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A B S T R A C T

In security risk management of computer networks, some challenges are more

serious in large networks. Specifying and estimating risks is largely dependent

on the knowledge of security experts. In this paper, a framework for security risk

estimation is proposed to address this issue. It represents the security knowledge

required for security risk estimation and utilizes current security metrics and

vulnerability databases. This framework is a major step towards automating

the process of security risk estimation so that a network administrator can

estimate the risk of the network with less expertise and effort. As a case study,

the proposed framework is applied to a sample network to show its applicability

and usability in operational environments. The comparison of results with two

existing methods showed the validity of the estimations given by the proposed

framework.

c© 2020 JComSec. All rights reserved.

1 Introduction

Security vulnerabilities in computer networks make
security threats for system assets. Attackers can ex-
ploit the vulnerabilities to penetrate the system and
get access to its assets. One of the main activities in
network security is security risk management, which
includes the process of identification, estimation, and
mitigation of security risks [1].

There are several methods [2–6] and various tools
to estimate the risk of exploiting a vulnerability. For
brevity, we refer to “the risk of vulnerability exploita-
tion” as “vulnerability risk”. These methods are not
accurate as they estimate the risk of each vulnerabil-
ity separately without considering the effect of related
vulnerabilities. Intruders usually exploit a sequence of
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related vulnerabilities to reach their goal in the net-
work. In these multi-stage attacks, the probability of
exploiting vulnerability depends on the exploitation
probability of other related vulnerabilities [7].

For multi-stage attacks, interdependent security
models are employed for modeling the dependency be-
tween single vulnerabilities. Game theory, Petrinets,
and attack graphs are the main models used for mod-
eling the multi-stage attacks. Network administrators
should have security expertise to consider the depen-
dency between reported vulnerabilities and obtain
more realistic results.

In this paper, a framework for estimating the risk
of security threats in computer networks has been
proposed. The security threats are identified by the
existing vulnerabilities in the network, and the risk of
vulnerabilities are estimated based on their interrela-
tions. In the proposed framework, Bayesian network
[8–13] combined with attack graph [14] has been used
to model the multi-stage attacks and probability de-
pendencies of vulnerabilities. In this framework, the
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expertise requirement is reduced and the network ad-
ministrator will be able to use this framework with
less security expertise to create the security model
of the network and determine the security threats,
their risk values, and other useful information for the
selection of security controls.

This paper extends the conference version [15] sig-
nificantly by proposing a framework for the previous
approach, which precisely specifies the relationships
and communications of its components. Furthermore,
by applying the previously proposed models on various
real-world networks, some limitations and inconsisten-
cies were discovered and improved. The implementa-
tion also enhanced to calculate the risk of vulnerabil-
ities by adding their exploit impact and to produce
more useful results such as the most probable path
and the most important vulnerability.

The remainder of the paper is organized as follows.
In Section 2, a brief description and review of related
work are presented. Section 3 introduces the back-
ground material, and Section 4 elaborates on the pro-
posed framework. The experimental results of apply-
ing the proposed framework to the test networks are
presented in Section 5. In Section 6, conclusions are
drawn, and directions for future works are discussed.

2 RELATEDWORK

The most widely-used approach for quantitative esti-
mation of network security risk involves estimating the
risk of threats separately and then aggregating them
to achieve the total risk of the network. A variety of
methods have been proposed for separate estimation
of threat risks, which assess the risk of single vulner-
ability exploitation [2–5, 16]. For example, CVSS [4]
and CWSS [5] are two systems used for scoring the risk
of vulnerabilities and weaknesses, respectively. These
methods [2, 3, 16] estimate the risk of vulnerabilities
separately, without considering the interconnections
and dependencies of related vulnerabilities, although
the majority of network attacks are made in multiple
stages. Several tools such as Petrinets [17–19], game
theory [20–24], and attack graphs/trees [8, 13, 25, 26]
have been used for the modeling of multi-stage attacks.
These models represent the relations between network
vulnerabilities and determine the attack paths to a
certain goal in the network.

Game theory is also used for modeling of interdepen-
dency between network defenders as the players of the
game [27]. In [28] authors have chosen interdependent
security games to model the effect of the neighbors of
a node on its attack probability. In [29–31] the inter-
dependency is perceived to find an efficient solution
for defenders’ security investment on risk reduction.

Among the models proposed for multi-stage attacks,
attack graphs/trees are the most popular due to their
understandability for users and conformity to the
graph theory. For example, in [9] the authors have
combined attack trees with the graph and algebraic
theory to evaluate the risk of attack scenarios proba-
bilistically. The attack graph is also joined with the
fuzzy set theory to deal with uncertainty difficulties
in [32].

In [33] multi-stage attacks on Supervisory Control
and Data Acquisition (SCADA) systems are modeled
using attack graphs. The attack graph is generated
by employing a model-checker which finds attack se-
quences to a target as counterexamples. Such methods
[33, 34] only identify and represent the attack path
and do not specify the risk value of attacks.

Attack graphs are not only used to specify and ana-
lyze the attack paths but also can be used to represent
the dependencies of vulnerabilities and calculate their
probability [9][32–37]. Attack graphs have also been
combined with a Bayesian network [8, 11, 35] to repre-
sent the dependencies between probabilities of vulner-
abilities. Furthermore, the Bayesian decision network
has been used to find a set of the riskiest threats and
choose the optimal set of security controls to obtain
the most secure network with a limited budget [10].
Although these works are so efficient in calculating
the risks and costs of security threats, they do not
address the construction of the attack graph and its
challenges such as the security expertise need, com-
plexity of the security model, and its flexibility in the
face of the system changes.

To reduce security expertise need, Sommestad et al.
[36] used Probabilistic Relational Model to assess the
security risks of the network. In their work, Bayesian
inference was used to compute the attack probability.
They extended their model in [12, 13] and proposed a
language for constructing their model. However, this
model was designed for SCADA systems with few
attacks in this area. For other networks and attacks,
the models need to be redesigned by security experts.

In this paper, we proposed a framework for specify-
ing attack paths in networks and estimating their secu-
rity risks. By representing the necessary information
and knowledge in an abstract model, the framework
reduces the need for security expertise for network
administrators. It is also designed to be flexible to
network changes. These changes are applied to the
network model and their costs will be lower than that
of other risk estimation approaches that reconstruct
the network model in the case of network changes.
Furthermore, the proposed framework is not limited
to a specific type of network or attack.
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3 BACKGROUND

Modeling the multi-stage attacks is an indispensable
step in the security risk estimation of networks. Attack
graphs are dominantly used for representing the at-
tack paths in multi-stage attacks. Bayesian networks
combined with attack graphs are also used for estimat-
ing the probability of multi-stage attack exploitations.
To measure the probability and impact of each vulner-
ability, CVSS metrics have been used in the proposed
framework. In this section, the background material
for our framework is described.

3.1 Bayesian Networks

Bayesian network G is a Directed Acyclic Graph
(DAG) in which, each node has a discrete random
variable, and each edge X ← Y indicates the rela-
tion between parent Y and child X . Each node has a
Conditional Probability Table (CPT), which specifies
the probability of the node for every given state of its
parents. In the Bayesian network, it is assumed that
a node is conditionally independent of nodes that are
not connected to its edges [37].

In the Bayesian networks, the joint probability of
all variables is calculated by the chain rule (Eq. ( 1)).

P (x1, . . . , xn) =

n∏
i=1

P (xi|Pa (xi)) (1)

Where X={x1, . . . , xn} is a set of random variables,
and Pa(xi) denotes the specific values of variables in
the parent nodes of xi.

3.2 Bayesian Attack Graph

Bayesian Attack Graph (BAG) is a combination of
attack graph and Bayesian network and formally is
defined as follows.

Let S be a set of network states as graph nodes and
A be the set of atomic attacks defined on S. An atomic
attack is associated with vulnerability exploitation
which takes the intruder from a network state (Spre)
to another (Spost) [8]. A BAG is defined as a tuple
BAG= (S, τ, ε,P), where

• S = Ninternal ∪Nexternal ∪Nterminal, where
Si ∈ Ninternal, if ∃a1, a2 ∈ A|[Sj=pre (a1) and
Sj = post (a2)
Si ∈ Nexternal, if @a ∈ A|Si = post(a)
Si ∈ Nterminal, if @a ∈ A|Sk = pre(a)

• τ is a set of ordered pairs of nodes.
(Spre, Spost) ∈ τ, if Spre 7→ Spost ∈ A
Further, for Si ∈ S, parent set of Si is defined as
Pa [Si]={Sj ∈ S| (Sj , Si) ∈ τ}

• ε is a set of decomposition tuples that speci-
fies {AND,OR} relations for all Sj ∈ Ninternal

∪Nterminal internal or terminal nodes. For tuple
〈Sj , dj〉,
dj is AND, if Sj = 1⇒ ∀Si ∈ Pa [Sj ] , Si = 1,
dj is OR, if Sj = 1⇒ ∃Si ∈ Pa [Sj ] , Si = 1

• P is a set of discrete conditional probability dis-
tribution functions. For each internal and termi-
nal node, there is a Local Conditional Probabil-
ity Distribution (LPCD) indicting the values of
Pr (Sj|Pa [Sj])

The AND relation between parents of ni indicates
that all of its parents should be compromised until the
attacker reach ni. The OR relation between parents
of ni suggests that the attacker can reach ni if any
of its parents is compromised. Therefore, the value of
Pr (ni|Parent [ni]) is calculated based on joint prob-
ability distribution and Noisy-OR, as defined below
[38].

if di = AND,Pr (ni|Parent [ni])

=

 0 ∃ni ∈ Parent [ni] , nj = 0∏
nj=1 Pr(ei) otherwise

(2)

if di = OR,Pr (ni|Parent [ni])

=

 0 ∀ni ∈ Parent [ni] , nj = 0∏
nj=1[1− Pr(ei)] otherwise

(3)

Where ei is the vulnerability exploitation, which
exhibits the transition of the attacker from state nj
to ni, and Pr (ei) is the single exploitation probability
of ei.

In the proposed model, when the probability of a
node is changed, the probability of its successors is
updated. This propagation of changes is implemented
by the Bayes’ formula (Eq. ( 4)) and the updated prob-
abilities are the posterior probabilities of successor
nodes.

P (X|Y ) =
P (X)P (Y |X)

P (Y )
(4)

3.3 CVSS Framework

In the Common Vulnerability Scoring System [4] a set
of metrics has been presented for assessing the risk
score of a vulnerability. These metrics are employed to
assess the probability and impact of vulnerability ex-
ploitation. The proposed models are not dependent on
a certain probability and impact assessment method,
but a subset of base metrics in CVSS was chosen for
this purpose.

To estimate the probability of single vulnerability
exploitation, the base metrics of CVSS for exploitabil-
ity of vulnerability were used. These metrics included
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Table 1. Values for CVSS Exploit Probability Metrics.

Metric Metric Value
Numerical

Value

Access vector

Local access 0.395

Adjacent network 0.646

Network 1.0

Access
complexity

High 0.35

Medium 0.61

Low 0.71

Authentication

Multiple authentications 0.45

Single authentication 0.56

No authentication 0.704

Access Vector, Access Complexity and Authentication.
The probability of single vulnerability exploitation is
assessed by Eq. ( 5).

ExploitationProbability

= 2×AccessV ector
×AccessComplexity
×Authentication

(5)

The values of the metrics are specified in Table 1 [4].

To estimate the impact of vulnerability exploitation,
Confidentiality Impact, Integrity Impact, and Avail-
ability Impact were used. The Impact value is assessed
as follows [4].

Impact = 1− [( 1− Impactconf )

× (1− ImpactInteg)

× (1− ImpactAvail)]

(6)

According to the CVSS standard, the values of
impact metrics are shown in Table 2.

4 THE PROPOSED FRAMEWORK

In this paper, a framework for security risk estima-
tion is proposed, which is intended to automate this
activity by reducing the need for a security expert.
The proposed framework is designed to be general
enough and not restricted to a specific type of network
or a certain set of attacks. The contributions of the
proposed framework are summarized below.

• This paper proposes a framework to reduce the
need for security experts by representing essential

information and knowledge required for security
risk estimation in an abstract model. Expertise
reduction is a major step towards automating the
process of security risk management.

• Based on an exhaustive review of literature in
the area, we designed an abstract and a concrete
model for the estimation of security risks. More-
over, a process to construct the concrete model
from the abstract model is presented.

• This framework defines a process for risk estima-
tion, which is characterized by the flexibility of the
security model to the network changes. By adding
or removing a host, connection, or vulnerability,
the effect of this change is propagated throughout
the model and the risk values are updated accord-
ingly. Unlike works such as [8, 12, 13, 39], in the
proposed framework, a model reconstruction is
not required to apply changes to the model.

• In the proposed models, central parts are network
nodes, which represent Data Terminal Equipment
(DTE). Therefore, there is a one-to-one corre-
spondence between network nodes in the models
and DTEs in the network. As a result, the log-
ical network security model conforms with the
network topology (the physical model of the net-
work) and represents the reachability of the hosts.
This capability helps network administrators to
apply countermeasures more efficiently in the risk
mitigation phase [40].

In the following subsections, an outline of the
framework and its components are presented.

4.1 Risk Estimation Framework for Secu-
rity Threats

The outline of the proposed framework is depicted
in Figure 1. This framework comprises two mod-
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Table 2. Values for CVSS Impact Metrics.

Metric Metric Value
Numerical

Value

Confidentiality,
Integrity, and
Availability

Impact

Complete Impact 0.660

Partial Impact 0.275

None 0

 

Figure 1. The Outline of the Proposed Framework.

els, the Abstract Security Model (ASM) and the
Network Security Model (NSM). The ASM is a
high-level model used to represent the security
information necessary for risk estimation. This
model describes network nodes and their connec-
tions, security vulnerabilities and their character-
istics, and the relations between security vulner-
abilities, among other things.

Since the ASM is general, it is created only once
and applied to every given Network Under Analy-
sis (NUA) to construct its NSM. The framework
also has a process that constructs the NSM from
ASM. This process gives the specifications of an
NUA as inputs, and according to them, instan-
tiates the required objects from relevant classes
defined in the ASM. These objects together form
the NSM of a given NUA. The attack paths and
the risk value of each vulnerability are specified
in the NSM.

4.2 Abstract Security Model

The Abstract Security Model is a high-level model
of computer networks. It lays the foundation for
probabilistic reasoning to identify and estimate
security risks. In the proposed framework, ASM is
represented by a UML class diagram. The design
of ASM is based on an exhaustive review of liter-
ature in this area such as NIST SP 800-30 [41],

NIST SP 800-39 [42], and Common Criteria [43].
As shown in the ASM diagram (Figure 2), a

network node is represented by the NetworkNode
class, which represents a network device such as
a host or server. Every network node has a set of
privileges represented by the Privilege class. It
indicates the access type of a User to a Networ-
kNode. The Attacker is also a kind of User, which
may have a level of access to some NetworkNodes.
A Connection class connects two NetworkNodes.

Each class has a set of attributes and opera-
tions, which are essential for the elicitation of
attack paths and the calculation of their threat
probabilities. With their relationships and at-
tributes, the classes represent a logical security
model of the network. The operations of ASM
classes implement the process of identifying and
estimating security risks. Risk identification is
performed by the reasoning of attack paths based
on pre/post conditions of vulnerabilities, and the
risk value is estimated according to the vulnera-
bilities relations specified in the attack graph.

According to the characteristics of the risk
analysis problem, the Bayesian network model-
ing approach is used to estimate the probability
of multi-stage attacks. The probability of each
step in attack paths is calculated by the BAG
described in Section 3.
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class NetworkClasses

NetworkNode

- Name: char

+ NodeType: char

+ networkNode(): int

Zone

- Name: char

SecurityRequirement

- previlegeLevel: string

- user: user

- violationImpact: int

- violationProbability: float

+ securityRequirement(): int

+ setRelationWithPrivilege(): int

Priv ilege

- Access Type: string

- CompromiseProbability: float

+ updateProbability(): int

Connection

- port: int

+ makeAttackLinks(): int

Vulnerability

- Exploitabil ity: float

+ ID: string {id}

- Impact: int

+ Name: string

+ calculateDamageImpact(): int

+ calculateSingleExploitProbability(): int

+ getPrePostConditions(string): int

+ vulnerability(String): int

ZoneConnection

- port: int

Attacker

- ExpertiseLevel: int

User

- UserID: int

AttackLink

- Probability: float

+ updateProbabiti lty(): int

«Source»

1

«Destination»

1..*

«ResidesIn»

0..*

«Has»
1

1 1 «Precondition» 1..*

«Postcondition» 1

«Source»

1

«Destination»

1

«BelongsTo»

1..*

«Has»

0..*

1..*

«HasPrivilege» 1

«BelongsTo»1..*

«Contains»

1
«IsRequiredFor»

0..*

«Has»
1

Figure 2. The Abstract Security Model for Network Security Risk Analysis.

Algorithm 1 Constructor Method of Vulnerability Class.

INPUT: CVE ID of Vulnerability

1: call getProbabilityMetrics(CVE ID);
2: call calculateSingleExploitProbability(); //according to Eq.(5)
3: call getImpactMetrics(CVE ID);
4: call calculateDamageImpact(); //according to Eq.(6)
5: call getPrePostConditions(CVE ID); //gets the pre/post-conditions and the type of their relation
6: for i← 1 to number Of Preconditions do
7: if pre Post condition[i]==null then //if such privilege does not exists
8: instantiate precondition[i] from Privilege class
9: end if

10: if relation Type==AND then
11: call SetConditionalProbabilityTable(); //according to Eq.(2)
12: else
13: if relation type==OR then
14: call SetConditionalProbabilityTable(); //according to Eq.(3)
15: postCondition.probability = calculateUnconditionalProbability(); //–according to Eq.(4)
16: call self.postCondition.updateProbability();
17: call setRelations(); //sets the relation of vulnerability with security requirements
18: end if
19: end if
20: end for

The constructor operation of the Vulnerability class
among other object operations is explained here. This
operation gets the information of the vulnerability
from the vulnerability database and estimates the
probability and damage impact of its exploitation. Al-
gorithm 1 exhibits this process. First, the values of
impact and exploitation probability metrics of the vul-
nerability are queried from the vulnerability database.
Then, the damage impact of the vulnerability and
its single exploitation probability are calculated. The

pre/post-conditions of vulnerabilities and the relation
type between pre-conditions are also queried from the
vulnerability database. After setting the conditional
probability table based on Eq. ( 2) and ( 3), the un-
conditional probability of vulnerability exploitation
in a BAG is assessed according to Eq. ( 4). Moreover,
the effects of vulnerability exploitation on security re-
quirements are considered by setting the relationships
between vulnerability and affected requirements.

The security risk analysis of vulnerability is a two-
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Algorithm 2 Construction of NSM From ASM.

INPUT: The ASM, Network Topology, Network Vulnerabilities, Security Requirements

1: for i← 1 to number Of Network Nodes do
2: instantiate ni from NetworkNode class
3: for j← 1 to number Of Security requirement of ni do
4: instantiate srij from SecurityRequirement class
5: call srij .setRelations(); //sets the relations between requirement and privileges
6: end for
7: for l← 1 to number Of connection of ni do
8: instantiate cil from Connection class
9: end for

10: for k← 1 to number Of Vulnerability of ni do
11: instantiate Vik from Vulnerability class
12: end for
13: end for

step process:

• Specifying the security impact of vulnerability
exploitation

• Estimating the probability of vulnerability ex-
ploitation

The risk value is calculated by multiplying the prob-
ability and impact of vulnerability exploitation.

Risk = Probability × Impact (7)

The security impact of vulnerability exploitation
heavily depends on the context the vulnerability exists
in. For example, it depends on the IT asset compro-
mised by the vulnerability exploitation, the security
requirements of that asset, and the significance of the
asset in that organization. The proposed framework
is not dependent on a specific set of metrics, but the
base metrics of CVSS for vulnerability exploitability
and impact are used for estimating the probability
and impact of vulnerability exploitation.

4.3 Network Security Model

The NSM represents the security model of a given
network. To construct the NSM for a given NUA, the
required objects are instantiated from the appropri-
ate classes of ASM. For each node of an NUA, the
needed objects are instantiated to represent the node
and its requirements, vulnerabilities, etc. The NSM is
constructed iteratively by adding new objects. After
instantiating an object, its constructor is called to ini-
tiate its properties and apply the effect of adding this
object to the NSM. It may affect the probability at-
tribute of previous objects or may cause to instantiate
another object. Moreover, in the case of a probability
change, it is propagated to the related objects in the
model. Probabilities are calculated using the Bayesian
rule and any change in probabilities is disseminated

through forwarding propagation in BAG [8].

For example, consider a step of generating NSM
when vulnerability V is created for node N and added
to the current NSM. The post-condition of V is a priv-
ilege N .Pi. With the addition of V, the probability of
N .Pi may be increased. By changing the probability of
N .Pi, the updateProbability() function in all Privilege
objects linked to N will be called. This function calcu-
lates the new value for the probability of the object.

The final NSM contains risk values of each vulnera-
bility and security requirement violation. This infor-
mation is used as input in the risk mitigation phase.
The vulnerabilities with the highest risk and the path
with the highest probability to a certain goal of the
attacker are other outputs of the framework, which
allow administrators to prioritize the threats. Given
the limited budget for applying security controls, it is
indispensable for the administrator to decide which
vulnerabilities need to be remediated and which paths
should be blocked with higher priority.

4.4 The Process of Constructing NSM From
ASM

To construct NSM from ASM for an NUA, the speci-
fications of the NUA are required as the input of the
process. The output of this process is the NSM of the
network with its security risks. This NSM can be used
as the input of the risk mitigation phase in the risk
management process.

Algorithm 2 describes the process of constructing
NSM. For each node in the network, an object from
NetworkNode class is instantiated. Then, for each se-
curity requirement of the node, an object from Se-
curityRequirement is instantiated. It is also specified
whether the attacker access to privilege violates the
security requirement. Furthermore, the connections
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Table 3. List of the Vulnerabilities of the Network Under Analysis.

Host CVE ID Vulnerability

Gateway server CVE 2007-4752 Improper cookie handler in OpenSSH

Local desktops

CA 1996-83 Remote login

CVE 2001-0439 LICQ Buffer Overflow (BOF)

CVE 2008-0015 MS Video ActiveX Stack BOF

SQL server CVE 2008-5416 SQL Injection

Web server CVE 2009-1535 IIS vulnerability in WebDAV service

 
P=1 

P=0.4 

P=0.4 

P=1 

P=0.5 P=0.8 

P=0.66 

Figure 3. A BAG Deduced From a Sample NSM.

 

Figure 4. The Topology of the Network Under Analysis [8, 10].

of the node are represented in the NSM by objects
from Connection class, and for each reported vulnera-
bility of the node, an object from Vulnerability class
is instantiated.

The framework has an object-oriented design, which
makes the building blocks of its models standalone;
therefore, the model is flexible to modification. When
an object is added to or removed from the NSM, the
relevant values are updated and necessary objects are
instantiated and added to the NSM automatically. It
may change the probabilities and risks of other ob-
jects, or contribute to their construction or destruc-
tion. The dynamic characteristic of the framework is
necessary both in the risk estimation phase and the
risk mitigation phase.

When the administrator applies a countermeasure
against a vulnerability, the value of its exploitation
probability changes. The administrator can apply this
change to NSM of the network by changing its ex-
ploitability value. This change is propagated through
the NSM so that all affected risk values are updated
and the riskiest vulnerabilities and the most probable
path are selected again. For mitigation, the adminis-
trator can apply countermeasures iteratively, make
the relevant changes in the NSM, and obtain the new
most risky vulnerability and path.

4.5 Deducing the Underlying BAG

The underlying BAG of an NSM can be constructed
by tracking the AttackLinks beginning from Attacker
node, using forward chaining method, or from the
target asset, using backward chaining. In the proposed
framework the tracking of AttackLinks is performed
iteratively from Attacker to any accessible targets.

For example, if the Attacker has Privileges P1 and
P2, and there are AttackLinks as follows

• AttackLink L1 from P1 to P3 by Vulnerability V1
with probability 0.4,
• AttackLink L2 from P2 to P4 by textitVulnera-

bility V2 with probability 0.5,
• AttackLink L3 from P3 to P4 by Vulnerability

V3 with probability 0.8.

The BAG will be as Figure 3 shows and the proba-
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Table 4. Connections Between Network Nodes.

Source and Destination of
Connection

Allowed Protocol

Local desktops, Gateway Server Basic network protocols

Gateway server, SQL Server SQL

Gateway Server, Web Server HTTP

Web Server, SQL Server SQL

bilities are the same as specified in the NSM.

4.6 Network Specifications

Network specifications of an NUA serve as the in-
put of the framework for constructing NSM. Network
specifications include network configurations, security
requirements of each node, and the list of vulnera-
bilities that exist in the NUA. This list is provided
by vulnerability scanners. The configuration of the
network and its security requirements are extracted
from network system documents and network map-
per tools. The network administrator also verifies this
information to correct the faulty and/or missed data.

4.7 Vulnerability Database

The information required to estimate the risk of exist-
ing vulnerabilities is retrieved from the vulnerability
database. This database contains information about
vulnerabilities such as their pre-conditions and post-
conditions and the value of their CVSS metrics.

5 RESULTS ANDDISCUSSION

To investigate the applicability and usability of the
proposed framework, it is applied to multiple networks.
In this section, the results of applying the proposed
framework to a test network (Figure 4) are shown. The
test network is comprised of a DMZ zone with a web
server, and a trusted zone that contains a SQL server,
a gateway server, and two local desktops. The vul-
nerabilities reported by the scanner for each network
node are shown in Table 3. The information on iden-
tified vulnerabilities is queried from the database of
vulnerabilities. This information is extracted from vul-
nerability databases such as NVD 1 [44] or OSVDB 2

[45]. Furthermore, Table 4 specifies the connections
between network nodes.

By using ASM proposed in the previous section
(Figure 2) and the specifications of the test network,

1 National Vulnerability Database
2 Open Source Vulnerability Database

the NSM of this network is constructed. The resulted
NSM is shown in Figure 5. For each node in the net-
work, the required objects are instantiated to repre-
sent that node and its specifications and connections
as described in Algorithm 2.

As an object is instantiated and added to the NSM
model, the constructor of the object is called. The
constructor applies the effects of this addition on the
objects that already exist in the NSM.

For example, to represent the connection between
Host1 and SQLServer, an object named H-SQLS-Con
is instantiated from Connection class. This connection
means that Host1 has network access to SQLServer
on port 1433. By adding this object to NSM, an at-
tack link (H-SQL-Lnk) is established which links priv-
ileges H-LP and H-RP to privilege SQLS-NP. This
link means the local user and root user on Host have
network access on port 1433 to SQLServer. The proba-
bility of this access is 1, because the firewall allows this
access. Therefore, an attacker with local or root access
on Host1 has sufficient privilege to exploit SQL-Vul.
SQL-Vul is a SQL injection vulnerability, which its
pre-condition privilege is network access to its hosted
machine.

In Table 5, the threats of exploiting vulnerabilities
are listed. The value of exploitability and impact met-
rics are obtained from the vulnerability database. For
each vulnerability, the probability of its exploitation is
estimated when it is considered as single vulnerability
and its relations to other vulnerabilities are neglected
(Eq. ( 6)). Then, the probability of vulnerability ex-
ploitation is estimated concerning other nodes of the
network. This probability is calculated through the
Bayesian Attack Graph in the NSM. The visual rep-
resentation of the BAG that is created from the NSM
for the test network is illustrated in Figure 6.

Attack paths and the unconditional probability of
the privileges and vulnerabilities are depicted in this
figure. For example, there are four ways for an attacker
to gain root access to SQLServer, and the probability
of this threat is 0.78. If the relation of the network
nodes and their vulnerabilities were neglected, the
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object NetworkClasses

Host1: 

NetworkNode

TrustedZone: Zone

SQLServ er: 

NetworkNode

DMZzone: Zone

WebServ er: 

NetworkNode

H-Vul1: Vulnerability

Name = Remote Login

ExploitProbability = 0.34

CVE-ID = CA-1996-83

DamageImpact = 0.92

H-Vul2: Vulnerability

Name = LICQ BoF

ExploitProbability = 0.86

CVE-ID = CVE-2001-0439

DamageImpact = 0.62

H-NP: Priv ilege

Access Type = Network

CompromiseProbability = 0.86

H-LP: Priv ilege

Access Type = Local User

CompromiseProbability = 0.90

Attacker: 

Attacker

WS-NP: Priv ilege

Access Type = Network

CompromiseProbability = 1

H-Vul3: Vulnerability

Name = MS Video ActiveX Stack BoF

CVE-ID = CVE-2008-0015

DamageImpact = 0.96

ExploitProbability = 0.74

WS-GS-Con: 

Connection

Port = 80

SQLS-Vul: Vulnerability

Name = SQL Injection

DamageImpact = 0.96

CVE-ID = CVE-2008-5416

ExploitProbability = 0.78

H-RP: Priv ilege

Access Type = Root

CompromiseProbability = 0.74

SQLS-NP: Priv ilege

Access Type = Network

CompromiseProbability = 0.98

SQLS-RP: Priv ilege

Access Type = Root

CompromiseProbability = 0.78

WS-Vul: Vulnerability

Name = IIS Vulnerability in WebDAV Service

ExploitProbability = 0.49

CVE-ID = CVE-2009-1535

DamageImpact = 0.96

WS-LP: Priv ilege

Access Type = Local User

CompromiseProbability = 0.49

WS-SQLS-Con: 

Connection

Port = 1433

H-SQLS-Con: 

Connection

Port = 1433

H-SQLS-Lnk: 

AttackLink

Probability = 1

SQLSVul-Lnk: 

AttackLink

Probability = 0.8

HVul3-Lnk: 

AttackLink

Probability = 0.86

WSVul-Lnk: AttackLink

Probability = 0.49

HVul1-Lnk: AttackLink

Probability = 0.39

HVul2-Lnk: 

AttackLink

Probability = 1

GatewayServ er: 

NetworkNode
GS-Vul: Vulnerability

Name = Improper cookie handler in OpenSSH

ExploitProbability = 0.86

DamageImpact = 0.62

CVE-ID = CVE 2007- 4752

H-GS-Con: Connection

Port = BasicPorts

H-GS-Lnk: 

AttackLink

Probability = 1

GS-NP: Priv ilege

CompromiseProbability = 1

Access Type = Network

WS-GS-Lnk: 

AttackLink

Probability = 1

GSVul-Lnk: 

AttackLink

Probability = 1

WS-SQLS-Lnk: 

AttackLink

Probability = 1

WS-SR: SecurityRequirement

previlegeLevel <= Network

user = ForeignUser

GS-SR: SecurityRequirement

previlegeLevel <= Network

user = ForeignUser

H-SR: 

SecurityRequirement

previlegeLevel = None

user = ForeignUser

SQLS-SR: 

SecurityRequirement

previlegeLevel = None

user = ForeignUser

«Source»

«Source»

«Precondition»

«Destination»

«Destination»

«Precondition»

«Source»

«Precondition»

«Precondition»

«Precondition»

«Destination»

«Postcondition»

«Precondition»

Figure 5. NSM for the Network Under Analysis.

 

Figure 6. The Bayesian Attack Graph Produced by the NSM of the Network Under Analysis.
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Table 5. Multi-Column Table

Security
Threat

CVE ID
Probability of Threat Damage Impact of Threat Risk

of Se-
curity
Threat

Exploitability
Metrics

Exploit
Probability
(Single Vul-
nerability)

Exploit
Probability
(Uncondi-

tional
Probability
in BAG)

Impact Metrics
Impact
Value

Exploit of
Improper

cookie handler
in OpenSSH

CVE
2007-4752

AV=N 0.86 0.86 ImpacConf = P 0.62 0.53

AC=M ImpactInteg = P

AU=N ImpactAvail = P

Exploit of
Remote login

CA 1996-83

AV= N 0.39 0.34 ImpacConf = C 0.92 0.31

AC=H ImpactInteg = C

AU=S ImpactAvail = P

Exploit of
LICQ Buffer

Overflow
(BOF)

CVE
2001-0439

AV= N 1 0.86 ImpacConf = P 0.62 0.53

AC=L ImpactInteg = P

AU=N ImpactAvail = P

Exploit of MS
Video

ActiveX Stack
BOF

CVE
2008-0015

AV= N 0.86 0.74 ImpacConf = C 0.96 0.71

AC=M ImpactInteg = C

AU=N ImpactAvail = C

Exploit of
SQL Injection

CVE
2008-5416

AV= N 0.8 0.78 ImpacConf = C 0.96 0.74

AC=L ImpactInteg = C

AU=S ImpactAvail = C

Exploit of IIS
vulnerability
in WebDAV

service

CVE
2009-1535

AV= N 0.49 0.49 ImpacConf = C 0.96 0.74

AC=H ImpactInteg = C

AU=N ImpactAvail = C

probability of root access for the attacker would be 0,
because the attacker does not direct network access
to SQLServer.

The structure and values of resulted BAG are com-
pared with the BAG and Bayesian decision network
produced by applying [8] and [10] to the test network,
respectively. The conformance of the BAG of our
framework with these two models shows the validity of
the models and processes of the proposed framework.

The Damage impact of each vulnerability exploit
is also specified in Table 5. The damage impact is
calculated according to Table 2 and Eq. ( 5). The final
risk values in the latter column are obtained by Eq.
( 7). The fifth row of Table 5 is shaded for the riskiest
vulnerability according to the resulted risk values. The

most probable path of the attacker to gain root access
to the SQL server is also highlighted in Figure 6 with
a red shade.

From another risk management perspective, the
effect of vulnerability exploitation on security require-
ments is studied. The probability of security require-
ments violations for the test network is presented in
Table 6. In the first column, specified security require-
ments are listed, and the privileges of the attacker
which violates those requirements are also showed in
the second column.
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Table 6. Security Requirements With Their Probability of Violation.

Security Requirement
Violations of Security

Requirement
Probability of violation

All access of foreign users to
SQL Server is denied.

CA 1996-83Network Access of attacker
to SQL Server

0.98

Local User Access of attacker to SQL
Server

0.78

Root Access of attacker to SQL server 0.78

Network access of foreign
users to Web Server is

allowed.

Local User Access of attacker to Web
Server

0.49

Root Access of attacker to Web Server 0

Network access of foreign
users to Gateway Server is

allowed.

Local User Access of attacker to
Gateway Server

0

Root Access of attacker to Gateway
Server

0

All access of foreign users to
Host1 is denied.

Network Access of attacker to Host1 0.86

Local User Access of attacker to Host1 0.90

Root Access of attacker to Host1 0.74

6 CONCLUSION AND FUTURE
WORK

To reduce the need for security experts in network secu-
rity risk estimation, this paper proposed a framework
to represent experts’ security knowledge. Abstract Se-
curity Model presents an abstract view to the network
components which participate in security risks. ASM is
designed once and can be frequently used to construct
the Network Security Model for any network. Using
the provided ASM, the process iteratively completes
the NSM according to the specifications of the given
NUA and calculates the risk values simultaneously. In
the final NSM, the security threats of the network and
their risk values are obtained. The information needed
for constructing NSM from ASM can be provided by
system documents, automatic scanners, or network
administrator. In all three cases, there is a minimum
need for security expertise. In this paper, the specifi-
cations of NUA are given manually, although it can
be automated.

The proposed framework is dynamic and flexible to
network changes. By adding an object to the NSM, its
effects on the other objects are applied automatically
by the operations of ASM classes. Another advantage
of our analysis model is conformity with the network’s
physical model that enables the administrator to have
a better assignment of security controls. For each
Data Terminal Units in the network, an object is

instantiated in the analysis model, and the effect of
each Data Communication Units are represented by
connection objects.

For future work, we are going to fully automate the
process of constructing NSM. To this end, the pro-
cess of constructing NSM should be formally defined.
This framework can also be extended to cover the risk
mitigation phase and recommend the best set of coun-
termeasures according to estimated risks. Providing a
UML profile for network security risk analysis from
the proposed models is also considered for our future
plans.
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