and MSE values, but they
give more satisfying results as n increases.

The last case of simulations is performed for Weibull
distribution with l ¼ 2, 3, 5, 6 and shape parameter 2,
LSL¼ 0, USL¼ 8 and T¼ 4. The results are presented in
Table 3. The simulation procedure is the same as the
previous ones and the two indices behavior is the same
as Poisson one. All MSE values are less than 0.01 except
some for n¼ 25, but coverage ratios are all good regard-
ing the nominal 93.64%, except when l ¼ 2, 3 for
n¼ 25. As the final point, take a closer look at results
for l¼ 2 in Table 3. For c ¼ 0:01, 0:5, 1 the process is
diagnosed incapable because S0pmk < 1; whereas for c ¼
5, 10, S0pmk > 1 and the process is capable. This is a testa-
ment to the important role of c in determining how
much practitioners, in addition to the distance magni-
tude, care about the direction of the distance between l
and T. As a guideline on how to choose c, Figure 1 (right
panel) can be used. Practitioners can see how changing
c affects the loss function and choose which case is
more suitable for their process.

Real data examples

In this section, three real data examples are used to
demonstrate the application of our proposed index,
one for a discrete and the other two for continu-
ous processes.

Figure 2. Simulation results for normal distribution when n¼ 150.
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Example 1

For the first example, we use data by Montgomery
(2012). The data is shown in Table 4, where the num-
ber of nonconforming plastic parts in an injection
molding process is collected.

We consider LSL, USL and T as 0, 30 and 15
respectively. The number of nonconforming parts that
exceed T are more costly for the costumer, so we set

c¼ 5. Assuming that the process follows a Poisson
distribution, we have FðUSLÞ ¼ 0:9992 and FðLSLÞ ¼
0:0000, where �x ¼ 16:4000 and s2 ¼ 58:0444: By sub-
stituting these values in [3.3] we have

Ŝ0pmk ¼
U�1 1þ0:9992�0:0000

2

� �
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

58:0444 � e
5ð16:4�15Þ�5ð16:4�15Þ�1

52

q ¼ 0:7042:

[5.1]

Table 2. Simulation results for Poisson distribution with T¼ 8, LSL¼ 0 and USL¼ 16.
n¼ 25 n¼ 50 n¼ 100 n¼ 150

Spmk, l c S0pmk Ŝ
0
pmk CR(%) MSE Ŝ

0
pmk CR(%) MSE Ŝ

0
pmk CR(%) MSE Ŝ

0
pmk CR(%) MSE

0.9690 0.01 0.9703 0.9559 89.5 0.0058 0.9643 91.7 0.0027 0.9676 93.5 0.0013 0.9693 94.0 0.0009
6 0.5 1.0246 1.0115 88.7 0.0034 1.0193 92.7 0.0014 1.0224 94.3 0.0007 1.0237 94.9 0.0004

1 1.0655 1.0536 88.3 0.0023 1.0607 92.5 0.0009 1.0637 94.4 0.0004 1.0645 94.6 0.0003
5 1.1820 1.1755 93.0 0.0029 1.1793 94.9 0.0015 1.1815 94.7 0.0007 1.1813 95.0 0.0005
10 1.2131 1.2091 94.1 0.0040 1.2114 94.8 0.0021 1.2131 95.1 0.0010 1.2126 95.0 0.0007

1.0297 0.01 1.0300 1.0080 78.2 0.0019 1.0189 86.4 0.0006 1.0247 89.4 0.0002 1.0266 91.2 0.0001
7 0.5 1.0394 1.0226 82.5 0.0014 1.0310 89.1 0.0004 1.0356 91.4 0.0002 1.0369 93.3 0.0001

1 1.0472 1.0341 87.8 0.0014 1.0408 91.5 0.0005 1.0445 93.2 0.0002 1.0453 95.0 0.0001
5 1.0765 1.0722 93.7 0.0032 1.0744 93.9 0.0017 1.0762 94.8 0.0008 1.0758 94.7 0.0005
10 1.0870 1.0840 93.3 0.0045 1.0855 93.6 0.0023 1.0871 94.8 0.0011 1.0865 94.8 0.0007

0.8030 0.01 0.8029 0.7944 93.3 0.0111 0.7984 94.4 0.0060 0.8019 94.9 0.0030 0.8013 94.8 0.0020
9 0.5 0.7955 0.7829 93.3 0.0137 0.7887 94.4 0.0074 0.7934 95.0 0.0037 0.7931 94.7 0.0024

1 0.7860 0.7673 93.1 0.0179 0.7756 94.4 0.0095 0.7822 95.0 0.0047 0.7823 94.7 0.0031
5 0.5623 0.5265 93.1 0.0975 0.5361 94.2 0.0694 0.5514 95.0 0.0437 0.5497 94.7 0.0325
10 0.1198 0.3035 92.7 0.1607 0.2605 94.1 0.1116 0.2189 94.7 0.0664 0.1893 94.7 0.0440

0.6229 0.01 0.6223 0.6174 92.9 0.0112 0.6231 94.6 0.0057 0.6237 95.6 0.0029 0.6217 95.7 0.0019
10 0.5 0.5873 0.5811 93.0 0.0151 0.5880 94.6 0.0079 0.5888 95.6 0.0041 0.5866 95.7 0.0026

1 0.5378 0.5314 93.2 0.0213 0.5391 94.6 0.0115 0.5398 95.6 0.0060 0.5371 95.7 0.0039
5 0.0554 0.1218 93.3 0.0335 0.0953 94.0 0.0139 0.0759 95.0 0.0045 0.0668 95.7 0.0022
10 0.0007 0.0227 93.2 0.0095 0.0071 93.8 0.0009 0.0025 94.9 0.0000 0.0016 95.3 0.0000

Table 4. Data for example 1.
Sample Number 1 2 3 4 5 6 7 8 9 10

Number of Nonconforming Parts 10 15 31 18 24 12 23 15 8 8

Table 3 Simulation results for Weibull distribution with shape parameter 2, T¼ 4, LSL¼ 0 and USL¼ 8.
n¼ 25 n¼ 50 n¼ 100 n¼ 150

Spmk, l c S0pmk Ŝ
0
pmk CR(%) MSE Ŝ

0
pmk CR(%) MSE Ŝ

0
pmk CR(%) MSE Ŝ

0
pmk CR(%) MSE

0.7165 0.01 0.7183 0.7556 90.6 0.0117 0.7387 91.3 0.0058 0.7284 93.7 0.0024 0.7239 95.2 0.0015
2 0.5 0.8048 0.8462 90.5 0.0138 0.8274 91.7 0.0069 0.8158 93.2 0.0028 0.8110 95.2 0.0018

1 0.8816 0.9270 90.1 0.0166 0.9064 91.5 0.0083 0.8935 93.7 0.0034 0.8883 94.9 0.0021
5 1.2008 1.2688 89.7 0.0432 1.2385 91.3 0.0221 1.2180 93.5 0.0093 1.2107 93.0 0.0058
10 1.3322 1.4148 89.4 0.0667 1.3782 91.7 0.0342 1.3530 93.0 0.0146 1.3443 93.6 0.0090

0.8145 0.01 0.8149 0.8461 90.8 0.0148 0.8274 92.8 0.0056 0.8205 95.0 0.0024 0.8177 94.9 0.0015
3 0.5 0.8325 0.8683 88.8 0.0160 0.8471 92.2 0.0060 0.8390 94.7 0.0025 0.8360 93.5 0.0016

1 0.8475 0.8873 87.8 0.0175 0.8640 91.5 0.0065 0.8548 94.5 0.0027 0.8516 93.3 0.0017
5 0.9086 0.9641 85.2 0.0288 0.9321 90.8 0.0105 0.9187 92.3 0.0046 0.9147 93.0 0.0028
10 0.9325 0.9941 85.7 0.0354 0.9586 90.1 0.0127 0.9437 92.6 0.0056 0.9393 93.7 0.0035

0.4666 0.01 0.4665 0.4842 91.7 0.0092 0.4743 93.4 0.0041 0.4694 93.7 0.0020 0.4688 94.7 0.0013
5 0.5 0.4611 0.4772 91.9 0.0101 0.4680 93.5 0.0046 0.4635 94.0 0.0023 0.4631 94.8 0.0015

1 0.4541 0.4680 92.0 0.0116 0.4598 93.5 0.0054 0.4558 94.1 0.0027 0.4558 95.1 0.0017
5 0.3059 0.3299 92.8 0.0393 0.3180 94.3 0.0245 0.3097 94.6 0.0147 0.3107 94.6 0.0104
10 0.0618 0.1872 93.0 0.0641 0.1452 94.4 0.0356 0.1088 94.7 0.0168 0.0958 94.6 0.0097

0.3250 0.01 0.3247 0.3364 92.8 0.0057 0.3302 94.1 0.0026 0.3267 94.6 0.0013 0.3265 94.6 0.0008
6 0.5 0.3063 0.3183 92.6 0.0069 0.3120 94.5 0.0033 0.3083 94.8 0.0016 0.3082 94.7 0.0010

1 0.2802 0.2932 93.1 0.0087 0.2865 94.7 0.0043 0.2824 94.9 0.0021 0.2823 94.8 0.0014
5 0.0287 0.0746 92.9 0.0132 0.0518 94.7 0.0044 0.0391 94.9 0.0013 0.0356 94.7 0.0006
10 0.0004 0.0153 93.0 0.0037 0.0043 94.6 0.0006 0.0013 94.8 0.0000 0.0009 94.7 0.0000
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As seen, Ŝ0pmk < 1, so the process of injection molding
is not capable. However Ŝpmk ¼ 1:0951 > 1 determines
the process as capable. The reason of disagreement
between the two indices here could be interpreted as
following. Spmk only considers the difference between
the process mean and the target, but does not find it
large enough to interpret the process as incapable.
Whereas S0pmk also considers the direction of the dif-
ference and detect it deviant enough to describe the
process as incapable. To choose which index to use, it
is up to the researcher to decide whether or not the
direction of difference is important enough to reject
the capability of the process, despite the amount of
difference is not as considerable.

Example 2

In this example, we use data given in Chen and Ding
(2001). The data include diameters of the inner rings of
bearings produced by a manufacturer (Table 5). Let d
denote the diameter. The specifications of d are:
T¼ 60mm, LSL¼ 59.981mm and USL¼ 60.004mm. If
d is outside of the specification limits, the bearing
should be sent to repair. The repair method depends on
whether d is below LSL or above USL. If it is below LSL,
then the inner ring is thicker than required. The excess
thickness will be simply reduced by some lathing. If d is
above USL, a more complicated method should be
applied to adjust the thickness. First, a piece of a certain
material is welded to the inner ring, and then it is lathed
to get the required thickness. The latter repair method
costs more, so c is set to 1.

As stated in Chen and Ding (2001), normality of
data is not accepted. Thus F̂ðLSLÞ ¼ 4=100 and
F̂ðUSLÞ ¼ 98=100, where F̂ is the empirical distribu-
tion function. Substituting these values in addition to
�x ¼ 59:9903 and s2 ¼ 0:00007 in [3.3], we have

Ŝ0pmk ¼
U�1 1þ0:98�0:04

2

� �
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

0:00007 ðeð59:9903�60Þ � ð59:9903� 60Þ � 1Þ
q

¼ 0:4096:

[5.2]

Chen and Ding (2001) used Spmk index for capability
measurement and obtained Ŝpmk ¼ 0:4092: Although �x
and T are close, both of the indices specify the process
as incapable. This could be because of the rather large
sample deviation, s; because both of the indices are
sensitive to the deviation. Beside, there is a small dif-
ference between Ŝpmk and Ŝ0pmk: Maybe the reason is
the small difference between �x and T here. Indeed no
matter of what type, loss functions make more influ-
ence as the quality measure goes farther from the tar-
get value. Hence the difference between the two
indices’ performance appears more as the quality
measure takes more distance from the target value.
This was already approved in the simulation results.

Example 3

For this example, we use the data by Chopra et al.
(2012). They studied the tablet production process for
acyclovir 300mg which is an antiviral medication pre-
scribed to treat certain virus infections. The data was
collected about various characteristics of the produced
tablets. We consider the average weight of the tablets
with specifications T¼ 300mg, LSL¼ 294mg and
USL¼ 306mg. The data is available in Chopra et al.
(2012) with �x ¼ 299:822 and s2 ¼ 1:266 calculated.
The data follow normal distribution as stated in
Chopra et al. (2012), so FðLSLÞ ¼ 0:000 and
FðUSLÞ ¼ 1:000: We set c¼ 10, and we have

Ŝ0pmk ¼
U�1 1þ1:000�0:000

2

� �
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

1:266
e10ð299:822�300Þ�0:7ð299:822�300Þ�1

102

q

¼ 1:7448: [5.3]

The process is capable as Ŝ0pmk > 1: The same is deter-
mined by Ŝpmk ¼ 1:7363: It seems that the close value
of �x to T and the rather small s make both of the
indices determine the process as capable.

Conclusions

In this article a new index S0pmk is introduced for cap-
ability analysis of non-normal processes. It is a loss-

Table 5. Data for example 2.
59.984 59.981 59.981 60.003 59.982 60.005 60.004 59.983 59.981 59.980
60.000 59.998 59.982 59.983 59.981 59.982 59.999 60.001 59.982 59.988
59.995 59.998 59.982 59.983 59.981 59.994 60.002 59.988 59.980 59.982
59.982 59.983 59.981 59.986 59.987 60.001 59.982 60.003 60.001 59.984
59.985 59.979 59.987 59.990 59.998 59.984 59.989 59.999 59.985 60.003
60.004 60.001 60.000 59.982 59.981 59.984 59.998 59.983 59.999 59.987
59.991 59.992 59.992 59.983 59.981 59.996 59.997 60.000 60.000 59.991
60.002 60.001 59.990 59.987 59.982 60.006 59.981 59.982 59.984 59.985
60.003 60.004 59.992 59.991 59.986 59.992 59.991 59.981 59.998 59.985
60.001 59.980 59.993 59.984 59.981 59.984 59.988 59.999 60.000 60.001
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based capability index, considering the loss costs
caused by the difference of the process mean l from
the target value T. S0pmk has a new feature comparing
to the former loss-based capability indices. It is not
only sensitive to the distance between l and T, but is
also sensitive to the location of l around T. This is
possible by the asymmetry parameter c. Setting c to a
desired value provides two options. First, it deter-
mines whether smaller or greater values of l with
respect to T cause more costs. Second, it specifies the
increase rate of costs based on the distance between l
and T. According to its properties, S0pmk is recom-
mended to be used in complicated processes in which
more customization of loss costs is required.

S0pmk is constructed based on an asymmetric loss
function linex. There are also some other asymmetric
loss functions available (e.g., LinLin and QuadQuad
loss functions) that might have interesting properties
in application to capability indices. This can be inves-
tigated in further studies with comparison to S0pmk per-
formance in the present work. In addition, S0pmk is
defined by concerning Spmk as the main idea. Spmk is
designed for non-normal processes, but many other
capability indices are designed for more specified con-
ditions. So another idea for further studies is to design
new indices with asymmetric loss functions based on
other types of loss-based capability indices e.g., Le
(Johnson 1992), PCIh (Hsieh and Tong 2006) and
Cpðu, vÞðSTBÞ (Eslamipoor and Hosseini-Nasab 2016).
In this work we used S0pmk only in capability analysis,
but it can be applied to other fields of quality control
such as process monitoring, acceptance sampling, etc.
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