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Abstract. The notion of Jacobson graph and n-array Jacobson graph of a commutative ring
were introduced in 2012 and 2018, respectively, by Azimi et al and Ghayour et al. In this
article we generalize them to matrix Jacobson graph. Let R be a commutative ring. The matrix
Jacobson graph of a ring R, denoted J(R)m×n, is defined as a graph with vertex set is the set
of matrix of ring without the matrix of its Jacobson such that two distinct vertices A,B are
adjacent if and only if 1 − det(AtB) is not a unit of ring. In this article we study the matrix
Jacobson graph where the underlying ring R is a finite field. Since any matrix of size m × n
over a field F can be considered as a linear mapping from linear space Fm to Fn, we employ
the structure of linear mappings on finite dimensional vector spaces to derive some properties
of square and non square matrix Jacobson graph of fields, including their diameters.

1. Introduction
Let R be a commutative ring and U(R) denote the group of units of R. Let m denote a maximal
ideal of R, J(R) denote the Jacobson radical of the ring R, that is J(R) = ∩mm, where m ranges
over all maximal ideals of R (see [8] for more information about finite rings). A Jacobson graph
of R, denoted JR = (V,E), is defined as a graph with vertex set is V = R\J(R) and for every
two distinct vertices x, y ∈ V , we have x ∼ y (adjacent) if and only if 1− xy /∈ U(R), (see [2]).
Many graph theoretical properties such as connectivity, planarity and perfectness were obtained
for Jacobson graphs of various commutative rings (for more details, see [1],[3],[4],[5],[7]).

Let Rn be the set of n-arrays of elements of R. An n-array Jacobson graph of R, denoted
JnR = (V,E), is defined as a graph with vertex set is V = Rn\J(R)n (n-array column of size
n) and for every two vertices x,y ∈ V,x 6= y, we have x ∼ y if and only if 1 − xty /∈ U(R).
The n-array Jacobson graph was introduced by H. Ghayour et al (2018) in [6] as an extension
of the notion of Jacobson graph from ring elements to n-array with entries are elements of the
underlying ring.

In this article, we generalize the notion of Jacobson graphs and n-array Jacobson graph into
matrix Jacobson graph. Let R be a commutative ring, a matrix Jacobson graph of R,
denoted by Jm×nR = (V,E), is defined as a graph with vertex set V = Rm×n\J(R)m×n and for
every two vertices A,B ∈ V,A 6= B we have A ∼ B if and only if 1− det(AtB) /∈ U(R). Thus,
according to this definition, the n-array Jacobson graph of a ring R by H. Ghayour et al (2018)
is the n× 1 matrix Jacobson graph of the ring R (for more details, see [6]).

Let F be a field, U(F ) be the group of unit of F . We have U(F ) = F\0 dan J(F ) = 0. Let
Fn be the row vector space over the field F of dimension n. For the rest of this note, we assume
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the elements of Fn are in the form of row vectors. Let {ė1, ..., ėm} be the standard basis of Fm

and {e1, ..., en} be the standard basis of Fn. Let A ∈ Fm×n. We may write a matrix A ∈ Fm×n
as

A = (aij) = Im


a1
a2
...

am

 = (ėt1 · · · ėtm)


a1
a2
...

am

 =

m∑
i=1

ėtiai.

where ai = (ai1, ai2, ..., ain) ∈ Fn.
The aim of this paper is to determine the diameter of some square and non square matrix

Jacobson graphs especially of the field F . Since any matrix of size m× n over a field F can be
considered as a linear mapping from linear space Fm to Fn, we employ the structure of linear
mappings on finite dimensional vector spaces to derive our result.

2. Peliminary Results
Proposition 1 [2] The graph JR is an empty graph if and only if R ∼= Z2 or Z3.

Theorem 2 [2] Let R be a finite ring. The graph JR is a complete graph if and only if R is a
local ring with associated field of order 2.

Theorem 3 [2] Let R be a finite ring. Then the graph JR is bipartite graph if and only if either
R is a field or it is isomorphic to one of the rings Z4, Z2 ⊕ Z2 or Z2[x]/(x2).

3. Main Result
In this section, we identify the diameter by divided into two cases. There are square and non
square matrix Jacobson graph.

3.1. Square Matrix Jacobson Graph of Fields
In general, the square matrix Jacobson graph Jn×nF is described in the following two theorems.
Both theorems are obtained by employing the fact that zero is the only non-unit element in
F and so any two distinct elements A,B in V (Jn×nF ) are adjacent if and only if det(AB) = 1.
Then, using the property det(AB) = det(A) det(B), it is happened if and if det(A) and det(B)
are mutually inversed.

We classify the vertex set of Jn×nF be

V (Jn×nF ) = V0 ∪ Vu(F ) ∪ Vu′(F )

with V0 = {A ∈ V (Jn×nF )|det(A) = 0}, Vu(F ) = {A ∈ V (Jn×nF )|det(A) ∈ u(F )}, Vu′(F ) = {A ∈
V (Jn×nF )|det(A) ∈ u′(F )}.

Theorem 4 Let F be a field. The matrix Jacobson graph Jn×nF consists of

(i) |V0| be empty subgraph,

(ii) |u(F )| components complete subgraphs on Vu(F ), and

(iii) |u′(F )|/2 components complete bipartite subgraphs on Vu′(F ). �

The example of this theorem is J2×2Z2
which consists of 15 elements and is as shown in Figure

1. Let p be prime number, Zp be the field. Note that we have the following detail of the above
theorem. Let G0 be the empty graph with the vertex set is V0. Let Vi as defined in previous
Theorem, for i = 0, 1, . . . , p− 1.

• If p = 2 then Jn×nZ3
= G0 ∪K|V1|.



ICCGANT 2019

Journal of Physics: Conference Series 1538 (2020) 012008

IOP Publishing

doi:10.1088/1742-6596/1538/1/012008

3

Figure 1. Graph J2×2Z2

• If p = 3 then Jn×nZ3
= G0 ∪K|V1| ∪K|V2|.

• If p = 5 then Jn×nZ5
= G0 ∪K|V1| ∪K|V2|,|V3| ∪K|V4|.

• If p = 7 then Jn×nZ7
= G0 ∪K|V1| ∪K|V2|,|V4| ∪K|V3|,|V5| ∪K|V6|.

The greater the prime integer p is, the more bipartite subgraphs are obtained.
We denote the connected subgraph of the square matrix Jacobson graph for field F by(

Jn×nF

)∗
.

Corollary 5 Diam
(
Jn×nF

)∗
= 1 or 2. �

3.2. Non-square Matrix Jacobson Graph of fields
In this section we identify the matrix Jacobson graph Jm×nF of F , for m 6= n. Since F is a field,
hence any m × n matrix with entries in F can be consider as a linear transformation. In this
study we will be utilizing some known properties and facts concerning linear transformation to
derive our results.

Theorem 6 Let Jm×nF be the matrix Jacobson graph for F . If m < n then Jm×nF is an empty
graph.

Proof. Let A,B ∈ V (Jm×nF ), A 6= B. Consider A,B as linear transformations,

Bt : Fn −→ Fm

x 7→ xBt

BtA : Fn −→ Fn

y 7→ yBtA

We obtain
Rank(BtA) ≤ min{Rank(Bt),Rank(A)} ≤ m < n.

Since BtA is of size n× n, we have BtA is singular and hence 1− det(BtA) = 1. Thus A does
not adjacent to B. So, Jm×nF with m < n is an empty graph. �

Theorem 7 If m > n then Jm×nF consists of an empty subgraph and a connected subgraph with
diam(Jm×nF ) ≤ 4.
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Proof. Let
V0 = {A ∈ V (Jm×nF ) | Rank(A) < n}
V1 = {A ∈ V (Jm×nF ) | Rank(A) = n}.

Then V (Jm×nF ) = V0 ∪V1. By using similar argument to be used to prove Theorem 6, we obtain
the set V0 forms an empty subgraph.

Now, we shall prove that the subgraph formed by V1 is connected. For any A ∈ V1, we may
write

A =

m∑
i=1

ėtiai for some ai ∈ Fn, i = 1, . . . ,m

and denote a set of n-array row indeces of A that forms a basis of Fn

I(A) =

{
(k1, k2, . . . , kn) | 1 ≤ ki < ki+1 ≤ m, det

(
n∑
i=1

eiaki

)
6= 0

}
.

Then for any A ∈ V1, the set I(A) is not empty since Rank(A) = n.
Take any two distinct vertices A,B ∈ V1 and suppose

A =

m∑
i=1

ėtiai, B =

m∑
i=1

ėtibi

for some ai,bi ∈ Znp where i = 1, . . . ,m. In the following we show that A and B are connected
which is divided into two cases, the case I(A) ∩ I(B) 6= ∅ and the case I(A) ∩ I(B) = ∅.
1. For the case I(A)∩ I(B) 6= ∅ , let (k1, . . . , kn) ∈ I(A)∩ I(B). Then α = det(

∑n
i=1 e

t
iaki) 6=

0, β = det(
∑n

i=1 e
t
ibki) 6= 0 which imply the square matrices

∑n
i=1 e

t
iaki and

∑n
i=1 e

t
ibki

are invertible. Let us denote their inverse matrices are respectively A′ = (
∑n

i=1 e
t
ia
′
ki

)t and

B′ = (
∑n

i=1 e
t
ib
′
ki

)t. In this case we have

A′
n∑
i=1

etiaki =

n∑
i=1

a′tkiaki = In and B′
n∑
i=1

etibki =

n∑
i=1

b′tkibki = In.

Moreover A and
∑n

i=1 ė
t
ki
a′ki are adjacent; and so are

∑n
i=1 ė

t
ki
b′ki and B. To generate a path

from A to B, we consider two cases.

• The case A =
∑n

i=1 ė
t
ki
aki and B =

∑n
i=1 ė

t
ki
bki which is equivalent to ai = 0,bi = 0 for all

i /∈ {k1, . . . , kn}. Let kn+1 ∈ {1, . . . ,m}\{k1, . . . , kn}. Then we obtain a path form A to B
as follows:

A ∼
n∑
i=1

ėtkia
′
ki

+ ėtkn+1
(a′k1/αβ) ∼

n∑
i=2

ėtkibki + ėtkn+1
bk1 ∼

n∑
i=1

ėtkib
′
ki

+ ėtkn+1
b′k1 ∼ B.

On the other notions, we may write :

A =



ak1
ak2

...
akn
0
...
0


∼



a′k1
a′k2

...
a′kn
a′k1
αβ
...
0


∼



0
bk2

...
bkn
bk1

...
0


∼



b′k1
b′k2

...
b′kn
b′k1

...
0


∼



bk1
bk2

...
bkn
0
...
0


= B.
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• The case A 6=
∑n

i=1 ė
t
ki
aki or B 6=

∑n
i=1 ė

t
ki
bki , without loss of generality, let kn+1 ∈

{1, . . . ,m}\{k1, . . . , kn} such that

akn+1 6= 0 and akn+1 =
n∑
i=1

λiaki , with λ1 6= 0.

Denote

C =
n+1∑
i=2

ėtkicki , where cki = a′ki −
λi
λ1

a′k1 , for i = 2, . . . , n and ckn+1 =
a′k1
λ1

.

It is a routine to obtain CtA =
∑n+1

i=2 ctkiaki = In. Then we have

A ∼ C ∼
n+1∑
i=2

ėtkiaki + (ėTk1ak1β/α) ∼
n∑
i=1

ėtkibki ∼ B.

On the other notions, we may write :

A =



ak1
ak2

...
akn
akn+1

...
akm


∼



0

a′k2 −
λ2
λ1
a′k1

...

a′kn −
λn
λ1
a′k1

a′k1
λ1
...
0


∼



ak1
β

α
ak2

...
akn
akn+1

...
0


∼



b′k1
b′k2

...
b′kn
0
...
0


∼



bk1
bk2

...
bkn
bkn+1

...
bkm


= B

for akn+1 =
∑n

i=1 λiaki with λ1 6= 0.

2. For the case I(A) ∩ I(B) = ∅, we divide it into two subcases; the subcase there exists
(k1, . . . , kn) ∈ I(A) and (l1, . . . , ln) ∈ I(B) such that {k1, . . . , kn} ∩ {l1, . . . , ln} 6= ∅ and its
complement, the subcase for any (k1, . . . , kn) ∈ I(A) and (l1, . . . , ln) ∈ I(B), {k1, . . . , kn} ∩
{l1, . . . , ln} = ∅.

2.a The first case, let (k1, . . . , kn) ∈ I(A) and (l1, . . . , ln) ∈ I(B) such that {k1, . . . , kn} ∩
{l1, . . . , ln} 6= ∅. Similar to the previous discussion, let α = det(

∑n
i=1 e

t
iaki) 6= 0, β =

det(
∑n

i=1 e
t
ibki) 6= 0, and a′k1 , . . . ,a

′
kn
,b′l1 , . . . ,b

′
ln
∈ Znp such that

(

n∑
i=1

etia
′
ki

)t
n∑
i=1

etiaki =

n∑
i=1

a′tkiaki = In and (

n∑
i=1

etib
′
li

)t
n∑
i=1

etibli =

n∑
i=1

b′tlibli = In.

Denote {k1, . . . , kn} ∩ {l1, . . . , ln} = {k1, . . . , kq} where q < n and reindex

{l1, . . . , ln} = {k1, . . . , kq, lq+1, . . . , ln}.

We obtain

A ∼
n∑
i=1

ėtkia
′
ki
∼

n∑
i=1

ėtkiaki +
n∑

i=q+2

ėtliaki + ėtlq+1
akq+1β/α ∼

n∑
i=1

ėtlib
′
li
∼ B.
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On the other notions, we may write :

ak1
ak2

...
akq
akq+1

...
akn
X
X
...
X
X
...
X



∼



a′k1
a′k2

...
a′kq
a′kq+1

...
a′kn
0
0
...
0
0
...
0



∼



ak1
ak2

...
akq
akq+1

...
akn

akq+1
β

α
akq+2

...
akn
0
...
0



∼



b′k1
b′k2

...
b′kq
0
...
0

b′lq+1

b′lq+2

...
b′ln
0
...
0



∼



bk1
bk2

...
bkq
X
...
X

blq+1

blq+2

...
bln
X
...
X



.

2.b The second case, let for any (k1, . . . , kn) ∈ I(A) and (l1, . . . , ln) ∈ I(B), {k1, . . . , kn} ∩
{l1, . . . , ln} = ∅. In this case, we have 2n ≤ m. Let (k1, . . . , kn) ∈ I(A) and (l1, . . . , ln) ∈ I(B).
Then |{k1, . . . , kn, l1, . . . , ln}| = 2n and we obtain the following path from A to B.

A ∼
n∑
i=1

ėtkia
′
ki
∼

n∑
i=1

ėtkiaki +
n∑
i=1

ėtlibli ∼
n∑
i=1

ėtlib
′
li
∼ B

A =



ak1
ak2

...
akn
X
...
X
X
...
X


∼



a′k1
a′k2

...
a′kn
0
...
0
0
...
0



∼



ak1
ak2

...
akn
bl1
...

bln
0
...
0


∼



0
0
...
0
b′l1
...

b′ln
0
...
0


∼



X
X
...
X
bl1
...

bln
X
...
X


= B,

where (
∑n

i=1 eia
′
ki

)t and (
∑n

i=1 eib
′
li

)t are respectively the inverse of
∑n

i=1 eiaki and
∑n

i=1 eibli .

square

We denote the connected subgraph of a non-square matrix Jacobson graph for F by
(
Jm×nF

)∗
.

Theorem 8 Let Jm×2Z2
be a matrix Jacobson graph of Z2. Then diam(Jm×2Z2

)∗ = 2 for m ≥ 3.

Proof.
Let {e1, e2} be the standard basis of Z2

2 and {ė1, ė2, ..., ėm} be the standard basis of Zm2 .
Let A,B ∈ V (Jm×2Z2

)∗ non-adjacent vertices. We write A =
∑m

i=1 ė
t
iai and B =

∑m
i=1 ė

t
ibi for

some ai,bi ∈ Z2
2. We divide into two cases:
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(i) The first case there exists 1 ≤ i < j ≤ m such that both sets {ai,aj} and {bi,bj} are
linearly independent. Hence

det(et1ai + et2aj) = 1 and det(et1bi + et2bj) = 1.

As a result we obtain a path
A ∼ ėtiai + ėtjaj ∼ B.

(ii) The second case is that for any 1 ≤ i < j ≤ m with {ai,aj} is linearly independent implies
{bi,bj} is linearly dependent. So, let 1 ≤ i < j ≤ m with {ai,aj} is linearly independent.
Then {bi,bj} is dependent. we have three subcases:

a. the case bi = bj = 0. Let 1 ≤ k, l ≤ m such that {bk,bl} is independent. In this case,
i, j, k, l are all different integers and the set {ak,al} is dependent. Then we have three
cases.
– If ak = al = 0 then we obtain the following path

A ∼ ėtiai + ėtjaj + ėtkai + ėtlaj ∼ B.

– If ak = al 6= 0 then {ai,ak} or {aj ,ak} are independent and we have the following
path

A ∼ ėtiaj + ėtkai + ėtlaj ∼ B, or

A ∼ ėtjaj + ėtkai + ėtlaj ∼ B.

– Without loss of generality suppose ak 6= 0 and al = 0, then we obtain the following
path

A ∼ ėtibl + ėtkbk + ėtlbl ∼ B, or

A ∼ ėtjal + ėtkbk + ėtlbl ∼ B.

b. If bi = bj 6= 0 then there is k such that {bi,bk} is linear independent. In this case we
have {ai,ak} is dependent. Then we obtain

A ∼ ėtiai + ėtjaj + ėtkaj ∼ B.

c. Without loss of generality suppose bi = 0 but bj 6= 0. Then there exists k so that
{bj ,bk} is an independent set. In this case {aj ,ak} is dependent. Then we have

A ∼ ėtiai + ėtjaj + ėtkaj ∼ B. �

4. Conclusion
Let F be a field. The square matrix Jacobson graph consists of 3 kinds of subgraphs which are
empty subgraph, complete subgraph and bipartite subgraph. The non square matrix Jacobson
graph consist of empty subgraph and connected subgraph. For connected subgraph, it diameter
≤ 4.

4.1. Concluding Remarked:
In this article some properties concerning matrix Jacobson graph of a field F . For further
research we will extend these result to matrix Jacobson graphs of any finite local commutative
ring.

Acknowledgments
This research is funded by Hibah PMDSU.



ICCGANT 2019

Journal of Physics: Conference Series 1538 (2020) 012008

IOP Publishing

doi:10.1088/1742-6596/1538/1/012008

8

References
[1] Akbari S, Khojasteh S and Yousefzadehfard A 2015 The proof of a conjecture in Jacobson

graph of commutative ring J.Algebra Appl 14 no.10, 1550107

[2] Azimi A, Erfanian A and Farrokhi M 2013 The Jacobson graph of commutative rings J.
Algebra Appl 12 no.3 1250179

[3] Azimi A, Erfanian A and Farrokhi M 2014 isomorphisms between Jacobson graphs Rend.
Circ. Mat. Palermo 63 no.2 pp 277-286

[4] Azimi A and Farrokhi M 2017 Cycles and paths in Jacobson graphs Ars Combin 134 pp
61-74

[5] Fattahi Z, Erfanian A, Alinejad M 2019 Some new results on Jacobson graphs Rend. Circ.
Mat. Palermo 68 pp 129–137

[6] Ghayour H, Erfanian A, Azimi A and Farrokhi M 2018 n-array Jacobson graphs the Iranian
Mathematical Society, Iran Vol.43 no.7 pp 2137-2152

[7] Ghayour H, Erfanian A and Azimi A 2018 Some result on the Jacobson graph of a
commutative ring Rend. Circ. Mat. Palermo 67 pp 33-41

[8] McDonald B R 1947 finite rings with Identity (New York: Marcel Dekker Inc)


