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Abstract
Color vegetation indices enable various precision agriculture applications by transforming 
a 3D-color image into its 1D-grayscale counterpart, such that the color of vegetation pixels 
can be accentuated, while those of nonvegetation pixels are attenuated. The quality of the 
transformation is essential to the outcomes of computational analyses to follow. The objec-
tive of this article is to propose a new vegetation index, the Elliptical Color Index (ECI), 
which leverages the quadratic discriminant analysis of 3D-color images along a normalized 
red (r)—green (g) plane. The proposed index is defined as an ellipse function of r and g 
variables with a shape parameter. For comparison, the ECI’s performance was evaluated 
along with six other indices, by using 240 color images as a test sample captured from 
four vegetation species under different illumination and background conditions, together 
with the corresponding ground-truth patterns. For comparative analysis, the receiver oper-
ating characteristic (ROC) and the precision–recall (PR) curves helped quantify the over-
all performance of vegetation segmentation across all of the vegetation indices evaluated. 
For a practical appraisal of vegetation segmentation outcomes, this paper applied Gaussian 
filtering, and then the thresholding method of Otsu, to the grayscale images transformed 
by each of the indices. Overall, the test results confirmed that ECI outperforms the other 
indices, in terms of the area under the curves of ROC and PR, as well as other performance 
metrics, including total error, precision, and F-score.
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Introduction

Effective weed control in precision agriculture (PA) requires the spraying of herbicides 
to be precisely targeted at the weed-covered spots at the right time (Wong et  al. 2014). 
The continued increases in crop loss due to weeds and crop diseases further warrant active 
weed control. To that end, precise detection of weeds on agricultural fields is vital to iden-
tifying target spots for concentrated herbicides application. In contrast, a failure with pre-
cise weed detection may cause herbicides to be wasted in the field, further damaging the 
biophysical strength of crops and environment. Therefore, weed control has been an impor-
tant issue in PA (Wobbecke et al. 1995; Burgos-Artizzu et al. 2011; Hamuda et al. 2016; 
Sazbi et al. 2018).

For effective PA applications, including weed control and crop/field status monitoring, 
computer vision is useful to process various agricultural field images. A typical image may 
include multiple vegetation species in a mix of crop plants and weeds, under variable back-
ground conditions. Weed detection based on computer vision requires a series of image 
processing operations, namely image acquisition, vegetation segmentation, feature extrac-
tion, and classification of vegetation species.

The detection of vegetation in a digital field image is the very first step to discriminate 
weeds from crops, and color vegetation indices (CVIs) are typically used to take advan-
tage of the inherent color properties of green vegetation. A CVI is defined as a mathe-
matical function of red (R), green (G), and blue (B) values in a color pallet (or their nor-
malized values denoted by r, g, and b for each image pixel). Proposed CVIs abound in 
the literature; ones cited frequently include Excess Green Index (ExG) (Woebbecke et al. 
1995), Excess Red Index (ExR) (Meyer and Neto 2008), Green Leaf Index (GLI) (Lou-
haichi et al. 2001), Hue (Cheng et al. 2001), Color Index of Vegetation Extraction (CIVE) 
(Kataoka et al. 2003), Modified Excess Green Index (MEGI) (Mao et al. 2003), Normal-
ized Green–Red Difference Index (NGRDI) (Hunt et  al. 2005), Vegetation Index (VEG) 
(Hague et al. 2006), Excess Green minus Red Index (ExGR) (Meyer and Neto 2008), and 
more recently, Combined Indices (COM) (Guijarro et  al. 2011 (COM1); Guerrero et  al. 
2012 (COM2)), Modified ExG (MExG) (Burgos-Artizzu et al. 2011), Modified Green Red 
Vegetation Index (MGVRI) (Bendig et  al. 2015), and Red Green Blue Vegetation Index 
(RGBVI) (Bendig et al. 2015). By applying a CVI, a color field image of RGB channels 
is converted to a single dimensional grayscale image, where vegetation colors are high-
lighted. Then, vegetation segmentation can be facilitated by classifying pixels of interests 
through thresholding the grayscale image, grouping equally classified pixels, and post-
processing, such as morphology operations on the pixel groups. One of the well-known 
thresholding algorithms is the Otsu method (Otsu 1979).

A large body of research on vegetation segmentation has relied on this simple trans-
formation, either by using a single CVI or combination of the CVIs. The CVIs frequently 
used in vegetation segmentation studies include CIVE (Tosaka et al. 1998), ExG (Suh et al. 
2018), MEGI (Tang et al. 2003), NGRDI (Hunt et al. 2005), VEG (Hague et al. 2006), Hue 
(Hassanein et al. 2018), and ExGR (Neto et al. 2006; Meyer and Neto 2008). For exam-
ple, Suh et  al. (2018) proposed an algorithm for ground shadow detection and removal, 
to discriminate vegetation regions in sugar beet images taken under various illumination 
and weather conditions. This study used the ExG index to obtain grayscale images for 
thresholding.

The quality of vegetation segmentation spreads into the subsequent image processing, 
such as vegetation species classification, because various textural and/or shape features 
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to be used for classification rely on segmented vegetation objects. The high-performance 
requirements of PA applications have stimulated diverse approaches geared towards more 
accurate and faster segmentation (Hamuda et al. 2016). For example, Bai et al. (2014) pro-
posed a segmentation technique to discriminate rice against backgrounds based on the par-
ticle swarm optimization and morphology color modeling for images that are represented 
in the L*a*b* color space, where L, a*, and b* stand for light intensity, the green–red color 
component, and the blue–yellow color component, respectively.

Many comparative studies have revealed the strength and weakness of different CVIs in 
segmentation performance. The CVI-based segmentation can also be used as a reference 
to assess the performance of other segmentation methods (Zheng et  al. 2009, 2010; Yu 
et al. 2013; Bai et al. 2014; Guo et al. 2013; Ye et al. 2015). Table 1 summarizes the per-
formances of the CVIs applied to the segmentation of crops like soybean, rice, and wheat 
from background. No single CVI guarantees best performance across different vegetation 
species.

Generally speaking, the classification of mixed vegetation species (e.g., weeds versus a 
crop) is a more intractable and complex problem, compared with segmentation from back-
ground, due to the high similarities in greenness between the vegetation colors. Only a set 
of classification methods sophisticated enough to handle the variation in greenness among 
vegetation species can be successful. To solve the classification problem, a CVI has often 
been utilized as a first tool to generate a grayscale image that intensifies features of green 
color pixels in the original RGB image. ExG has been the most popular index as a gray-
scale image generator (Nieuwenhuizen et al. 2010; Kazmi et al. 2015; Bah et al. 2018; Suh 
et al. 2018). Shape and/or textural features are then extracted from the grayscale images for 
the classification. Along with (or without) the shape/textural features, some CVIs them-
selves have been used as color features (Golzarian and Frick 2011; Kazmi et al. 2015; Mili-
oto et al. 2018; Sazbi et al. 2018).

For the PA applications in crop status monitoring, such as nutrient contents estima-
tion (Zheng et  al. 2018), and disease spots segmentation (Ma et  al. 2017), some of the 
CVIs have been used to produce useful features. In particular, Ma et al. (2017) proposed a 
comprehensive color feature combining ExR, hue, and b* component of the L*a*b* color 
space for segmenting foliar disease spots from cucumber downy mildew images.

The above literature review shows that diverse CVIs have been proposed and utilized in 
various PA areas, such as vegetation detection or segmentation, classification, disease spot 
segmentation, and even for crop growth/nutrition estimation. It is very clear that the CVIs 
used for a specific application critically affect the application performance. However, most 
of the vegetation indices proposed to date were intuitively or empirically developed by 
focusing on the difference between the green color component and the others of each pixel, 
without any theoretical consideration of CVI function shapes. Therefore, such indices often 
fail to yield robust performance and adaptability to a wide variety of image conditions.

This paper aims to propose and validate a new CVI that exploits theoretically driven 
physical distribution characteristics of green vegetation pixels over a normalized rgb color 
space. To challenge the problems of existing indices (i.e., those developed to serve for nar-
rowly focused image properties or specific image instances, and which thus would yield 
unpredictable and unreliable performance when applied to segmentation), this paper first 
establishes a comprehensive performance evaluation scheme, based on which the proposed 
CVI together with existing ones will be tested. The following three hypotheses are set for 
statistical testing:

H0a The new index will significantly outperform existing indices in terms of segmenta-
tion performance.
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H0b The new index will significantly outperform existing indices in terms of its robust-
ness to the different image properties of background and lighting.

H0c The segmentation accuracy of the new index may significantly vary depending on 
image properties (lighting and background conditions and vegetation species type).

Tables 4, 5, and 10 summarize the results of statistical testing at the 1% significance 
level for  H0a, Table 6 for  H0b, and Tables 7, 8, and 9 for  H0c.

The performance evaluation scheme is formulated based on the following principles: A 
quantitative evaluation based on multiple metrics rather than focusing on a single variable 
is desirable, because it is likely to provide a more balanced perspective over the segmen-
tation performance of CVI. In addition, investigating the systematic relationships among 
those metrics will further guide the choice of appropriate CVI. For generalization, the CVI 
performance needs to be tested over the realistic variability of image properties, including 
different types of vegetation species, background, and lighting conditions. Besides those 
summative performances, index-specific procedures should be carefully examined in terms 
of their benefits, confidence, and limitations.

Following those principles, this paper characterized segmentation performance by using 
the five metrics depicted in Fig. 9 (Accuracy, F-score, Precision, Type-I and -II errors), and 
examined their mutual relationships by using the ROC and PR Curves in Fig. 7. For possi-
ble generalization, this paper used a group of test images that substantially vary in vegeta-
tion species, background, and lighting conditions. For qualitative inspection, the effects of 
setting different shape parameter values and using a smaller number of input images were 
examined in Fig. 6 and Table 3, respectively.

Materials and method

Image data preparation

The dataset consisting of 240 images provided by Golzarian et al. (2012) was used for the 
comparative performance evaluation of the new vegetation index with the existing CVIs. 
The original dataset was created to represent varying field conditions. Images in the dataset 
were captured for the four classes of vegetation species (one crop: wheat, three kinds of 
weed: annual ryegrass, brome grass, and wild oat), the three types of backgrounds (light 
soil, dark soil, and crop residue), and the two types of ambient lighting (sunny and shaded). 
In the “Results and discussion” section of this paper, the distinct combination of the above 
factors is referred to as ‘image groups’. These image groups span 24 (= 4 × 3 × 2) different 
experimental cases, each with 10 image instances. Segmentation performance was evalu-
ated by comparing each test image processed by a CVI with its corresponding ground-truth 
benchmark image. The benchmark (i.e., reference) images were manually created by using 
photo-editing software (Paint Shop Pro, Jasc Software, MN, USA), and further enhanced to 
eliminate noise pixels included in vegetation segments.

Performance measures of vegetation segmentation

In order to assess the vegetation segmentation quality of the CVIs, several quantitative 
measures have been used in the literature. Basically, the segmentation quality indi-
cates how well the targeted vegetation regions are separated from their backgrounds. 
Golzarian et al. (2012) defined Type I and Type II errors as the misclassification error 
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of ground-truth vegetation pixels and that of ground-truth background pixels, respec-
tively. The terminology of quality control for manufactured products can be well 
applied to the two-class classification of vegetation and background. The other meas-
ures used in this paper are all derived from the 2 × 2 confusion matrix of classification 
label versus true class, which consists of true positive (TP), false positive (FP), true 
negative (TN), and false negative (FN). TP is the number of reference vegetation pixels 
correctly segmented as vegetation, while FN denotes that of the remaining reference 
vegetation pixels misclassified as background area. Similarly, TN and FP stand for the 
number of reference background pixels correctly segmented as background area, and 
that of remaining pixels misclassified as vegetation, respectively. Then, segmentation 
quality measures can be calculated in terms of the following equations:

The above metrics summarize different aspects of segmentation quality. For example, Pre-
cision implies the correctness of extracted vegetation pixels, whereas Recall explains how 
well vegetation pixels are detected through the segmentation. For a full appraisal of quality, 
it is desirable to evaluate multiple metrics together, or a combined one, like the F-score. 
Segmentation Accuracy defined by Eq. (4) has often been used in the literature (Yu et al. 
2013; Ahmad et  al. 2018; Hassanein et  al. 2018) as an integrated measure of Sensitiv-
ity and Specificity. However, simply using Accuracy only may mislead the innate perfor-
mance characteristic of a CVI (Provost et al. 1998). Yet, summative metrics could miss an 
important aspect of quality, which graphical methods could complement. Receiver operat-
ing characteristic (ROC) and precision–recall (PR) curves are often useful to comprehen-
sively visualize the segmentation quality when comparing two performance measures vis-
à-vis (Suh et al. 2018). The area-under-the-curve (AUC) has been used to assess how each 
CVI performs over the whole space of either Type I or Type II errors. An AUC value of 1 
implies correct classification of all image pixels. This paper used all of the above measures 
and the two curves to comparatively evaluate the segmentation performance for different 
CVIs in various ways.

(1)Type I error = FN∕(TP + FN)

(2)Type II error = FP∕(TN + FP)

Total error = Type I error + Type II error

(3)Recall = Sensitivity = TP∕(TP + FN) = 1− Type I error

(4)Accuracy = (TP + TN)∕(TP + TN + FP + FN)

Specificity = TN∕(TN + FP) = 1− Type II error

(5)Precision = TP∕(TP + FP)

(6)F − score (Harmonic Mean) = 2 × Precision × Recall∕(Precision + Recall)
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Visualization of CVI behavior

Golzarian et al. (2012) presented a geometric scheme to visualize the behavior of a CVI based 
on the rg plane, where every RGB triplet of each pixel in a color image is projected onto a 
2-dimensional triangular space. The rg plane projection is essentially a part of the normaliza-
tion process, which is made as follows (Gee et al. 2008):

where, Rn = R∕Rmax, Gn = G∕Gmax , and Bn = B∕Bmax Practical values of  Rmax,  Gmax, and 
 Bmax may depend on the hardware features of camera used for image acquisition, and are 
typically all set to 255 s for 8 bit-color intensity images. It follows that,

If both r and g values are known, b can always be derived from Eq. (7) as a simple lin-
ear function. Thus, a 3D rgb space is reduced to the corresponding 2D rg space, which 
facilitates the interpretation of CVIs’ behaviors considering only a pair of r and g varia-
bles. Another advantage of this normalization is to diminish the difficulties associated with 
handling illuminance variability in a field image under variable ambient lights. On the rg 
space, some of the aforementioned CVIs of interest are represented as follows:

Vegetation segmentation using the above CVIs requires setting a threshold value, T, to dis-
criminate the vegetation pixels of interest from background, as follows:

Then, solving for g in the equation,

r = Rn∕
(
Rn + Gn + Bn

)
, g = Gn∕

(
Rn + Gn + Bn

)
, b = Bn∕

(
Rn + Gn + Bn

)

(7)r + g + b = 1

ExG = 2g− r− b = 3g−1

ExR = 1.4r−g

ExGR = ExG − ExR = 4g−1.4r−1

NGRDI = (g−r)∕(g + r)

CIVE = − 0.811g + 0.441r + 0.385b + 18.78745 = −1.196g + 0.056r + 19.17245

VEG = g∕r0.667(1−r−g)(1−0.333)

COM1 = 0.25ExG + 0.3ExGR + 0.33CIVE + 0.12VEG

= 4.25532g− 0.40152r + 5.77691 + 0.12g∕r0.667(1−r−g)0.333

Hue = tan−1((g−b)∕(2r−g−b)) = tan−1((2g + r−1)∕(3r−1))

(8)
Pixel (r, g) = vegetation if CVI(r, g) ≤ (or ≥)T; Otherwise, Pixel (r, g) = background

CVI(r, g) = T forTmin ≤ T ≤ Tmax
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gives g = f(r, T), a function of r and T, by which a separation of vegetation versus back-
ground is made. Hue is an exceptional CVI having two different threshold values (T1, T2) 
for the separation, such that only the pixels in-between the two are classified as vegetation. 
Figure 1 illustrates the behaviour of two typical CVIs, ExGR and VEG, which show that 
each of the CVI functions serves as a boundary curve that, as the threshold value increases, 
moves upward.

Figure 2 demonstrates a real-world example of vegetation segmentation using ExGR. 
The pixel-wise distribution of vegetation and background regions (Fig.  2d) is shown, 
together with the reference image (Fig. 2b) of manually extracted vegetation (wheat) from 
the raw image (Fig. 2a), the vegetation image segmented by a threshold value, T =  − 0.228 
(Fig. 2c), and the histogram of the number of pixels against the gray level in the ExGR 
grayscale image normalized in the range (0, 255) (Fig. 2e). The visual analogies of Fig. 2d 
and e show that the separation of vegetation and background on the rg plane with the 
threshold line, ExGR =  − 0.228, is equivalent to setting the threshold value along the cor-
responding 1-dimensional gray level at 

∼

T  =104 (Fig. 2e). The segmented vegetation area 
contains some of the background pixels, while some of the ground-truth vegetation pixels 
are misclassified as background, which accounts for classification errors.

A new CVI—the elliptical color index (ECI)

Most of the CVIs reviewed here define their functions without considering the property of 
pixel distributions. For example, ExG merely adds the two-color-component differences, 
g–r and g–b, which ends up amplifying greenness (g) in vegetation objects. All linearly 
formulated CVIs have empirically defined functions, whereas CIVE, COM1, COM2, and 
MExG were established based on data analysis.

A CVI plays the role of a boundary curve separating the whole triangular region in the 
rg plane into two parts, a vegetation region and a background one, as illustrated in Fig. 3, 
where the random distributions of ground-truth vegetation pixels and background pixels are 
presented for illustration. Depending on the type of CVIs, as the threshold value changes, 
the separating curve may move up and down, or rotate through a single point. Pixel distri-
butions of ground-truth vegetation and background will differ for different images. Then, 
the problem of interest is to find the optimal form of the curve, which is a typical classifica-
tion problem with two classes.

Fig. 1  Moving directions of 
ExGR and VEG as the threshold 
value increases
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VEG = 3.0

ExGR = -0.204

v2

v1
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For implementation simplicity and interpretability, linear CVIs are often the first choice 
for practical image segmentation. If an image data reveals clear linear separability between 
the two classes, they can be the best empirical choice. However, image data in practice 

(a)

(b)

Plant pixels
Background pixels
Pixels overlapped by plant 
and background

Plant Region

Background Region

ExGR = -0.228

(c)

(d)

(e)
Gray Level

Fig. 2  An example of vegetation segmentation using ExGR: a An RGB image, b Reference image of wheat, 
c Segmented plant with T =  − 0.228, d Pixel distribution with the ExGR line for T = − 0.228, e Histograms 
of vegetation and background pixels

Fig. 3  A schematic of the bound-
ary curve dividing the triangular 
area into vegetation and back-
ground regions

10
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g

r

Background 
Region

Boundary  Curve

Vegetation pixels
Background pixels

Vegetation 
Region
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usually shows complex data structures that are far from being linearly separated. In this 
regard, this paper proposes a new quadratic type of CVI based on discriminant analysis 
(Tharwat 2016), which is superior in discriminating such complex image data. Discrimi-
nant analysis has an advantage as a classifier over other sophisticated ones, like random 
decision forest and artificial neural network, in that it can provide a clear form of the math-
ematical boundary function, called a decision boundary, between every pair of classes. A 
discriminant analysis algorithm maximizes the likelihood that an item to be classified is 
assigned to its ground-truth class. The likelihood is represented as a posterior probability 
in the form of a conditional probability density function based on the Bayes rule. Let x be 
a random-variable vector consisting of m features defined for an individual object to be 
labeled as class ci, (i = 1, …, nc). The posterior probability that x belongs to class i will be 
expressed as:

where P(ci) is the prior probability density function of ci. Assuming the normality (i.e., a 
Gaussian distribution) of P(x|ci) with mean and covariance matrix being μi and Σi, respec-
tively, gives:

 Then, the discriminant function for class i is defined by:

 where ln denotes the natural logarithm. For convenience of calculation, ignoring P(x) due 
to the independence among classes yields:

 The decision boundary between classes i and j becomes a hyper plane separating the two 
classes, and is expressed as the difference between the two discriminant functions:
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same covariance matrix, i.e., Σi = Σj, the quadratic term disappears, and thus the decision 
boundary reduces to a simple linear function, like the linear CVIs. However in practical 
applications, this condition is rarely satisfied, since background pixels tend to be scattered 
to much larger areas than those of vegetation pixels, as Fig. 2d illustrates.

Now, consider a simple, two-class classification, where an individual item is character-
ized by two different feature measurements. The vegetation segmentation problem is an 
instance of this, in that there are the two classes of vegetation pixels and non-vegetation 
(background) ones, and each pixel is color-coded with r and g values. In this case, a deci-
sion boundary curve becomes a quadratic function of r and g with coefficients, dk (k = 1, 
…, 6):

 The covariance matrix of class i (i = 1, 2), is a 2 × 2 matrix:

 where  σ2
i,j

 = variance of measurement j (j = 1, 2), for class i, and σi,12 = σi,21 = covariance 
of measurements 1 and 2 for class i. The covariance of the vegetation pixels and that of 
the background ones for all of the 240 test images were found to be σ1,12 = 0.00023 and 
σ2,12 = -0.00298. Based on these small covariance values, zero covariance is assumed for 
both classes, which results in the diagonality of the covariance matrices. Then, the term 
‘d3gr’ in Eq. (9) can be deleted; and therefore, B(x) reduces to the following elliptical form, 
which is more tractable and easier to predict and visualize its behavior, as follows:

 It should be noted that d3 in Eq. (10) will be further removed and absorbed into the thresh-
old value, T, when the decision boundary is used for segmentation using the following 
equation:

 Consequently, the resulting B(x) becomes an ellipse curve. Motivated by this elliptical 
form of decision boundary, this paper proposes a CVI that is defined as an ellipse with 
three control parameters, g0, r0, and d:

 This index has an advantage over other quadratic CVIs, such as (g–r)(g–b) presented by 
Golzarian and Frick (2011), in that only a single vegetation region can be uniquely deter-
mined for a given threshold value.

With variations in the location of the center point (r0, g0) and the shape parameter d, a 
segmented vegetation region may fluctuate with the shape of the boundary curve, which 
provides flexibility in classification decision. However, in this paper, (r0, g0) is simply set 
to be (1, 0), and thus ECI reduces to:

(9)B(x) = d1g
2 + d2r
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The remaining control parameter d defines the shape of the ECI curve. As the value of d 
decreases, the curve becomes flat; and therefore, the center part of the curve approaches a 
straight line.

Besides the advantage of ECI over other quadratic CVIs, ECI also excels linear CVIs in 
terms of misclassification rate. Figure 4 illustrates a background-region segmentation by 
ECI with d = 0.16, compared with the segmentation by using CIVE, against the ground-
truth background pixel distribution obtained from a representative sample image averag-
ing over 240 images. Since a misclassification rate (of incorrectly classifying true vegeta-
tion pixels as background) is subject to a specified threshold value, this comparison set 
the value identical for both CVIs, and for visual simplicity of the figure, the ground-truth 
vegetation regions are not shown. The figure confirms that because of the elliptical form 
of the ECI curve, the segmentation by ECI encloses a larger area of true background pixel 
distribution than the linear-type CVIs, such as CIVE (observed by the area of the distribu-
tion under the curve). This superior separating behavior of ECI may be able to lower the 
misclassification rate, compared with other linear CVIs.

A procedure to determine the optimal shape parameter value

Varying the shape parameter d in ECI defines different curves by which vegetation seg-
mentation is to be performed. Suppose that Type II error has to be minimized, while meet-
ing a specified target value of Type I error. This implies that the incorrect classification 
of background pixels as vegetation is minimized, while constraining Type I error to be no 
greater than a target value. Because the ECI curve divides the triangular region in the rg 
plane into two regions, as illustrated in Fig. 3, a vegetation region and a background one, 
the shape of the curve critically affects the segmentation performance. Therefore, careful 
selection of d in ECI contributes to enhancing the performance. Figure 5 shows a flow dia-
gram of the simple procedure to determine the optimal value of d proposed in this paper. 
Each step of the procedure is as follows:

Step 1 For a set of images to be analyzed, classify the entire images into a set of dis-
tinct groups. The distinct features may come from such differences as illumination inten-
sity, image background type, or vegetation species. If there exist other influential features 
that may also affect the segmentation quality, further breakdowns of the image groups are 
recommended. An appropriate hierarchy of image groups can be determined based on a 
specific application.

Fig. 4  An illustration of back-
ground region segmentation 
by using ECI and CIVE for the 
ground-truth background pixel 
distribution averaged over 240 
images

ECI = (r-1)2 + g2/0.16 = 1.563

g

r

Vegetation
Region

Background 
Region

CIVE

Background Pixel 
Distribution 
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Step 2 For each of the groups in the hierarchy, select a few prototypical images that 
best represent a group; and then prepare the corresponding benchmark images that mark 
ground-truth vegetation areas for reference. The benchmark images can be created by using 
a series of simple image-processing techniques. First, each of the representative images is 
transformed to a grayscale image by applying any one of the existing CVIs, like ExGR or 
ExG. Then the Otsu thresholding method is applied to the grayscale image, to discriminate 
the vegetation pixels from the background of the image. After this binarization, some mor-
phology operations, such as opening and closure, are carried out to reduce noisy pixels, 
and to fill in empty parts of the vegetation segments, respectively. Final benchmark images 
will be obtained with some manual amendments, if necessary.

Step 3 Set the target value of Type I error for the segmentation performance.
Step 4 For each one of the representative images, find the optimal value of d that mini-

mizes Type II error, while meeting the target value of Type I error. For this process, any 
search technique that ensures the exploration of the whole region of threshold value defined 
by Eq. (11) can be used.

Step 5 Establish the table of optimal d values for all of the groups. If there is more than 
one representative image in each group, use the average of d values found for all of the rep-
resentative images included in the group.

Methods for performance comparison

Comparison using ROC and PR curves

To generate a ROC curve, for each value of Type I error (or Type II error) set in the range 
(0 to 1), the corresponding Type II error (or Type I error) shall be determined. Following 
the procedure described in the previous section, for each level of Type I error, the optimal 
shape parameter values were obtained for all of the 24 (= 2 illumination types × 3 back-
ground types × 4 vegetation species) groups. For each group, only one representative image 
was chosen to estimate the shape parameter value, while the remaining 9 images were used 
for performance testing (note: There are 10 image instances for a distinct group, see the 

Fig. 5  A flow diagram of the 
procedure to determine the opti-
mal shape parameter values for a 
given image set

Classify Images

Prepare representative 
images

Set the target value 
of Type I error

For each representative image,
determine the optimal value of d to 
minimize Type II error for a given 

target Type I error 

Establish the table of 
optimal d values for all 

image groups
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“Image data preparation” section). The reason for using only a single representative image 
will be backed up by the experimental result described in the “Results and discussion” Sec-
tion. In order to get each of the shape parameter values of the 6 (= 2 illumination types × 3 
background types) groups, 4 parameter values found respectively from 4 vegetation species 
for the corresponding group were averaged.

Now, suppose that a grayscale image has been obtained by applying the ECI to a 3D 
color image with the parameter value found by using the shape parameter determination 
procedure. Then, for a given value of T, both Type I error and Type II error can be sim-
ply calculated under the classification rule expressed in Eq. (8) by using Eqs. (1) and (2), 
respectively. Once the ROC curve has been constructed, the corresponding AUC value 
can be computed by simple interpolation. In order to evaluate the vegetation segmentation 
quality of the proposed ECI, its AUC value was compared with those of the 7 well-known 
CVIs: COM1, ExGR, ExG, Hue, CIVE, NGRDI, and VEG. The PR curves were also gen-
erated by using Recall and Precision values calculated for each set value of Type I error.

Comparison for segmentation

Through the examination of the ROC and PR curves, the ECI’s overall innate properties in 
pixel classification will be observed. In addition, the ECI performance will be investigated 
as compared with other CVIs when applied to vegetation segmentation using the threshold-
ing method of Otsu. Such an index-based segmentation has long been used in a variety of 
PA applications in the literature (Meyer and Neto 2008; Kazmi et al. 2015; Hamuda et al. 
2016; Zhang et al. 2018; Suh et al. 2018). The first step of the index-based segmentation 
is to convert a 3D-color image to a grayscale image by applying a CVI. The next step is to 
smooth the grayscale image with a 19 × 19 Gaussian filter, and then binarize the smoothed 
image using the Otsu thresholding method. The final image is obtained by applying some 
posterior image-processing operations, such as expanding segmented parts, and filling in 
apertures to the binarized image. For simplicity, in this paper, no post-processing is con-
ducted once the binarized image is obtained.

Meyer and Neto (2008) proposed ExGR for a CVI that has a fixed, built-in zero thresh-
old, so that no thresholding method for binarization is needed. However, using ExGR with 
the fixed threshold of zero had to be dropped, because it created severe under-segmentation 
results for most of the test images used in this paper; over 35% of Type I errors on average, 
which is not acceptable in most applications. Alternatively, the Otsu method was applied 
to the indexed grayscale images, much the same way as other CVIs. Hue index was not 
considered either, since it requires at least two thresholds for binarization. For each of the 
CVIs chosen for comparison, all of the aforementioned performance measures were com-
puted on the binarized test images, and used to evaluate the segmentation performance.

Results and discussion

Determination of the shape parameter value

Most CVIs do not parameterize their functional form along the r and g dimensions. This 
fixed form of the functions is simple to use in practical applications. However, this advan-
tage may quickly diminish with the lack of flexibility in dealing with realistic variations 
of the intensity of illumination, background types, vegetation species, and so on. ECI has 
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a single parameter, d, which allows the transformation of an RGB image to be fine-tuned 
for a specific ambient condition into its grayscale image counterpart. The flexibility in the 
functional shape of ECI can potentially offer better segmentation results.

For a specified value of Type I error on a given image, the corresponding Type 
II error obviously depends on the value of the parameter, d, in a systematic manner. 
Therefore, a search to find the optimal value of d that minimizes the Type II error, 
while meeting the target value of Type I error, is necessary. For each specified target 
value of Type I error, an optimal d value of an image was empirically found by apply-
ing Step 4 of the shape parameter value determination procedure. Table 2 summarizes 
the optimal d value averaged over four representative images, each of which represents 
a vegetation species, for each of the illumination and background combination groups. 
Note from the table that as Type I error increases, so does the optimal d value. This 
trend is illustrated for a dark-soil crop image under direct sunlight in Fig. 6, where the 
ECI curve obtained by using the average optimal d value for each of the Type I errors 
of (0.5, 1, 5, and 10) % is depicted. As can be observed in the figure, as the Type I 
error becomes larger, a partial section of the ECI curve approaches a linear curve. This 
observation may support the use of linear CVIs like ExGR, ExG, CIVE, or NGRDI, 

Table 2  The average optimal d 
values of the image groups for 
different type I errors

Image group Type I error (%)

0.5 1 5 10

Sunny
 Light soil 0.40 0.38 0.40 0.44
 Dark soil 0.39 0.44 0.61 0.69
 Crop residue 0.38 0.38 0.48 0.56
 Average 0.39 0.40 0.49 0.56

Shaded
 Light soil 0.46 0.51 0.60 0.65
 Dark soil 0.50 0.56 0.72 0.79
 Crop residue 0.44 0.46 0.57 0.65
 Average 0.47 0.51 0.63 0.70

Fig. 6  ECI curves with the aver-
age optimal d values of different 
Type I errors for a dark-soil crop 
image under direct sunlight

 0.5%

10%

1%
5%

Vegetation  pixels
Background pixels
Pixels overlapped by 
vegetation and background
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only for the cases where large Type I errors are practically allowed. Also, the optimal 
d values for the images taken under shade were far greater than those in sunny areas. 
Finally in general, the dark soil images appear to require larger values of d.

Effect of the number of representative images

A procedure was presented in the “Materials and method” section to determine the opti-
mal shape parameter value for a given set of images. An important step in the procedure 
is to determine the total number of representative images for each image group. Recall 
that for the image dataset used in this study, there are 10 images for each combination 
of illumination and background type, and vegetation species. Some of the 10 images can 
be used to calculate the shape parameter d, and the others for performance testing. This 
section investigates how the segmentation performance changes according to the varia-
tion in the number of representative images in each image group. The numbers consid-
ered for the experiments were set to (1 to 5). The test images of each image group were 
fixed at an arbitrarily selected set of 5 images across all of the experiments.

A practically important region (PIR) of the ROC curve lies in the upper section of the 
curve, where the Type I error is not greater than 10%, and in turn, the sensitivity is not 
less than 90%. The reason for confining the practical importance to under an acceptable 
Type I error is that a large Type I error implies a great missing of vegetation areas from 
field images, which may fatally fail in a segmentation application. Note that the perfect 
segmentation in the overall and the reduced regions will yield the AUC values of (1 
and 0.1), respectively. Table 3 summarizes the AUC values of the experimental results. 
From the table, no significant differences are observed in the overall segmentation per-
formance, counter to the intuition that a larger number of representative images will 
yield better performance. Therefore, to minimize the computational burden and time, 
only a single representative image will be used for the performance evaluation of ECI.

Overall performance evaluation using the ROC and PR curves

For each of the target Type I errors, (0.1, 0.3, 0.7, 0.9, 1, 3, 5, 7, 9, 10, 30, 50, 70, and 
90) %, the average Type II errors of the 216 (= 9 × 24) test images for all of the CVIs 
considered were calculated. The minimum average Type II error was always obtained 
by ECI for each of the target Type I errors. This observation is graphically verified by 
using the ROC curves and their enlarged upper sections (i.e., PIRs) of the eight CVIs, 
as shown in Fig. 7a and b. Table 4 summarizes the AUCs for the CVIs that represent 
overall quantitative performance. For some practically unimportant region (the region 
with unacceptably high Type I error), the PR curve given in Fig. 7c shows that ECI per-
forms slightly lower in Precision than Hue and NGRDI. Overall, ECI outperformed the 

Table 3  AUC values for different 
numbers of representative images

ROC curve Number of representative images

1 2 3 4 5

Overall 0.9915 0.9912 0.9913 0.9912 0.9912
PIR 0.0949 0.0948 0.0948 0.0947 0.0947
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other seven CVIs in the overall and PIR performances, from Table 4 and Fig. 7d. The 
fact that the maximum AUC values for both the ROC and PR curves were guaranteed by 
ECI implies its superior performance over the other CVIs. In addition, the procedure of 
determining the shape factor, d, is validated through the evaluation.

Fig. 7  ROC and PR curves: a ROC curve, b ROC curve for the PIR, c PR curve, and d PR curve for the 
PIR

Table 4  AUC values for the 8 CVIs

Curve ECI COM1 ExGR EXG Hue CIVE NGRDI VEG

Figure 7a 0.9915 0.9858 0.9837 0.9902 0.9882 0.9862 0.9850 0.9607
Figure 7b 0.0949 0.0937 0.0923 0.0942 0.0925 0.0933 0.090 0.0909
Figure 7c 0.8055 0.7129 0.7866 0.7105 0.7918 0.7301 0.7947 0.5216
Figure 7d 0.0713 0.0647 0.0705 0.0611 0.0665 0.0641 0.0636 0.0544
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Statistical and qualitative aspects of performance

Overall comparison of color indices

A detailed evaluation of the CVIs’ performance was carried out by using nonparametric 
statistical tests against the total errors (%) when the Type I error is fixed at 5%. The distri-
bution of all dependent variables (i.e., CVIs) was found to be not normal according to the 
results from the Kolmogorov–Smirnov test, which is the same for all of the experimen-
tal results in this section. Therefore, for analysis and comparison of these variables, the 
non-parametric Friedman test was applied. The test results showed that the segmentation 
qualities of the CVIs were different at the 1% significance level (p < 0.001). Table 5 gives 
the descriptive statistics of these variables, which reveals that ECI gets first place in all 
of the statistics. Also, the results by the Wilcoxon signed rank test shows that there were 
significant differences among all pairs of color indices at the 99% confidence level, except 
for the two pairs, NGRDI vs. COM1 and COM1 vs. CIVE. However, the Friedman test for 
the three indices, NGRDI, COM1, and CIVE, shows a significant difference among them 
(p < 0.001). In particular, ExG and VEG yielded much worse performance than the other 
CVIs. As a result, the overall performance evaluation in terms of the total error for the 
color indices can be summarized as follows:

Figure 8 shows a plant image segmented by each of the 8 color indices for the raw image 
given in Fig. 2a, which illustrates the difference of the segmented plants and the superiority 
of ECI.

Image group based performance comparison

As per the hypothesis  H0b, the behavior of the CVIs is investigated when they are applied to 
the different image groups, each of which takes on distinct background, ambient lighting, 
and their interactions. The results of the Friedman test exhibited that there was a significant 
difference in the segmentation performance of the color indices. Table 6 lists mean total 
errors and mean ranks generated by the color indices. According to the results, ECI was 
found to be the best performing color index in terms of mean rank of total errors for the 

ECI < ExGR < Hue < NGRDI ≤ COM1 ≤ CIVE < ExG < VEG

Table 5  Descriptive statistics of the color indices

Mean Std. deviation Minimum Maximum Percentiles Mean rank

25th 50th 75th

ECI 7.50 3.30 5.20 35.93 5.76 6.54 7.91 2.35
COM1 8.75 4.00 5.42 41.89 6.11 7.46 9.90 4.75
ExGR 7.91 4.59 5.30 38.19 5.82 6.54 7.95 2.66
ExG 10.01 6.03 5.52 56.44 6.25 7.75 11.81 6.74
Hue 9.26 9.10 4.66 92.94 5.90 6.64 9.97 3.62
CIVE 9.06 4.80 5.45 49.39 6.12 7.27 10.33 5.21
NGRDI 11.39 12.32 5.21 95.67 5.76 6.77 11.55 4.02
VEG 11.70 6.04 5.38 41.26 6.70 9.95 15.09 6.65
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cases of ‘sunny’, ‘shaded’, ‘light soil’, ‘dark soil’, ‘sunny light soil’, ‘sunny dark soil’, and 
‘shaded crop residue’. Note that the best values are highlighted in bold for each case in the 
table. On the other hand, the second-best performance was achieved by ECI in some image 
groups of ‘crop residue’, ‘sunny crop residue’, ‘shaded light soil’, and ‘shaded dark soil’. 
However, total errors of ECI and the best performing index, ExGR, for the image groups 
of ‘crop residue’, ‘sunny crop residue’, and ‘shaded light soil’, turned out to be indifferent 
at the 5% level of significance. It follows that ECI was shown to work best, or at least com-
petitively with the best, for all of the 11 cases, except the ‘shaded dark soil’ image group, 
where the best performance was shown by NGRDI.

Effect of lighting condition on ECI

In the following, the effects of three qualitative factors of lighting condition, background 
type, and vegetation species on the segmentation quality of ECI were examined. First of 
all, the non-parametric Mann–Whitney test was performed to find the effect of lighting 
condition on ECI, and Table 7 gives the test results of this test. As can be seen, the lighting 
condition has a significant effect on ECI (p < 0.001), and ECI works better with lower total 
error when the images of vegetation are taken in shaded areas.

Effect of background status on ECI

Table 8 shows the effect of background condition on the segmentation performance of ECI 
that was examined using the non-parametric Kruskal–Wallis test. The background type 
affected the way ECI works (p < 0.001). ECI performed best for images taken from the dark 
soil background, where the contrast of background with vegetation color is the greatest. 
The largest amount of total error occurred when a complex background of crop residue was 
present in images. The results of the Mann–Whitney test showed that there were significant 
differences between each pair of background conditions (p < 0.001), which means that all 
of these conditions affect the ECI performance differently and independently.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8  Plant images segmented by using the color indices: a ECI, b COM1, c ExGR, d ExG, e Hue, f 
CIVE, g NGRDI, and h VEG
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The effect of vegetation species on ECI

The results of the non-parametric Kruskal–Wallis test given in Table 9 reveal that the veg-
etation species affected the performance of ECI differently at the 5% significance level 
(p = 0.018). This color index was able to classify wheat with higher performance (i.e., 
smaller total error) than other vegetation species. The non-parametric Mann–Whitney test 
was used to compare each pair of vegetation species. The results indicate that there was a 
significant difference only between wheat and ryegrass (p = 0.001).

Evaluation for segmentation applications

In this section, following the methods for performance comparison described in the “Mate-
rials and method” section, the performance of the color indices was investigated in actual 
segmentation applications by using the method of Otsu with Gaussian filtering. Figure 9 
displays the overall performance of the 7 CVIs for segmentation. Recall that for the case 
of perfect segmentation, the Accuracy, F-score, and Precision are all 1, whereas Type I and 
Type II errors are 0. Type I and Type II errors are performance indicators that indepen-
dently reflect classification errors. Type I error in this paper is defined as a portion of vege-
tation pixels wrongly classified as background, whereas Type II error is that of background 
pixels misclassified as vegetation. Therefore to get acceptable segmentation results, both 
errors need to be minimized simultaneously. It should be noted that unlike the experiments 

Table 7  Mann–Whitney test results for examining the effect of lighting condition on the total error (%) of 
ECI

Lighting condition Mean Lower quartile Median Upper quartile Mean rank

Sunny 8.46 6.06 7.16 9.34 131.77
Shaded 6.55 5.65 5.97 7.05 85.23

Table 8  Kruskal–Wallis test results for assessing the effect of background conditions on the total error (%) 
of ECI

Background condition Mean Lower quartile Median Upper quartile Mean rank

Light soil 7.25 5.70 6.30 7.36 97.44
Dark soil 6.17 5.60 5.79 6.46 67.38
Crop residue 9.09 7.09 7.93 9.67 160.68

Table 9  Kruskal–Wallis test results for assessing the effect of vegetation species on the total error (%) of 
ECI

Vegetation species Mean Lower quartile Median Upper quartile Mean rank

Wheat 6.634 5.622 6.489 7.168 91.41
Ryegrass 8.041 6.014 7.335 9.421 132.80
Bromegrass 8.216 5.680 6.297 8.254 100.87
Wild oat 7.124 5.812 6.519 7.538 108.93
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for generating the ROC and PR Curves where each Type I value is fixed, and then its asso-
ciated Type II error is determined, here both Type I error and Type II error for an image 
are simultaneously and uniquely set, when the image is segmented by the Otsu method. A 
significant difference in total errors of the CVIs was found at the 1% level of significance 
by using the Friedman test. Table 10 lists the average and standard deviation (SD) of total 
classification errors for each of the CVIs. ECI has the lowest total error and the standard 
deviation as well, which demonstrates the best classification quality among the CVIs con-
sidered in this paper.

Accuracy in Eq. (4) represents the ratio of correctly classified pixels to the total number 
of pixels in an image. Such accuracy measurements often bring about misleading results 
in the performance of VEG, as shown in Fig. 10. Although VEG has the largest accuracy 
value, other performance indices, such as F-score, precision, and Type I error, are worst 
or near worst. In such cases, high accuracy is definitely meaningless. This contradiction 
mainly comes from the large skewness in the pixel class distribution. Actually, the total 
number of vegetation pixels in many test images is much smaller than that of background 
pixels. Therefore, sacrificing Recall (= 1- Type I error) quality excessively so as to confine 
Type II error to a sufficiently low value can lead to a biased, high accuracy. Consequently, 

0.0
0.1
0.2
0.3
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0.6
0.7
0.8
0.9
1.0

ECI COM1 ExGR ExG CIVE NGRDI VEG

Accuracy
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Precision

Type II Error

Type I Error

Fig. 9  Performance comparison for vegetation segmentation

Table 10  Total errors of the CVIs

ECI COM1 ExGR ExG CIVE NGRDI VEG

Average 0.1630 0.5442 0.2952 0.2306 0.2345 0.2974 0.6253
SD 0.2149 0.4266 0.3027 0.2663 0.2735 0.2765 0.4270

        0.3                    0.4                     0.5                    0.6                     0.7    

VEG ECI
ExG
CIVE

COM1

ExGR
NGRDI

Fig. 10  F-score distributions of the 7 CVIs
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care should be taken to use the performance measure in comparative evaluations. Never-
theless, it is noteworthy that except for VEG, the largest average accuracy value was gen-
erated from ECI, and its distribution of the accuracy values was different from that of the 
third ranked index, COM1.

F-score, defined as the weighted harmonic mean of Precision and Recall in Eq. (6), is a 
good alternative to Accuracy, which may overcome the difficulties of skewed class distri-
butions, and thereby can evaluate the overall performance well in an integrated way. ECI 
has the largest F-score and Precision averaged for the dataset. For both performance indica-
tors, there were statistically significant differences between ECI and the second-best color 
index, ExG, at the 1% level of significance. A similar observation was made for Preci-
sion, which represents the correctness of extracted vegetation pixels in Eq. (5). Figure 10 
visualizes the results of the Wilcoxon signed rank test that examines differences among the 
F-score distributions produced by the 7 CVIs. In the figure, statistically indifferent CVIs 
are connected by a bold black bar. The F-score distribution of ECI is significantly different 
from those of the other CVIs at the 1% significance level. On the other hand, the second-
best couple, ExG and CIVE, turns out to have the same distribution. The same is true for 
the couple, ExGR and NGRDI. Finally, in terms of the F-score, VEG and COM1 yielded 
the worst performance.

It follows from the above analysis that for actual vegetation segmentation, the proposed 
index, ECI, was proven to outperform the other CVIs considered in this study, in terms 
of all of the important performance measures, F-score, Precision, and total error. Further-
more, ECI yielded the highest accuracy among the CVIs excluding VEG. Actually, the 
outstanding high accuracy results of VEG were made from excessive misclassification of 
vegetation pixels as background. Therefore, considering all of the above quantitative analy-
ses, it is concluded that ECI is a compelling option for a grayscale image generator in veg-
etation segmentation.

Conclusions

Most of the existing CVI functions are formed intuitively, such that the greenness prop-
erty of vegetation species is overemphasized, without reference to the mathematical logic 
behind vegetation segmentation. On the other hand, the proposed CVI function, ECI, is 
established in a mathematically logical fashion based on the discriminant analysis. The 
function of ECI is represented as an ellipse equation with a shape parameter in the rg plane. 
In order to estimate the parameter, only a single representative image was used for each 
image group. The innate segmentation quality of the 8 CVIs was investigated initially by 
using the ROC and PR curves. The AUC values of the curves produced from the 216 real 
images demonstrated that the proposed color index outperforms the other 7 CVIs. Moreo-
ver, a detailed evaluation of the CVIs for different combinations of the image conditions 
reveals that under most combinations of lighting condition and background type, the ECI 
performance excels compared with those of the other CVIs. For validation of the proposed 
index in practical applications, segmentation quality measures for each of the seven CVIs 
excluding the Hue index were collected by applying the method of Otsu with Gaussian 
filtering to each test image. The results show the superiority of ECI in most performance 
measures, including total error, Precision, and F-score. It is believed from these promising 
results that ECI could be used to handle more delicate vegetation segmentation problems, 
together with advanced classification methods like encoder–decoder convolutional neural 
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networks (Bah et al. 2018; Bosilj et al. 2019) for a high-performance grayscale image gen-
erator that effectively highlights the greenness features of vegetation.

Whenever a new image set is tested, an effective shape parameter value needs to be 
determined such that segmentation quality is maximized. The requirement of this tuning 
process will be a drawback of ECI for actual applications. On the other hand, this disad-
vantage can be interpreted as an advantage, in that it provides adaptability to various image 
environments, such as different luminance intensity and background status, by appropri-
ately varying the value of the shape parameter, d.

References

Ahmad, J., Muhammad, K., Ahmad, I., Ahmad, W., Smith, M. L., Smith, L. N., et al. (2018). Visual fea-
tures based boosted classification of weeds for real-time selective herbicide sprayer systems. Com-
puters in Industry, 98, 23–33.

Bah, M. D., Hafiane, A., & Canals, R. (2018). Deep learning with unsupervised data labeling for weeds 
detection on UAV images. arXiv preprint, arXiv, 1805.12395.

Bai, X. D., Cao, Z. G., Wang, Y., Yu, Z. H., Zhang, X. F., & Li, C. N. (2013). Crop segmentation from 
images by morphology modeling in the CIE L*a*b* color space. Computers and Electronics in Agri-
culture, 99, 21–34.

Bai, X., Cao, Z., Wang, Y., Yu, Z., Hu, Z., Zhang, X., et  al. (2014). Vegetation segmentation robust 
to illumination variations based on clustering and morphology modeling. Biosystems Engineering, 
125(September), 80–97. https ://doi.org/10.1016/j.biosy stems eng.

Barbosa, B. D. S., Ferraz, G. A. S., Gonçalves, L. M., Marin, D. B., Maciel, D. T., Ferraz, P. F. P., 
et al. (2019). RGB vegetation indices applied to grass monitoring: A qualitative analysis. Agronomy 
Research, 17(2), 349–357.

Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., et  al. (2015). Combining UAV-
based plant height from crop surface models, visible, and near infrared vegetation indices for bio-
mass monitoring in barley. International Journal of Applied Earth Observation and Geoinforma-
tion, 39, 79–87.

Bosilj, P., Aptoula, E., Duckett, T., & Cielniak, G. (2019). Transfer learning between crop types for 
semantic segmentation of crops versus weeds in precision agriculture. Journal of Field Robotics. 
https ://doi.org/10.1002/rob.21869 .

Burgos-Artizzu, X. P., Ribeiro, A., Guijarro, M., & Pajares, G. (2011). Real-time image processing 
for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, 75(2), 
337–346.

Cheng, X. H., Sun, Y., & Wang, J. (2001). Color image segmentation: advances and prospects. Pattern 
Recognition, 34, 2259–2281.

Gee, Ch, Bossu, J., Jones, G., & Truchetet, F. (2008). Crop/weed discrimination in perspective agro-
nomic images. Computers and Electronics in Agriculture, 60, 49–59.

Golzarian, M. R., & Frick, R. A. (2011). Classification of images of wheat, ryegrass and brome grass 
species at early growth stages using principal component analysis. Plant Methods, 7, 28–38. https ://
doi.org/10.1186/1746-4811-7-28.

Golzarian, M. R., Lee, M.-K., & Desbiolles, J. M. A. (2012). Evaluation of color indices for improved 
segmentation of plant images. Transactions of the ASABE, 55(1), 261–273.

Guerrero, J. M., Pajares, G., Montalvo, M., Romeo, J., & Guijarro, M. (2012). Support vector machines 
for crop/weeds Identification in maize fields. Expert Systems with Applications, 39, 11149–11155.

Guijarro, M., Pajares, G., Riomoros, I., Herrera, P. J., Burgos-Artizzu, X. P., & Ribeiro, A. (2011). Auto-
matic segmentation of relevant textures in agricultural images. Computers and Electronics in Agri-
culture, 75(1), 75–83.

Guo, W., Rage, U. K., & Ninomiya, S. (2013). Illumination invariant segmentation of vegetation for time 
series wheat images based on decision tree model. Computers and Electronics in Agriculture, 96, 
58–66.

Hague, T., Tillet, N., & Wheeler, H. (2006). Automated crop and weed monitoring in widely spaced 
cereals. Precision Agriculture, 7(1), 21–32.

Hamuda, E., Glavin, M., & Jones, E. (2016). A survey of image processing techniques for plant extrac-
tion and segmentation in the field. Computers and Electronics in Agriculture, 125, 184–199.

https://doi.org/10.1016/j.biosystemseng
https://doi.org/10.1002/rob.21869
https://doi.org/10.1186/1746-4811-7-28
https://doi.org/10.1186/1746-4811-7-28


Precision Agriculture 

1 3

Hassanein, M., Lari, Z., & El-Sheimy, N. (2018). A new vegetation segmentation approach for 
cropped fields based on threshold detection from hue histogram. Sensors, 18(4), 1253. https ://doi.
org/10.3390/s1804 1253.

Hunt, E. R., Cavigelli, M., Daughtry, C. S. T., McMurtrey, J. E., & Walthall, C. L. (2005). Evaluation 
of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. 
Precision Agriculture, 6, 359–378.

Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system using machine 
vision. In Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent 
Mechatronics (pp 1079–1083).

Kazmi, W., Garcia-Ruizb, F., Nielsenb, J., Rasmussen, J., & Andersen, H. (2015). Detecting creeping 
thistle in sugar beet fields using vegetation indices. Computers and Electronics in Agriculture, 112, 
10–19.

Lee, K.-J., & Lee, B.-W. (2011). Estimating canopy cover from color digital camera image of rice field. 
Journal of Crop Science and Biotechnology, 14(2), 151–155.

Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photogra-
phy for documentation of grazing impacts on wheat. Geocarto International, 16, 65–70.

Ma, J., Du, K., Zhang, L., Zheng, F., Chu, J., & Sun, Z. (2017). A segmentation method for greenhouse 
vegetable foliar disease spots images using color information and region growing. Computers and 
Electronics in Agriculture, 142, 110–117.

Mao, W., Wang, Y., & Wang, Y. (2003). Real-time detection of between-row weeds using machine 
vision. In ASAE Paper No. 031004, Las Vegas, Nev., USA.

Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated crop imaging 
applications. Computers and Electronics in Agriculture, 63, 282–293.

Milioto, A., Lottes, P., & Stachniss, C. (2018). Real-time semantic segmentation of crop and weed 
for precision agriculture robots leveraging background knowledge in CNNs. In Proceedings of 
IEEE Internationall Conference on Robotics and Automation (ICRA) (pp. 2229–2235). Brisbane, 
Australia.

Neto, J. C., Meyer, G. E., & Jones, D. D. (2006). Individual leaf extractions from young canopy images 
using Gustafson-Kessel clustering and a genetic algorithm. Computers and Electronics in Agricul-
ture, 51, 66–85.

Nieuwenhuizen, A. T., Hofstee, J. W., & van Henten, E. J. (2010). Adaptive detection of volunteer potato 
plants in sugar beet fields. Precision Agriculture, 11, 433–447.

Otsu, N. (1979). A threshold selection method from gray-level histogram. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 9(1), 62–66.

Provost, F., Fawcett, T., & Kohavi, R. (1998). The case against accuracy estimation for comparing induc-
tion algorithms. In Proceedings of the 15th International Conference on Machine Learning (San 
Francisco, USA) (pp. 445–453).

Rico-Fernández, M. P., Rios-Cabrera, R., Castelán, M., Guerrero-Reyes, H.-I., & Juarez-Maldonado, A. 
(2019). A contextualized approach for segmentation of foliage in different crop species. Computers 
and Electronics in Agriculture, 156, 378–386.

Sazbi, S., Abbaspour-Gilandeh, Y., & Garcia-Mateos, G. (2018). A fast and accurate expert system for 
weed identification in potato crops using metaheuristic algorithms. Computers in Industry, 98, 
80–89.

Suh, H. K., Hofstee, J. W., & van Henten, E. J. (2018). Improved vegetation segmentation with ground 
shadow removal using an HDR camera. Precision Agriculture, 19, 218–237.

Tang, L., Tian, L., & Steward, B. L. (2003). Classification of broadleaf and grass weeds using Gabor 
wavelets and an artificial neural network. Transactions of the ASAE, 46(4), 1247–1254.

Tharwat, A. (2016). Linear vs quadratic discriminant analysis classifier: A tutorial. International Jour-
nal of Applied Pattern Recognition, 3(2), 145–180.

Torres-Sánchez, J., Peña, J. M., de Castro, A. I., & López-Granados, F. (2014). Multitemporal mapping 
of the vegetation fraction in early-season wheat fields using images from UAV. Computers and 
Electronics in Agriculture, 103, 104–113. https ://doi.org/10.1016/j.compa g.2014.02.009.

Tosaka, N., Hata, S., Okamoto, H., & Takai, M. (1998). Automatic thinning mechanism of sugar beets 
(part 2). Journal of JSAM, 60(2), 75–82.

Woebbecke, D., Meyer, K., & Mortensen, D. (1995). Color indices for weed identification under various 
soil, residue and lighting conditions. Transactions of the ASAE, 38, 259–269.

Wong, W. K., Chekima, A., Mariappan, M., Wee, C. C., Khoo, B., & Nadarajan, M. (2014). Genetic 
Algorithm optimization and feature selection for a support vector machine weed recognition system 
in Malaysia at critical stage of development. World Applied Sciences Journal, 30, 1953–1959.

https://doi.org/10.3390/s18041253
https://doi.org/10.3390/s18041253
https://doi.org/10.1016/j.compag.2014.02.009


 Precision Agriculture

1 3

Ye, M., Cao, Z., Yu, Z., & Bai, X. (2015). Crop feature extraction from images with probabilistic super-
pixel Markov random field. Computers and Electronics in Agriculture, 114(June), 247–260. https ://
doi.org/10.1016/j.compa g.2015.04.010.

Yu, Z., Cao, Z., Wu, X., Bai, X., Qin, Y., Zhuo, W., et al. (2013). Automatic image-based detection tech-
nology for two critical growth stages of maize: Emergence and three-leaf stage. Agricultural and 
Forest Meteorology, 174–175, 65–84.

Zhang, X., Li, X., Zhang, B., Zhou, J., Tian, G., Xiong, Y., et  al. (2018). Automated robust crop-row 
detection in maize fields based on position clustering algorithm and shortest path method. Comput-
ers and Electronics in Agriculture, 154, 165–175.

Zheng, H., Cheng, T., Li, D., Zhou, X., Yao, X., Tian, Y., et al. (2018). Evaluation of RGB, color-infra-
red and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen 
accumulation in rice. Remote Sensing, 10, 824. https ://doi.org/10.3390/rs100 60824 .

Zheng, L., Shi, D., & Zhang, J. (2010). Segmentation of green vegetation of crop canopy images based 
on mean shift and Fisher linear discriminant. Pattern Recognition, 31, 920–925.

Zheng, L., Zhang, J., & Wang, Q. (2009). Mean-shift-based color segmentation of images containing green 
vegetation. Computers and Electronics in Agriculture, 65, 93–98.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.compag.2015.04.010
https://doi.org/10.1016/j.compag.2015.04.010
https://doi.org/10.3390/rs10060824

	A new color index for vegetation segmentation and classification
	Abstract
	Introduction
	Materials and method
	Image data preparation
	Performance measures of vegetation segmentation
	Visualization of CVI behavior
	A new CVI—the elliptical color index (ECI)
	A procedure to determine the optimal shape parameter value
	Methods for performance comparison
	Comparison using ROC and PR curves
	Comparison for segmentation


	Results and discussion
	Determination of the shape parameter value
	Effect of the number of representative images
	Overall performance evaluation using the ROC and PR curves
	Statistical and qualitative aspects of performance
	Overall comparison of color indices
	Image group based performance comparison
	Effect of lighting condition on ECI
	Effect of background status on ECI
	The effect of vegetation species on ECI

	Evaluation for segmentation applications

	Conclusions
	References




