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Abstract: In this article, we develop an economic production quantity (EPQ) 
model subject to process deterioration, machine breakdown and two types of 
repair, and study the influence of purchasing strategy on the system’s expected 
total cost, as an alternative option to holding safety stock. It is obvious that the 
shortages may occur due to the prolonged repair time. To avoid this issue, we 
assume that the manufacturer could purchase some quantities from an available 
supplier with fixed non-zero lead-time. This paper addresses the following 
question: how much production lot size and purchasing lot size are required to 
minimise the expected total cost? The model is developed under general 
machine breakdown and repairs time distributions. The optimality of the model 
under exponential failure and exponential repair times are studied. For the 
numerical example, we illustrate the outcome of the proposed model and 
perform a sensitivity analysis on parameters, which directly influence optimal 
decisions. 
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1 Introduction 

Considering the importance that manufacturers place on responding to customers’ needs 
in today’s world of trade, and organisations’ efforts to keep up their credit and service 
level in the supply chain, process deterioration during the production run is one of the 
important challenges facing economic production quantity (EPQ) systems. Process 
deterioration is manifested as a decrease in production rate, the production of defective 
items or machine breakdown. In this situation, management is forced to deviate from 
production planning. Classic EPQ models ignore process deterioration and machine 
breakdown during the production run and implicitly assume that all items continue to be 
produced perfectly; hence the inconsistency between models and practical situations. 
Usually, production systems deteriorate with age or use undergoing fatigue and corrosion 
(Chakraborty and Giri, 2012). In such situations, it is usually assumed that the production 
process shifts from an ‘in-control’ state to an ‘out-of-control’ state at any random time 
and the machine starts to produce some defective items (Prakash et al., 2013). If 
inspections exist in such systems, production of defective items continues until the  
‘out-of-control’ state is discovered by inspectors, otherwise, this situation continues until 
the end of the production run or machine breaks down. In real-life production systems, 
different approaches such as preventive maintenance, holding safety stock and after sales 
service are employed to deal with system unreliability. For the last three decades, the 
majority of researchers working on imperfect EPQ models have suggested keeping safety 
stock in reserve, in case of machine failure, particularly when shortage in the system 
results in a lost sale (see, e.g., Chakraborty and Giri, 2012; Giri et al., 2005b; Sana and 
Chaudhuri, 2010). However, sometimes the expensive costs of this strategy are not 
beneficial for the system due to high product holding costs. In such situations, it may be 
advantageous to use an external supplier to meet the demand while the machine is being 
repaired. The issue is not necessarily about the final product. It could be related to a 
standard piece of a final product manufactured by the main supplier in which he/she is 
responsible for supplying the piece according to a long-term contract. In this case, the 
supplier can purchase from smaller suppliers with lower reliability to prevent shortages in 
urgent situations. For example, items such as printed boxes, plastic bottles or computer 
chips, could be produced by other manufacturers after minor changes to their production 
facilities. Although buying items from an external supplier would result in some loss in 
the margins, it could compensate for part of the overhead cost, protect the supplier’s 
reputation, and ensure future demand (Peymankar et al., 2018). 

The purpose of this paper is 

1 to generalise the model of (Peymankar et al., 2018) incorporating non-zero lead-time 
and preventive repair time 
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2 to study simultaneous effects of process deterioration, machine breakdown, 
maintenance and purchasing using a stochastic EPQ model. 

Considering all of these issues bring the model closer to the real world situations; 
however, it will make the model more complicated. 

The reminder of this paper is structured as follows. Section 2 presents an overview of 
the relevant literature; in Section 3, the problem state notation and the basic assumptions 
of the model are defined. This is followed by the development of the mathematical model 
under general failure and general repair time distributions. The case of exponential failure 
and exponential repair time distributions are studied and the solution approach for this 
case is proposed in Section 5. A numerical example is presented in Section 6 to determine 
the optimum values production and purchasing lot sizes and the sensitivity of the model 
parameters are examined. In the final section, we provide some concluding remarks and 
provide future research directions. 

2 Literature review 

The EPQ model was introduced in the early twentieth century, but researchers have only 
considered imperfect production systems since the 1980s. Porteus (1986), Rosenblatt and 
Lee (1986) and Bielecki and Kumar (1988) were some of the leading researchers who 
worked on imperfect production systems. When considering the imperfect EPQ model, 
Porteus (1986) assumed exponential process shift distribution. Rosenblatt and Lee (1986) 
made a similar assumption and showed that the optimal production run-length in 
imperfect EPQ systems is shorter than the run-length in classical EPQ models. They also 
showed that a smaller production lot contains fewer defective items thereby reducing the 
cost associated with them. Bielecki and Kumar (1988) analysed a particular case of 
unreliable production system and showed that zero-inventory policies resulted in 
optimality for the systems with uncertainties. 

In the following, we have categorised imperfect production literature in two generic 
classifications and briefly studied some of the most important research in each category. 

2.1 Imperfect production with process deterioration 

Production of imperfect items due to process deterioration is one area of research in 
unreliable production systems. Lee and Rosenblatt (1987) studied joint production and 
inspection during a production run and demonstrated that monitoring the process is an 
effective procedure for decreasing process deterioration cost. Lee and Rosenblatt (1989) 
further developed a model by considering warranty cost for defective items sold to 
costumers and found the warranty cost was much higher than the rework cost. Similarly, 
Lee and Park (1991) considered the difference between rework and warranty cost in their 
model. Khouja and Mehrez (1994) extended an EPQ model, assuming flexible production 
rate, exponential shift distribution with the mean as an increasing function of the 
production rate. They formulated model for optimising production rate and production lot 
size. 

Tseng (1996) studied the influence of preventive maintenance policy instead of 
inspection policy in unreliable systems. Hayek and Salameh (2001) derived an optimal 
operating policy for an imperfect EPQ model by invoking rework capability. In their 
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model, they assumed that all of the defective items were reparable. Jamal et al. (2004) 
considered the optimal manufacturing lot size employing two different policies for the 
rework process. In the first policy, rework is completed within the same production cycle, 
while in the second one; the rework is done after N cycles. Numerical results showed that 
in contrast to the first policy, the second one is very sensitive to the changes in 
production rate. Ben-Daya et al., 2008) investigated the effects of production rate 
deterioration on lot sizing decisions. They assumed that the production line is subjected 
to a random shift from the in-control state to out-of-control state. Sana (2010) considered 
an imperfect EPQ model and assumed that percentage of defective items is nonlinearly 
dependent on production rate and production run-time. Sarkar et al. (2010) developed an 
imperfect production system for stock dependent demand. Lin et al. (2011) studied the 
impact of inspection errors, imperfect maintenance and minimal repairs on an imperfect 
production system. Singh et al. (2012) presented an imperfect production system under 
allowable shortage. They assumed two type of production process in a production cycle. 
One is ‘in-control’ state producing good quality items and second one is ‘out-of-control’ 
state producing some percentage of defective items. Pal et al. (2013) developed an 
imperfect EPQ model with rework capability for selecting optimal product reliability and 
optimal lot size to maximise the expected average profit. They assumed that the unit 
production cost is a function of production lot size and product reliability. In recent 
studies, Karimi-Nasab and Sabri-Laghaie (2014) and Al-Salamah (2016) developed EPQ 
models for the case when both the production and inspection processes are imperfect. 
Shih and Wang (2016) developed a model, which provides thorough quality control and 
might result in repair and salvage. Huang et al. (2016) extended Ben-Daya et al. (2008) 
model by assuming that the expected shift time could be controllable by investment in 
resources. They also allowed shortages in the model, when the shifted production rate is 
smaller than the demand rate. Sarkar et al. (2018) developed an imperfect production 
system to obtain the optimal production run and inspection policy. They considered two 
types’ inspection errors to make the model more realistic. Due to inspection error, they 
assumed that the non-inspected defective items are passes to customers with free minimal 
repair warranty. 

2.2 Imperfect production with machine breakdown 

Unexpected machine breakdown is a very common incident in a production environment 
and regarded as a critical reliability factor. This unreliability in EPQ systems is another 
area of research for motivated researchers to model. A literature review with this scope 
shows that in most studies two control policies are employed to deal with random 
machine breakdown. These policies were primarily introduced by Groenevelt et al. 
(1992). Under the first policy, when a breakdown occurs, the interrupted lot is aborted 
and a new one is started, once all available inventory is depleted. This is known as the no 
resumption-NR policy. The second policy is takes effect when the cost of resuming the 
production run after a failure, is substantially lower than the setup cost. In this policy, the 
production of the interrupted lot will be immediately resumed after the breakdown is 
fixed. This is known as the abort-resume A/R policy. 

Due to complexity of the models in A/R policy when repair times have random 
distributions, NR policy has been more interest by researchers. Abboud (1997) presented 
an unreliable EPQ system showing that machine failure follows a Poisson distribution. 
Moini and Murthy (2000) presented two kinds of repair strategy and assumed that the 
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possibility of machine failure is different after each strategy. Boone et al. (2000) 
investigated the simultaneous effects of producing defective items and stoppage 
occurrence due to the machine breakdowns under an NR inventory control policy. 
Abboud (2001) developed an imperfect EPQ model by assuming that the shortage in the 
system is partially backlogged. Considering the discrete time through which the times  
to failure and repair times are distributed geometrically, he modelled the  
inventory-production system as a Markov chain and developed an efficient algorithm to 
compute the cost function. Giri et al. (2005b) investigated optimal lot size in an 
unreliable two-stage production-inventory system in which the machine in the first stage 
is failure-prone while at the second stage is failure-free. Chiu et al. (2007) developed an 
EPQ model with scrap, rework and machine breakdown under the NR policy. They 
proved the convexity of the model under a special condition. Chiu et al. (2009) 
investigated an imperfect EPQ model under an A/R inventory control policy with the 
rework capability for all defective items. Peter Chiu et al. (2010) developed Chiu et al. 
(2009) model which assumed that a portion of defective items can be reworked and the 
rest are scrap. Prakash et al. (2013) presented a production-inventory model with discrete 
random machine breakdown and discrete stochastic repair times. They assumed that the 
demand rate follows a discrete stochastic distribution. 

The accumulation of safety stock and using of preventive maintenace are two 
strategies taken by bussinesses to avoid shortages. The literature on imperfect production 
systems shows that researchers analyse the performance of a system by using either one 
of two strategies or simultaneously. Cheung and Hausman (1997) presented the joint 
implementation of preventive maintenance and safety stocks in an unreliable production 
environment. They assumed that production rate is equivalent to the demand rate in a 
normal production phase. Dohi et al. (2001) revised the model theoretically and 
developed it by adding different restrictive assumptions. The joint implementation of the 
safety stock and age-based preventive maintenance for an unreliable production system 
was also investigated by Gharbi et al. (2007). Giri et al. (2005a) presented an unreliable 
production-inventory system, which considered exponential failure time while repair time 
occurs under an NR inventory control policy. In their model the production cost and 
failure rate depend on production rate, and they formulated the problem with and without 
a policy of holding safety stock. Chakraborty et al. (2008) developed model by 
concurrently considering the effects of process deterioration, machine breakdown and 
repairs (corrective and preventive) on lot sizing decisions. Assuming that non-confirming 
items are not detectable during the production run time, they fixed the warranty cost for 
the sold defective items. Furthermore, Chakraborty et al. (2009) analysed the lot size 
problem with the process deterioration and machine breakdown under inspection 
schedule. Sana and Chaudhuri (2010) investigated the joint determination of preventive 
maintenance and safety stock on an EPQ system under two A/R and NR policies for 
optimising production rate and lot size. Chakraborty and Giri (2012) developed an 
imperfect economic manufacturing quantity model under process deterioration, machine 
breakdown, preventive and corrective repairs, and buffer stock. They suggested a 
computational algorithm to define the optimal safety stock and production run time, 
which in turn minimised the expected cost per unit time in the steady state condition. 

The effects of machine breakdown on an EPQ system with deteriorating items were 
examined by Lin and Gong (2006). They formulated the problem through random 
machine failure and fixed repair time under the NR inventory control policy. This model 
was extended by Widyadana and Wee (2011) with the randomisation of repair time. They 



   

 

   

   
 

   

   

 

   

   282 M. Deiranlou et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

solved the model where the repair time has both uniform and exponential distributions. 
Zhang et al. (2014) used a dynamic method for the production of lot sizing with machine 
failures in which the average cost is minimised instead of expected one. Paul et al. (2015) 
considered a single stage production-inventory system with random disruption. Their 
model maximises the total profit during the recovery time window by generating a 
revised plan after occurrence of disruption. Taleizadeh et al. (2017) developed a  
single-vendor/single-buyer model under the NR policy with random machine breakdown, 
multiple shipments and keeping safety stock capability. They assumed both batch lot size 
and distance between two shipments are identical and the buyer pays transportation cost. 
Öztürk (2018) investigate optimal production run time on an EPQ system under A/R 
machine breakdown policy with inspection and rework capability. 

According to the survey, although there is a good amount of research related to 
imperfect production and specially machine breakdown case, there is only one study 
(Peymankar et al., 2018) which proposed external supply strategy in machine breakdown 
case. Peymankar et al. (2018) have assumed that in the case of breakdown, the 
manufacturer has the option to fulfil the demand using an external supplier, but in their 
model, the supplier lead-time was zero. In this paper, we assumed that the manufacturer 
could purchase the required items from an external supplier with fixed non-zero  
lead-time. This assumption brings the model closer to reality. Moreover, process 
deterioration and machine breakdown as well as preventive and corrective maintenance 
have been considered. 

3 Problem notation and assumption 

3.1 Notations 

We use the following notations to develop the proposed model: 

X Non-negative random variable denoting time to machine breakdown 

Fx(t) Cumulative distribution function with probability density function fx(t) 

D Constant demand rate (units/time) 

P > D Constant production rate (units/time) 

l1 Random variable denoting corrective maintenance time 

G1(l1), g1(l1) Cumulative distribution function and probability density function of l1 

l2 Random variable denoting preventive maintenance time 

G2(l2), g2(l2) Cumulative distribution function and probability density function of l2 

c0 Fixed setup cost for each production run time 

0c  Fixed ordering cost for purchased item from an external supplier 

θ Reliability of external supplier 

L Fixed lead-time of external supplier 
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T Expected total cycle time 

ch Inventory holding cost per unit item per unit time 

cP Production cost per unit item for the manufacturer 

c′ Unit purchase price from external supplier 

cr Corrective repair cost per unit time 

cm Preventive repair cost per unit time (cm < cr) 

cs Shortage cost per unit item 

cw Cost of rework per unit defective item 

 Constant rate at which the defective items are produced in the ‘out-of-control’ state 

N Random variable denoting the number of defective items produced during a 
production run 

Q Production lot size per cycle (decision variable) 

Q′ Order quantity lot size to external supplier per cycle (decision variable) 

3.2 Assumptions 

We make the following assumptions to develop the proposed model: 

1 The planning horizon is infinite. 

2 The problem concerns single stage manufacturing producing a single type of 
products. 

3 Setup time is negligible and equals to zero. 

4 The demand rate of product and production rate are known constants and the 
production rate is greater than the demand rate. 

5 The system suffers increasing wear and deteriorates with age and use. The system 
stochastic breakdown occurs when the deterioration level reaches the failure 
threshold. 

6 If a machine breakdown occurs during a production phase, corrective repair is started 
immediately; thereafter, the machine is restored to its initial working condition. 

7 If a machine breakdown does not occur during the production run, a preventive 
maintenance action renews the production system at the end of each production run. 

8 Shortages may occur due to longer corrective/preventive repair times. All shortages 
will be lost. 

9 Defective items cannot be identified in a production run (there is no inspection 
policy), so these items are reworked with minimal repair at the end of the period, and 
all of them are acceptable after being reworked. 
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4 Formulation of the model 

We consider a single-machine single-item production system, which may shift from an 
‘in-control’ state to an ‘out-of-control’ state and start to produce defective items or may 
breakdown, at any random time during the production run. If a machine breakdown 
occurs, corrective maintenance starts immediately; otherwise, the preventive maintenance 
starts after the production runs at time Q/P. During the corrective and preventive 
maintenance, the accumulated on-hand inventory decreases at a constant D to satisfy the 
demand in machine idle time (in the case of no machine breakdown t1P = Q / D – Q / P 
and in the case of machine breakdown t1C = Pt / D – t). If the maintenance activity is 
completed before the finish of the accumulated on-hand inventory, a new production 
cycle is started as the inventory level decreases to zero; otherwise, shortages occur and 
they are not delivered after machine repair. To avoid shortages and because of the high 
costs of holding safety stock, we assume that the manufacturer has the option to fulfil the 
demand using an external supplier with a determined service level. It is also assumed that 
the ordered quantity is delivered after the known constant L unit times, so the 
manufacturer must order the desired quantity L unit times before the finish of the on-hand 
inventory. For preventive maintenance conditions, order point is Q / D – L; and for 
corrective maintenance conditions, order point is Pt / D – L, in which t denotes the time 
until the machine breaks down. It is worth noting that purchasing from an external 
supplier is acceptable when the time to use up the accumulated on-hand inventory is 
greater than the lead-time L. For preventive maintenance conditions, the necessary items 
are ordered if t1P > L and for corrective maintenance conditions, the necessary items are 
ordered if t1C > L. Based on this assumption, we have two different formulations for the 
problem that will be described in Sections 4.1 and 4.2. 

As mentioned, when the machine shifts to the ‘out-of-control’ state, the process 
produces defective items and continues to do so until the entire lot is produced or 
machine breakdown occurs. Sana and Chaudhuri (2010) used the two-state Markov chain 
and showed that the expected number of defective items during the production run is 
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and where  is the constant rate of defective items in the ‘out-of-control’ state. Therefore, 
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These items will be reworked at the end of the period. Hence, the expected rework cost 
for a complete production run is 

 ( ) ( )wERC Q c E N Q  (3) 
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4.1 Condition 1 (t1P < L) 

In this condition, the supplier lead-time is greater than the time to use up the on-hand 
inventory, therefore; the manufacturer cannot order the necessary items. So the following 
cases may be occurred (see Figure 1 and Figure 2). 

We define the interval of time between two successive production start times as a 
cycle. We consider the time from machine failure until its repair, the expected length of 
one cycle is 

Figure 1 Condition 1: configuration of the model when no machine breakdown occurs,  
(a) no shortage occurs during preventive repair (b) shortages occur during  
preventive repair 

 

Figure 2 Condition 1: configuration of the model when machine break down occurs,  
(a) no shortage occurs during corrective repair (b) shortages occur during  
corrective repair 
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where k(t, l1, G1(l1)) is the expected duration of the cycle when X = t ≤ Q / P, and  
k(Q / P, l2, G2(l2)) is the expected duration when X = t ≥ Q / P; 
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The expected total cost of the system in this condition includes the set up cost, production 
cost, maintenance cost (corrective and preventive), inventory holding cost, cost of 
shortages and the rework cost for the defective items. 
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Now, based on the renewal reward theorem (Ross, 2014), the expected cost per unit time 
is given by 
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4.2 Condition 2 (t1P > L) 

In this condition, the manufacturer can obtain from an external supplier if the on-hand 
inventory cannot cover demand while repairs are being conducted. However, given the 
supplier lead-time is not zero, when no machine breakdown occurs, the order point is  
Q / D – L. In the case of machine break down, the possibility of ordering depends on the 
time to breakdown. If t1C < L the manufacturer gives no order; otherwise t1C > L, and the 
desired items are ordered when the repair time passes from the Pt / D – L point. 
Depending on the reliability of the supplier, the manufacture can obtain the desired items 
with probability of θ or with the probability of 1 – θ if the system faces shortage and 
loses demand until the machine is repaired. All of these cases are shown in Figure 3 and 
Figure 4. 

For this condition the expected length of one cycle is 
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where k1(t, l1, G1(l1)) is expected duration of the cycle when X = t ≤ Q / P and t1C < L, 
k2(t, l1, G1(l1)) is expected duration when X = t ≤ Q / P and t1C > L, and k(Q / P, l2, G2(l2)) 
is expected duration when X = t ≥ Q / P; 
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The expected total cost of the system in this condition includes the set up cost, production 
cost, purchasing cost, fixed ordering cost, maintenance cost (corrective and preventive), 
inventory holding cost, cost of shortages and the rework cost for the defective items. 
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where γ1(t, l1, G1(l1)) is expected shortage when X = t ≤ Q / P and t1C < L, σ(t, l1, G1(l1)) 
and γ2(t, l1, G1(l1)) are the expected inventory and shortage, respectively, when X = t ≤ Q / 
P and t1C > L, σ(Q / P, l2, G2(l2)) and γ2(Q / P, l2, G2(l2)) are the expected inventory and 
shortage, respectively, when X = t ≥ Q / P; 

    1 1 1 1 1 1 1( )

( )
, , P D t

D

P D t
γ t l G l D l dG l

D




   

   

    

 

2 1 1 1 1 1 1( )

1 1 1( )

( )
, , (1 )

( )

P D t

D

P D t

D

P D t
γ t l G l θ D l dG l

D

P D t Q
θ D l dG l

D D









    
 

    
 




 

    

 

2 2 2 2 2 2( )

2 2 2( )

( )
, , (1 )

( )

P D Q

PD

P D Q

PD

P D Q
γ Q P l G l θ D l dG l

PD

P D Q Q
θ D l dG l

PD D









    
 

    
 




 

    

 

 

( ) 2

1 1 1 1 1
0

2

1 1( )

2 2

1 1( )

( )
, ,

2
( )

(1 )
2

( )

2 2

P D t
L

D

P D t
L

D

P D t
L

D

P D Pt
δ t l G l dG l

D
P D Pt

θ dG l
D

P D Pt Q
θ dG l

D D


















 

 
  

 







 

    

 

 

( ) 2

2 2 2 2 2
0

2

2 2( )

2 2

2 2( )

( )
, ,

2
( )

(1 )
2

( )

2 2

P D Q
L

PD

P D Q
L

PD

P D Q
L

PD

P D Q
δ Q P l G l dG l

PD
P D Q

θ dG l
PD

P D Q Q
θ dG l

PD D


















 

 
  

 







 

Now, based on the renewal reward theorem, the expected cost per unit time is given by 
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In order to find the optimal solution for the problem we should solve both objective 
functions that are C(Q, 0) subject to 0 ≤ Q ≤ L.P.D / (P – D) and C(Q, Q′) in case that  
Q′ ≥ 0 and Q > L.P.D / (P – D), then choose the optimal value of Q and Q′ based on the 
objective function which has the lower expected cost. Due to the complexity of the 
objective functions, it is difficult to analyse the model with general failure and general 
repair time distributions. In the following, we consider the model in both conditions 
under exponential failure and repair time distributions. 

Figure 3 Condition 2: configuration of the model when no machine breakdown occurs, (a) repair 
operation done before order point (b) orders are not satisfied with probability 1 – θ, but 
operation done before finishing on-hand inventory (c) orders are not satisfied and 
shortages occur due to prolonged repair time (d) orders are satisfied with probability θ 
and repair operation done before finishing purchasing items (e) orders are satisfied, but 
shortages occur due to prolonged repair time 
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Figure 4 Condition 2: configuration of the model when machine breakdown occurs, (a) repair 
operation done before order point (b) orders are not satisfied with probability 1 – θ, but 
operation done before finishing on-hand inventory (c) orders are not satisfied and 
shortages occur due to prolonged repair time (d) orders are satisfied with probability θ 
and repair operation done before finishing purchasing items (e) orders are satisfied, but 
shortages occur due to prolonged repair time 

 

5 The model with exponential failure and exponential repair times 

5.1 Condition 1 

Suppose that the failure time distribution ( ) 1 ,λt
xF t e   preventive repair time 

distribution 1 1
1 1( ) 1 μ lG l e   and corrective repair time distribution 2 2

2 2( ) 1 .μ lG l e   
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Then, the mean time length of a cycle and the expected total cost per cycle for  
condition 1 should be obtained from equations (4) and (5) as 

 

 

1

2

/
/

1 1

/

2

1 1
( ,0) 1

1
1

P D
μ λ Q P

λQ P D

P D Q
μ

λQ PD P

P Q λ
T Q e e

D λ λ P P D
μ μ λ

D

Q
e e

D μ

         

     

                    
 
    
 

 (10) 

and 

   

 1 2

/ / /
0

1 2

/
2 2

/

2
1 1

.
( ,0) 1 1

( ) 2 2 2

2

1

1

P r mλQ P λQ P λQ P

λQ P
h

P D P D Q
μ λ Q P μ λ

P D P
s

λ
w

c P c c
S Q c e e e

λ μ μ

P D P Q
c e

D λ λ λP

λD D
+c e + e

μP D
μ μ λ

P

P
+c e

λ

  



                       



     

            
 
   

          

 
 

  ln(1 )/ (1 ) ln(1 )
1

ln(1 )
λ PQ P P

e
λ P

       
   

 
 

 (11) 

In order to determine the optimal production lot size in condition 1, the following 
propositions are proposed here. 

Property 1. T(Q, 0) is a concave function of Q for all Q > 0. 

Proof. To prove the concavity of function T(Q, 0) with respect to Q it is sufficient to 

show 
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Given the range of parameters, it is obvious that 2.
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proof is completed. 

Proposition 1. Let C(Q2, 0) ≤ C(Q1, 0) for two distinct values Q1 and Q2 of Q. Then  
C(Q, 0) is a pseudo-convex function provided 
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Proof. Since T(Q, 0) > 0 and S(Q, 0) > 0 for all Q ≥ 0, therefore C(Q2, 0) ≤ C(Q1, 0) 
implies that 
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Also C(Q2, 0) ≤ C(Q1, 0) implies 
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This proves that C(Q, 0) is a pseudo-convex function provided 
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satisfying C(Q2, 0) ≤ C(Q1, 0) (Bazaraa et al., 2006). 

Proposition 2. Under proposition 1, there exists a unique Q* which minimises C(Q, 0). 

Proof. The first derivative of C(Q, 0) with respect to Q is 
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It is observed that (Q) → –∞ as Q → 0. Moreover, (Q) → 0 as Q → ∞. So, given the 
pseudo-convexity of C(Q, 0) under the proposition 1, there exist a unique root Q* of  
(Q) = 0. 

Now, we obtain the optimal production lot size by solving the equation (Q) = 0. If 
Q* < L.P.D / (P – D) then Q* will be the optimal lot size, otherwise, Q* = L.P.D /  
(P – D). 

5.2 Condition 2 

Assuming that the mean time to failure and repair time follow the exponential 
distribution, for condition 2, from equations (7) and (8) we have 
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 (14) 

Due to the complexity of the model, it is difficult to prove the convexity of C(Q, Q′) for 
any given parameters when Q and Q′ are decision variables. We propose two approaches 
to find Q and Q′ in this condition. 

At the first approach, based on Giri et al. (2005a), we look forward for the local 
optimal solution. Let η be the Lagrange multiplier corresponding to constraint  
Q > L.P.D / (P – D). By considering Kuhn-Tucker necessary conditions we have 
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Obviously η = 0 since Q > L.P.D / (P – D). So the optimal values of Q and Q′ can 
obtained by solving the system of the nonlinear equations (15) and (16). it is worth noting 
the global optimality of the function is not guaranteed by this approach. 

At the second approach, first we will discuss the convexity of the model when Q′ is 
known. For doing this, the following property and proposition are presented. 

Property 2. For any given Q′ > 0, T(Q, Q′) is concave for all Q > L.P.D / (P – D). 

Proof. To proof the concavity of function T(Q, Q′) with respect to Q it is sufficient to 
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So proof is completed just for specific range of parameters. 

Proposition 3. Let C(Q2, Q′) ≤ C(Q1, Q′) for two distinct values of Q1 and Q2 of Q, given 
Q > L.P.D / (P – D). Then C(Q, Q′) is a pseudo-convex function provided 
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Proof. Under the property 2, the proof of pseudo-convexity of C(Q, Q′) is the same as the 
method presented in proposition 1. 

Now in this approach, we follow an exhaustive search algorithm in which at each step 
we enumerate Q′ and then solve the equation (15) for known Q′ to find Q knowing that  
η = 0. Best Q and Q′ are reported based on minimum value of C(Q, Q′). 

6 Numerical experiment 

To find the optimal solution, the following dataset with appropriate units is considered: 
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Based on the solution approaches in Section 5, we found the best values of Q and Q′ 
using MATHEMATICA. We optimised C(Q, 0) subject to 0 ≤ 0 < 2,400, and the optimal 
solution is obtained as Q* = 1,599.9 and C* = 15,043.2 as depicted in Figure 5. The 
second function C(Q, Q′) under constraints Q > 2,400 and Q′ ≥ 0 results in the best 
solution Q* = 7,896.9, Q′* = 3,317.6 and C* = 14,427 (the result of both of the solution 
approaches were the same). The surface generated by C(Q, Q′) over the wide range of 
values of Q and Q′ is shown in Figure 6. By comparing the optimal values of two 
conditions, the optimal values of C(Q, Q′) are selected. 

Figure 5 Graphical representation of C(Q, 0) (see online version for colours) 

 

Figure 6 Graphical representation of C(Q, Q′) (see online version for colours) 

 

6.1 Sensitivity analysis based on supplier parameters 

Now, we examine the sensitivity of optimal values for Q*, Q′* and C* against changes in 
the parameters L and θ. As displayed in Figure 7, by decreasing lead-time, the optimal 
value of Q′ increases, and the optimal value of Q is reduced as well as expected total cost. 
When the supplier lead-time rises, the model reduces the purchasing quantity, which 
increases the C*(Q, Q′) so that for L ≥ 1.4, C*(Q, 0) (15,043.2) would be less than  
C*(Q, Q′) (15,054.1). This means that for high values of L, the model uses production as 
the basis for the business activity. This can be justified from the managerial point of 
view. Increasing the lead-time, increases the risk of facing lost sales, so the manufacturer 
prefers to have more production. 
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Figure 7 Variation of L effects on optimal value of Q* and Q′* and C* 

 

Sensitivity analysis shows that the supplier reliability can play important role when 
making inventory decision. As illustrated in Figure 8, when the supplier is more reliable, 
the decreases order quantity and increases production quantity. We also observe that by 
decreasing θ, the manufacturer increases the order quantity. This is because, in essence, 
the model is conservative. When the supplier is less reliable, the model suggests the 
manufacturer purchase larger quantities to confront against uncertainties; but for very 
small values of θ, the model reduces order quantity, so that when θ → 0 then Q′ → 0. In 
this situation, considering mean time to failure and repair time, by reducing production 
run as well as production quantity, the model moves to condition 1 (as seen in Figure 8 
when θ → 0 the expected total cost will be equal in both conditions). 

Figure 8 Behaviour of Q*, Q′* and C* by changing supplier reliability θ 

 

A comparison of the model’s performance, using different values of θ and L is shown in 
Figure 9 and Figure 10. It should be noted that by increasing L, the purchasing lot size 
Q′* and total cost C*(Q, Q′) becomes less sensitive to changes in θ. Actually, when values 
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of L are low, the reliability of the supplier is important to the manufacturer. For example 
when L = 0.6 and the value of θ changes from 0.3 to 1, the optimal value of Q′ decreases 
by 6.6% and C*(Q, Q′) decreases by 7.1%; and when L = 1.6 the changes are nearly null. 

Figure 9 Variation of θ effects on Q′* for different values of L 

 

Figure 10 Variation of θ effects on C* for different values of L 

 

Higher shortage costs cause more Q and Q′ to reduce the cost of lost sales. As it increases 
by 50%, the order quantity rises two fold. Sensitivity analysis of simultaneous variations 
of L and cs (see Table 1) shows that by decreasing L and increasing shortage cost, better 
results are gained by increasing the quantities ordered from the supplier. When the 
supplier lead-time is longer, and values of cs are low, the manufacturer does not order; 
however, when values of cs are high, the manufacturer purchases part of the required 
inventory from the external supplier to avoid shortages from the lost sales. In Table 1, the 
condition with the lower total cost is shown in bold in each row. 
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Table 1 Sensitivity analysis with respect to shortage cost under the variation of L 
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6.2 Sensitivity analysis based on failure and repair rates 

It is obvious that the manufacturer decision, to make or make not order quantities, is 
highly dependent on the machine failure rate as well as repair times. In this section, we 
examine the effect of these parameters on the optimal values of the decision variables and 
the objective function. 

The behaviour of expected total cost per unit time in both conditions based on the 
variation of μ1 and μ2 illustrated in Table 2 and Table 3 respectively. According to  
Table 2, as μ1 decreases (the mean time for the correcting repair increases), the optimal 
value of cost function increases in both conditions. In return, by increasing of μ1, the 
model decreases the amount of cost function. It can be seen that for the chosen data set, 
the purchasing policy is always preferable. The similar situation would happen when the 
preventive repair rate changes. With the increase of mean time for preventive repair 
(decrease of μ2), the expected total cost per unit time increases in both conditions and 
with the increase of μ2, it decreases (see Table 3). As the table shows, C(Q, 0) and  
C(Q, Q′) are less sensitive to changes in μ2 rather than changes in μ1. The reason is that 
usually, the unit preventive repair cost is much less, than the unit corrective repair cost. 

Table 2 Behaviour of expected total cost per unit time by changing corrective repair rate μ1 

μ1 

 0.3 0.5 0.7 0.9 1.1 1.3 

C(Q, 0) 16,800 15,770.3 15,043.2 14,516.8 14,122.2 13,817.5 

C(Q, Q′) 16,165.9 15,035.8 14,427 14,052.2 13,790.1 13,532.1 

Table 3 Behaviour of expected total cost per unit time by changing preventive repair rate μ2 

μ1 

 1 1.3 1.6 1.9 2.2 2.5 

C(Q, 0) 15,101.1 15,073.3 15,043.2 15,001.8 14,943.8 14,857.1 

C(Q, Q′) 14,428.9 14,427.8 14,427 14,427 14,426.9 14,426.8 

Figure 11 A comparison of ETC in both conditions for different values of L with respect to λ 
variation 
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The dependence of the optimal production policy on the parameter of λ based on different 
values of L is shown in Figure 11. Studying this figure gives remarkable results. When λ 
takes larger values, the expected total cost in both conditions increases. According to this 
figure, for the higher failure rate, the purchasing strategy is more economical even for the 
large values of L. as λ decreases, the ETC decreases in both conditions, so that C*(Q, 0) is 
less than C*(Q, Q′). For large values of L, this superiority occurs earlier. It can be 
observed from Figure 11 that the C*(Q, 0) and C*(Q, Q′) will be equal when L → 0 and  
λ → 0. 

Table 4 The amount of shortage cost in ETC by variation of ch  

Condition 1  Condition 2 
ch 

C*(Q, 0) Shortage cost  C*(Q, Q′) Shortage cost 

Manufacturer 
decision 

1 14,823.3 7,597.6  12,348.2 1,330.5 Condition 2 

2 14,901.9 7,597.6  13,515.3 3,503.2 Condition 2 

3 14,978.4 7,722.3  14,071.5 4,521.2 Condition 2 

4 15,043.2 7,940.7  14,427 5,123.4 Condition 2 

5 15,099.2 8,132.3  14,689.8 5,533 Condition 2 

6 15,149 8,305.9  14,900.6 5,847.5 Condition 2 

7 15,194 8,466.4  15,077.2 6,128.1 Condition 2 

8 15,235.2 8,616.4  15,209.7 6,925.4 Condition 2 

9 15,273.2 8,757.9  15,308.9 6,997.6 Condition 1 

Figure 12 The effects of ch variation on optimal values of Q*, Q′* and C* in both conditions 

 

6.3 Effect of unit holding cost 

Although purchasing strategy raising manufacturer service level through reducing lost 
sales, but by increasing the unit holding cost, the model prefers lost sales (Table 4). As 
unit holding cost rises, the manufacturer prefers to produce a smaller lot size for each 
production run. Furthermore, for ch ≥ 9 given that expected total cost (ETC) of  
condition 1 is lower than ETC of condition 2, no purchasing order is given by 
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manufacturer. While for low values of ch, the manufacturer increases production and 
purchasing order quantities leading to a reduction in expected total cost (Figure 12). This 
shows that purchasing from an external supplier is only applicable for the products with 
reasonable unit holding costs. 

Table 5 Sensitivity analysis on other parameters of the numerical example 

Variations in condition 1  Variations in condition 2 Parameters 
variation  
(in %) Q* C*(Q, 0)  Q* Q′* C*(Q, Q′) 

Manufacturer 
decision 

–25% +800.01 –1,534.4  +98.64 –364.99 –1,420.3 Condition 2 

–10% +358.19 –608.2  +31.33 –144.94 –565.8 Condition 2 

+10% –348.84 +595.9  –22.37 +143.66 +562.8 Condition 2 

cP 

+25% –903.33 +1,444  –41.93 +356.95 +1,401.5 Condition 2 

–50% _ _  +1,723.2 +1,352.4 –909.9 Condition 2 

–25% _ _  +949.82 +688.5 –422 Condition 2 

+25% _ _  –1,155.6 –732.54 +349.3 Condition 2 

c′ 

+50% _ _  –5,696.9 –3,317.6 +635.5 Condition 1 

–50% +10.02 –17.2  +0.76 –4.12 –16.1 Condition 2 

–25% +5.01 –8.6  +0.39 –2.06 –8 Condition 2 

+25% –5.01 +8.6  –0.38 +2.06 +8.1 Condition 2 

cr 

+50% –10.02 +17.2  –0.75 +4.12 +16.2 Condition 2 

–50% –5.87 –0.5  –2.17 –0.0009 –0.0390 Condition 2 

–25% –2.93 –0.2  –1.08 –0.0001 –0.0393 Condition 2 

+25% +2.93 +0.3  +1.1 +0.0015 +0.0399 Condition 2 

cm 

+50% +5.86 +0.5  +2.18 +0.0024 +0.0410 Condition 2 

–50% –38.12 –18.9  –16.75 –3.62 –14.1 Condition 2 

–25% –19.07 –9.4  –8.37 –1.81 –7 Condition 2 

+25% +19.08 +9.4  +8.38 +1.81 +7.1 Condition 2 

c0 

+50% +38.17 +18.8  +16.76 +3.62 +14.2 Condition 2 

–50% _ _  2.35 –0.28 –1.1 Condition 2 

–25% _ _  1.18 –0.14 –0.5 Condition 2 

+25% _ _  –1.17 +0.14 +0.6 Condition 2 

c′0 

+50% _ _  –2.35 +0.28 +1.2 Condition 2 

–50% +800.1 –422.1  +389.01 –109.21 –427.1 Condition 2 

–25% +610.22 –203.7  +188.23 –54.5 –213.3 Condition 2 

+25% –594.5 +166.5  –176.77 +54.29 +213 Condition 2 

cw 

+50% –1254.41 +221.4  –343.11 +108.37 +425.4 Condition 2 

–50% –101.06 –50.6  –44.48 –9.61 –37.4 Condition 2 

–25% –49.41 –24.6  –21.73 –4.69 –18.3 Condition 2 

+25% +47.27 +23.3  +20.75 +4.48 +17.5 Condition 2 

 

+50% +92.51 +45.3  +40.55 +8.76 +34.2 Condition 2 
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6.4 Effect of other parameters 

We have changed the values of the other parameters in the model by both positive and 
negative percentages. Table 5 reports the positive and negative changes in the optimal 
values of decision variables and objective function in both conditions. 

Based on Table 5 the following features are observed: 

 Except for c′, changes in other parameters examined in Table 5, do not affect 
manufacturer’s decision to order purchasing quantity and in all scenarios, C*(Q, Q′) 
will be less than C*(Q, 0). As c′ increases, C*(Q, Q′) increases and with an increase 
of more than 50% in unit purchasing price, C*(Q, 0) will be less than C*(Q, Q′). 
Moreover, Q′* is highly sensitive to changes in purchasing cost. Lower c′ causes 
more order quantity lot size to reduce cost of lost sale during stock-out situations. 

 The optimal production lot size in condition 2 is fairly sensitive to changes in cP; 
additionally, Q* in condition 1, Q′*, C*(Q, 0) and C*(Q, Q′) are highly sensitive to 
changes in cP. Moreover, Q* decreases and Q′* increases with increases in cP. 
Consequently C*(Q, 0) and C*(Q, Q′) increase automatically. 

 Both decision variables Q*, Q′* and also objective functions are less sensitive to 
changes in cr and cm; but changes in cr result in more variation in cost function than 
changes in cm. Similarly, sensitivity of Q*, Q′*, C*(Q, 0) and C*(Q, Q′) in c0 and c′0 
are negligible. 

 Total lot size decreases to reduce higher rework cost (cw) or higher rate of defective 
items produced (). Variation of order quantity in these situations is negligible. 

7 Conclusions 

The classical economic production models assume that the production facilities always 
are failure-free. However, in practical situations, they usually are failure-prone. Since 
failures are unavoidable, the production manager should have practical solutions to deal 
with such disruptions. Proactive measures such as inspection, keeping safety stock have 
been carried out in this field to mitigate machine breakdowns consequences. In terms of 
expensive unit holding cost or low warehouse capacity, emergency replenishment could 
be a better option than keeping safety stock. In this study, we have developed a 
production system under random machine breakdown and two types of repair. By starting 
the production process, a facility may shift from an ‘in-control’ state to an  
‘out-of-control’ state at any random time. If machine breakdown occurs during the 
production run time, then corrective repair is done; otherwise, preventive repair is 
performed at the end of the production run time. The model is developed under general 
machine breakdown and general repair time distributions. Assuming conditions like 
higher holding cost or lower warehouse capacity, we investigated how the manufacturer 
can benefit from using an external supplier as an alternative option to keeping safety 
stock during a stoppage in the production process caused by corrective or preventive 
repair. We also assumed that the external supplier is unreliable and has a lead-time. Our 
numerical study has been found that inventory holding costs and shortage costs play a 
critical role in determining the purchase situation from an external supplier. The study 
also shows that supplier lead-time is more important than supplier reliability; and for 
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longer values of L, supplier reliability does not influence the manufacturer’s decision. 
However, when L is decrease, reliability plays an essential role in determining order 
quantity. The analysis conducted on the other important parameters in Section 6, shows 
that the purchasing policy always imposes a less expected cost to the system. Our 
proposed model could be improved by investigating the influence of variable demand on 
the manufacturer decision in purchasing policy. Moreover, investigating the influence of 
contractual agreement between manufacturer and supplier on lead-time in purchasing 
strategy could be scope for a future study. 
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