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Abstract—Business process monitoring techniques have been
investigated in depth over the last decade to enable organizations
to deliver process insight. Recently, a new stream of work in
predictive business process monitoring leveraged deep learning
techniques to unlock the potential business value locked in
process execution event logs. These works use Recurrent Neural
Networks, such as Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU), and suffer from misinformation and
accuracy as they use the last hidden state (as the context vector)
for the purpose of predicting the next event. On the other
hand, in operational processes, traces may be very long, which
makes the above methods inappropriate for analyzing them. In
addition, in predicting the next events in a running case, some
of the previous events should be given a higher priority. To
address these shortcomings, in this paper, we present a novel
approach inspired by the notion of attention mechanism, utilized
in Natural Language Processing and, particularly, in Neural
Machine Translation. Our proposed approach uses all hidden
states to accurately predict future behavior and the outcome of
individual activities. Experimental evaluation of real-world event
logs revealed that the use of attention mechanisms in the proposed
approach leads to a more accurate prediction.

Index Terms—Business Process Management, Process Min-
ing, Predictive Process Monitoring, Attention Mechanism, Deep
Learning, LSTM, Seq2Seq

I. INTRODUCTION

A business process (BP) is a set of coordinated tasks and

activities, carried out manually or automatically, to achieve a

business objective or goal‘ [1], [2]. Business Process Man-

agement (BPM), i.e., a generic software system that is driven

by explicit process designs to enact and manage operational

BPs, enable organizations to be more efficient and capable of

process automation throughout the process management life

cycle [3]–[6]. Process mining is an emerging discipline that

bridges the gap between traditional BPM and data-centric anal-

ysis techniques such as machine learning and data mining [1],

[7]–[9]. A major task in process mining is process monitoring

with the aim of detecting the undesired deviations occurring

during the process execution, which makes it possible to

oversee the whole process. Process monitoring can be offline

or online [10]. The offline process monitoring is realized by

traditional monitoring methods. The idea is to give, as the

input, a dataset including completed process instances and

receive such outputs as the deviations that have occurred [10].

An undesired deviation sometimes inflicts irreparable costs

and wasted time in an organization. This makes it necessary

to identify and make alarming notifications about deviations

before they happen. This will provide the opportunity to take

preventive measures [10]. Deviations are of a variety of types

such as undesired deviations from the desired workflow or

deadline violations [10]. In the case of deadline violations,

for instance, if predicted accurately, it can save time and

cost for organizations. Predictive business process monitoring

techniques deal with the prediction of future sequences in a

running case by using historical information extracted from

event logs [11]. Future prediction using historical data is

shown schematically in Figure 1. As seen in Figure 1, the

event log is first split randomly into two sets of training and

testing, where Tk denotes the k-th trace and ak+1
1 is the first

activity of the (k + 1)-th trace. The model is then learned on

the training data using a learning engine such as LSTM [12].

The output of this phase would be a trained model. Then, in

the testing phase, when we aim to predict the future behavior

Fig. 1. Predictive business process.
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of the ongoing trace, we will have a partial trace of length j
at the predicting point. Hence, the trained model’s input will

be the partial trace and the output will be its next event(s).

Many studies have recently addressed the prediction of the

future behavior of a running process instance [10], [13], [14].

Evermann et al. [15] proposed a method to predict the next

event using embedded dimensions of the LSTM network.

It is one of the first studies that have used deep learning

techniques in process monitoring. In another related work, Tax

et al. [11] predicts timestamp of events, as well. They used

one-hot encoding instead of embedded dimensions to encode

events. Further on, Camargo et al. [16] proposed a method

that brings together strengths of [11] and [15]. It is based

on embedded dimensions and addresses both numerical and

categorical attributes in an event log. Lin et al. [17] proposed

another method that tries to predict all attributes of an event

in addition to its activity name.

Recently, a new stream of work in predictive business

process monitoring leveraged deep learning techniques to

unlock the potential business value locked in process execution

event logs. These works use Recurrent Neural Networks, such

as LSTM and GRU. These works suffer from misinformation

and accuracy in long sequences as they use the last hidden

state (as the context vector) for the purpose of predicting the

next event [12]. On the other hand, in operational processes,

traces may be very long, which makes the above methods

inappropriate for analyzing them. In addition, in predicting

the next events in a running case, some of the previous events

should be given a higher priority.

To address these shortcomings, in this paper, we present a

novel approach inspired by the notion of attention mechanism,

utilized in Natural Language Processing and, particularly, in

Neural Machine Translation [18]. Our proposed approach uses

all hidden states to accurately predict future behavior and the

outcome of individual activities. The underlying idea is that

the prediction of the next activity does not require the context

vector to contain all the information related to the entire prefix.

Accordingly, attention mechanisms could be used to improve

the accuracy of predictions. The proposed method is evaluated

from two points of view. First, we aim to answer the question

of whether the attention mechanism improves the next event

prediction. Besides, the proposed method is compared with

the other methods.

The rest of this paper is organized as follows. Section II

provides a short summary of the related work on the use

of deep learning techniques in process mining and predictive

process monitoring.We present the proposed approach in detail

in Section III. Section IV outlines our evaluation plan and

provides the details of the experimental results and, finally,

Section V summarizes the contributions and findings and

discusses suggestions for future work.

II. RELATED WORK AND BACKGROUND

The first part of this section discusses the related work done

in this field. Then, some deep learning techniques used in this

paper are succinctly introduced.

A. Related Work

Many attempts have been made to predict the future be-

havior of an ongoing trace. The traditional approaches tried

to make predictions using models such as algorithms Associ-

ation Rule Mining (ARM) [19] and Hidden Markov Models

(HMM) [20]. Although such approaches are appropriate for

prediction of future behavior, they fail to perform well when

traces are complex.

Recently, deep learning techniques have been used fre-

quently to handle the problem. Their popularity is reflected

in Verenich et al. [10], which provided a systematic literature

review and an extremely comprehensive taxonomy of the

methods of remaining time prediction of a running case. They

reviewed publications from 2005 to 2017. They demonstrated

that the method using LSTM outperformed the other methods

on 13 out of 16 databases and made the lowest average

error. Another survey of prediction methods, which included

55 publications, was made by [21]. Evermann et al. [15]

utilized LSTM for next activity prediction. Their approach

was derived from Natural Language Processing (NLP). Next

activity prediction through the NLP-based method called for

equating an event log with a document, a trace with a sentence,

and an event with a word. Input sequences were encoded

through word embedding, which saves space.

Tax et al. [11] created another LSTM-based prediction

method. It is different from the method [13] in that this one

predicts the timestamps of the next events and the remaining

cycle time, as well. While Evermann et al. used embedded

dimensions to encode events, Tax et al. fulfilled this purpose

by one-hot encoding. As an advantage, Tax et al. enriched

the feature vector with the features relating to the details

of the event’s occurrence time such as time of the day, the

period between the current event and the previous one, and the

temporal distance between the start of the case and the current

point. However, the problem with one-hot encoding is that if

the activities are large in number, it requires a large number

of dimensions. They used three different LSTM architectures

for prediction.

The method proposed by Camargo et al. [16] combines the

advantages of [11], [15]. They encoded numerical attributes

in addition to event types. The encoding took advantage of

embedded dimensions, which saves space when there is a

large number of event (activity) types. The method included

a preprocessing phase in which the feature vectors were built.

Then, the three architectures proposed in [11] were used for

the predictions and the results were better than those obtained

by [11]. Lin et al. [17] put forth a method that predicts

all the attributes of an event in addition to the event type

(activity). They suggested that it is required for the next event

prediction to consider the relative importance of each attribute

in a given event. The degree of importance was determined by

a modulator. They also used an encoder-decoder architecture.

Clustering was presented, in [22], as a way of saving

space when encoding events. The clustering made use of

dependencies between attributes of events. Navarin et al. [23]
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Fig. 2. An unrolled recurrent neural network.

focused on LSTM networks for data-aware remaining time

prediction of business process instances, and addressed the

prediction of the remaining time until the end of the case.

Note that all of the above studies try to enrich the feature

vector or reduce the space needed for representing the feature

vector. They ignore the fact that the prediction of the future

behavior of an ongoing trace does not require paying equal

attention to the input time steps. Rather, some of them must

be given more and some less attention. There are other studies

in the literature that used deep learning techniques: Dorgo et

al. [24] utilized a seq2seq architecture to predict future events.

A method called BINet was applied in [25]. It is a multi-

variant neural network for real-time anomaly detection based

on the next event prediction and next attribute prediction.

Another study dealing with anomaly detection is [26], in which

autoencoders were used for this purpose.

B. Background

It seems reasonable to precede the main discussion of our

study with a succinct introduction to the relevant concepts.

1) Recurrent Neural Network: In a text, as an instance of

sequential information, the words are interrelated and cannot

be dealt with independently while learning a neural network.

Therefore, when processing sequential information, traditional

neural networks (feed-forward neural networks) may no longer

be used. Recurrent Neural Networks (RNN) use loops to

transfer information from one step to another [27]. This

guarantees that the information of the previous time steps is

kept and the interrelations between the words are captured. An

RNN is shown in Figure 2.

The problem of vanishing and the exploding gradient is

observed in RNNs. That is why they exhibit poor performance

in long sequences. This gave rise to LSTM networks.

2) Long Short-Term Memory: Changes made to recurrent

neural networks resulted in Long Short-Term Memory (LSTM)

networks, which can remember previous information. The

problem of vanishing gradient is resolved in LSTM. Learning

the model is carried out via back-propagation. There are three

gates in an LSTM network: Input gate, Forget gate, Output

gate

3) Sequence to Sequence model: Introduced for the first

time in 2014 by Sutskever et al. [28], a sequence to sequence

model aims to map a fixed-length input with a fixed-length

output where the length of the input and output may differ.

Figure 3.

The model consists of 3 parts: encoder, context vector, and

decoder. The encoder is a stack of several recurrent units (here

is LSTM) where each accepts a single element of the input

sequence, collects information for that element, and propagates

it forward. The final state of the encoder is a context vector.

This context vector aims to encapsulate the information for

all input elements in order to help the decoder make accurate

predictions. It acts as the initial hidden state of the decoder

part of the model. The decoder is a stack of several recurrent

units where each predicts an output yt at a time step t. Each

recurrent unit accepts a hidden state from the previous unit

and produces and output as well as its own hidden state.

III. PROPOSED APPROACH

This section describes our method of predicting the next

activity and the remaining sequence. As discussed in the

previous section, the seq2seq model receives input sequences

one at a time and finally encodes all of them in a fixed-length

vector called context vector. The context vector then inputs

to the decoder. The problem with this model is that the fixed

length of the vector prevents the memorization of information

in long sequences.

Consequently, the information carried by the earlier parts

of the sequence is forgotten. The attention mechanism, which

was introduced by Bahdanau et al. [18], is a solution to this

problem. Since traces are often long in operational processes,

this mechanism can lead to more accurate predictions of the

behavior of the ongoing process.

A. Next Activity Prediction

This paper takes advantage of the notion of attention mech-

anism in the next activity prediction. This means that it is not

only the final hidden state that is involved in the construction

of the context vector, but each single hidden state relating to

a time step is taken into consideration. The use of attention

mechanism for next activity prediction involves attaching

dissimilar degrees of importance to the prefix elements. In

other words, since all the hidden states participate in the

generation of the context vector, each individual hidden state

has to be given its own particular coefficient. A coefficient

represents how much attention the related input must receive.

The architecture of our method for the next activity prediction

is illustrated in Figure 5.

As shown in Figure 4, all input activities are passed through

an embedding layer. Since neural networks operate on real-

valued data, every input must be encoded before it goes to

be processed in the neural network. A method for encoding

Fig. 3. Encoder-decoder sequence to sequence model [28]

.
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Fig. 4. Next event prediction by attention mechanism.

inputs is one-hot encoding, whose dimensions equal the size

of the vocabulary, i.e. the number of unique activity names

in the case of our study. This method occupies a large space.

Therefore, word embedding is used to encode the inputs. This

way, we will have a v × m matrix, where v denotes the

number of activity names and m the size of the embedding

vector. The values in each cell, which are of numeric type,

are trainable. Having gone through the embedding layer, the

input sequences, i.e. partial traces in this study, are sent to the

encoder one at a time and the hidden states of the steps are

created. In the decoding phase, the decoder is not restricted to

only the final hidden state of the encoder, but rather all hidden

states of the encoder are given to an attention layer. It is there

that the decision is made about the coefficients to be assigned

to the individual hidden states and, also, the context vector

is constructed for the decoder. It should be added that the

attention layer is a feed-forward neural network that is trained

together with the encoder and decoder in the training phase.

The importance of each of the hidden states is calculated as

follows:

c =

Tx∑

i=1

aihi (1)

ai = softmax(ei) (2)

ei = V T
a tanh(Wahfinal + Uahi) (3)

, where c represents the context vector and Tx, hi and

hfinal, respectively, denote the number of activities, the hidden

state at the i-th time step and the final hidden state. ai is the

coefficient, that is to say, the attention given to the i-th hidden

state in the construction of the context vector for the decoder.

Note that the sum of the attention coefficients across all the

hidden states equals 1. Wa, Ua, Va are weight matrices, which

must be learned. In machine translation, there are as many

context vectors as the number of output words. However, since

this study aims to predict the next activity, only one context

vector is constructed.

B. Remaining sequence prediction

It is desired to predict the future behavior of the ongoing

trace. This requires knowing what the remaining sequence of

activities in the current case will be. It makes it necessary to

predict all the activities, and not only the immediately next

activity but that will also happen by the end of the case. This

is called the remaining sequence prediction in this paper. In

remaining sequence prediction, the function predicting the next

activity is called repeatedly until the token [EOC] is returned.

In that case, the operation stops, and the generated suffix is

returned as the output.

IV. EVALUATION

The proposed method is experimentally evaluated from two

points of view. The first one aims to find out whether the

attention mechanism leads to improved prediction of next

events. For this purpose, the proposed method is compared

with the method of [15], which is similar in the approach but

does not use the attention mechanism. The other evaluation

seeks to compare the proposed method with state-of-the-art

approaches. This goal is fulfilled by evaluating the proposed

method on various datasets. The datasets used in this paper

are introduced in Section A. Then, the implementation of

the experiments, the metrics used for evaluation, and the

evaluation results are discussed.

A. Datasets

The proposed method is evaluated on 4 different real-life

datasets. The name and specifications of datasets, which come

from different domains are listed in Table I:

B. Preprocessing

In the preprocessing stage, the datasets get prepared for

being fed into the network. The above datasets are of the XES

format and contain the full range of information on their event

logs, part of which is not needed in this study. Since only

the sequences of activities are needed for prediction of next

activities, the other attributes are left out and only the activity

names of the events are retained. The activities involved in

a single case are placed in a single row represented by the

caseID. Prediction of the next activity essentially requires

partial traces. The partial traces gathered from the datasets

are required to be of the minimum length of 5, which is the

TABLE I
DATASET SPECIFICATION

Dataset #Case #activities
Min
case
length

Max
case
length

Avg case
length

Helpdesk 4580 14 3 15 2.9
BPIC12 13087 24 3 96 15.9
BPIC12W 9658 7 1 74 13.5
BPIC12O 5015 8 3 30 6.8
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minimum length adopted by the other methods in the literature.

This gives us the possibility of comparing our method with

other methods. However, since the sequences in the Helpdesk

dataset are usually short, the minimum length of a sequence

is set to 2 for that dataset. If the length of a case is equal to

or greater than the minimum required length, it is converted

into several sequences. For instance, if the length of a case

is 8, it is converted into three sequences of the lengths of 5,

6, 7, each of which has a particular target activity. To mark

the end of each case, a [EOC] token is appended at the end

of it. Each dataset is split into two training and testing sets.

70% of each dataset is used for training our model and 30%

is allocated to the testing set.

C. Experimental Results

In this section, the results produced by the proposed

method are assessed. As mentioned in the previous section,

the proposed method deals with the prediction of both the

next activity and the remaining sequence. The evaluation of

the quality of the predictions, by means of two metrics, is

discussed in the following subsections.

1) Next activity prediction: To evaluate the performance

of the next activity prediction, the accuracy metric is used.

After the model is trained on the training data, 30% of the

data is used for testing. It means that a partial trace is input

to the model and the next activity predicted by the model

is compared with the ground-truth. The number of correct

predictions is divided by the total number of sequences in

the testing set. In Table II, the proposed method is compared

with the other methods in terms of how well they carry out

the next activity prediction in the four datasets.

Table II suggests that the proposed method outperforms

the methods presented by [11], [15] and [16] in the case of

the datasets BPIC12 and Helpdesk. Nevertheless, it underper-

forms [17] for the same datasets. It should be noted that, when

encoding events, the other methods, except [15], enrich the

feature vector with a variety of attributes, including resource,

timestamp, etc. However, in the next activity prediction, this

paper, as well as [15], relies only on activity name and

excludes the other attributes of events. In order to evaluate

the effect of attention mechanism, the proposed method must

be compared with the baseline method of [15], which includes

only activity name. As demonstrated, for all datasets, attention

mechanism, which is used in the proposed method, leads

to much better results in comparison with baseline. Even

considering the exclusion of the attributes other than activity

name, the proposed method still outperforms the other methods

in the case of most datasets.

2) Remaining sequence prediction.: The performance of the

remaining sequence prediction is assessed by the Demerau-

Levinstain (DL) algorithm [29]. DL serves to measure the

distance between two sequences. The idea is to apply as many

editions as needed to the two sequences so that they become

completely identical. The distance between the two sequences

is equated with how many editions are needed for this purpose.

For each of the four editions of insertion, deletion, substitution,

TABLE II
THE ACCURACY OF NEXT ACTIVITY PREDICTION

Dataset
Evermann
et al.
[15]

Tax et
al. [11]

Lin et
al. [17]

Camargo
et al.
[16]

Proposed
ap-
proach

Helpdesk 0.798 0.712 0.916 0.789 0.833
BPIC12 0.788 - 0.974 0.786 0.816
BPIC12W 0.658 0.760 - 0.778 0.723
BPIC12O 0.836 - - - 0.839

TABLE III
THE AVERAGE SIMILARITY BETWEEN THE PREDICTED REMAINING

SEQUENCES AND THE REAL SEQUENCES OBSERVED IN THE DATASETS

Dataset
Evermann
et al.
[15]

Tax et
al. [11]

Lin et
al. [17]

Camargo
et al.
[16]

Proposed
approach

Helpdesk 0.742 0.767 0.874 0.917 0.965
BPIC12 0.110 - 0.281 0.632 0.703
BPIC12w 0.297 0.353 - 0.525 0.446

and transposition, penalty points are considered. Scaling the

final calculated point by the maximum sequence length yields

the quantified distance between the two sequences, i.e. the

predicted sequence and the real-life sequence in the dataset.

Subtracting this from unity yields the degree of similarity

between the two sequences. The calculations are carried out

as follows.

Sim(s1, s2) = 1− DL(s1, s2)

max(len(s1), len(s2))
(4)

Once a sequence is predicted through the proposed method,

it is compared, in pairs, with any real-life sequences that

start with the partial trace and the pairwise similarities are

determined. The highest degree of similarity is taken into

account for the particular partial trace in question. The mean

value of the similarities over the entire range of the predicted

sequences provides the average similarity between the pre-

dicted remaining sequence and the ground-truth.

As shown in Table III, the proposed approach outperforms

all of the state-of-the-art methods. However, it underperforms

the approach by Camargo et al. [16] in the case of BPIC12W.

V. CONCLUSION AND FUTURE WORK

This study improved LSTM with attention mechanisms to

predict the future behavior of a running case. The idea was

derived from Natural Language Processing, and in particular,

Neural Machine Translation. The problem with LSTM is that

it fails to remember the past in long sequences and misses

information. Since sequences of operational processes are

usually long, LSTM leads to low accuracy of prediction.

The attention mechanism is a solution to this problem. The

rationale behind the attention mechanism is that all-time steps

are not equally significant for prediction of the future behavior

of a partial trace and some of them must be given more

attention. Thus, for instance, sometimes only a couple of

activities located at the end of a partial trace are needed while,
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on some occasions, an activity appearing in the middle of a

partial trace receives attention.

The evaluation of the proposed method revealed that, due

to the event logs containing long sequences, the attention

mechanism leads to more accurate predictions of the future

behavior of a running case. Prediction of the remaining se-

quence, in particular, is an area in which the proposed method

outperforms, by a margin, the state-of-the-art.

This study, in contrast to the methods forming the basis

of comparison, considers only the activity name of an event

and excludes the other attributes for prediction of the future

behavior of a running case. Nevertheless, taking such valuable

information as the resource, timestamp, and even the location

of an event can improve prediction. In addition, including a

timestamp in the feature vector makes it possible to predict

the next timestamp and the remaining cycle time. Thus,

we will attempt to create a new method for encoding all

attributes of an event and applying attention mechanisms

to the prediction of any attribute and not only the activity

name of an event. Also, since the proposed method adds an

attention layer to LSTM, training time gets longer. Therefore,

it is necessary to carry out an evaluation from the viewpoint

of time, as well. Finally, we will evaluate the proposed

method for more datasets.
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