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Abstract
A pressure-based semi-implicit procedure has been developed for the com-
putation of compressible flows on a system with collocated finite volume
formulations. The method includes the implementation of a high-order accu-
rate weighted essentially non-oscillatory scheme within the pressure-based
algorithm which employs an approximate Riemann solver for the computa-
tion of the cell face inviscid fluxes. The developed scheme is applied to the
computation of unsteady compressible flow through a shock tube which expe-
riences various Mach numbers, and the computations are compared with an
analytical solution. The computations indicate that the developed procedure
leads to sharp discontinuity representation without creation of spurious oscilla-
tions. Then, the developed numerical method is utilized to investigate unsteady
two-dimensional flow for a lax configuration and the results are compared with
the results of the similar scheme in the density-based algorithm. At the end, the
investigation of steady compressible flows in bump and wedge channel is con-
sidered. The simulations show a considerable improvement over the existing
pressure-based method. The investigations show that the developed method is
suitable for studying compressible steady and unsteady flows.
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1 INTRODUCTION

In recent decades, the numerical study of flows with discontinuities has always been of interest to many researchers.
They have tried to develop a unified method for analyzing the flow in compressible and incompressible regimes.1-22 The
main objective is to capture all flow phenomena including sharp discontinuities, with a minimum number of grid cells.
It is often challenging to develop shock-capturing methods. Many efforts have been performed to develop such meth-
ods. Part of these efforts have resulted in the development of a high-order accurate bounded schemes, remarkably the
total variation diminishing (TVD),14,15,23 weighted compact nonlinear scheme,24 monotone advection upstream split-
ting method,25,26 essentially non-oscillatory (ENO)27 and weighted essentially non-oscillatory (WENO)28-34 techniques.
Although high-order TVD scheme generally presents oscillation-free shock profiles, it switches to the first-order accuracy
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at discontinuities to bound the results. In practical applications, a uniform second-order bounded scheme is very desir-
able. To eliminate the local restrictions of the TVD scheme, the high-order accurate ENO scheme has been developed by
Harten et al.35-38 Instead of restricting the increase of total variations as in TVD, the ENO scheme permits the variations to
increase only by an amount on the level of local truncation errors. In TVD and ENO schemes, a proper flux limiter shall
be utilized to bound the results near discontinuities. In 1994, a WENO scheme was introduced by Liu et al.39 In the ENO
scheme, after considering some polynomials, the smoothest polynomial is selected using an appropriate flux limiter at the
target cell boundary, while WENO uses a series of weighted coefficients of all these polynomials and considers them all in
the prediction of the flux at the target cell boundary without the need for any flux limiter. One of the advantages of WENO
scheme is that it operates intelligently and it does not require any adjustments to match the flow regime. Because of the
benefits and accuracy of the scheme, the development of WENO has been studied by many researchers and various ver-
sions of this family have been introduced (JSWENO,40 MWENO,41 WENOZ,42 WENO17,43 WENOMZ,44 HWENO45). The
details of these studies are not in the scope of the present work. In most of these versions, weighted coefficients are differ-
ent from others. Most of these high-resolution schemes along with a Riemann solver have been applied in a density-based
algorithm35-45 which is only suitable and applicable to highly compressible flows. The numerical simulations of the tran-
sonic and supersonic flows are commonly performed by density-based methods which solve the set of the nonlinear
coupled systems of equations governing the flux of mass, momentum, and energy. Due to the form of coupled equations,
it is complicated to solve them implicitly and it is best to solve the system of equations explicitly to control the compu-
tational costs. It should be noted that, using the explicit method, a series of restrictions such as time step restriction are
entered into the calculations. Nevertheless, a pressure-based algorithm can offer the capability of handling compressible
and incompressible flows in a unified manner without any of the limitations mentioned for the density-based algorithm.
In the pressure-based algorithm the momentum and energy equations are considered in a segregated approach along
with an equation for the pressure field, namely the pressure-correction equation. This equation is derived by combining
the momentum and continuity equations. Since pressure-based algorithms in their typical formulation result in an ellip-
tic behavior, they need some modifications for managing the nature of the wave propagation in compressible flows. By
contrast, density-based methods which are very effective for calculation of compressible hyperbolic flows become inef-
ficient as the Mach number decreases. Although there are some tricks for convergence such as artificial compressibility
or preconditioning,46-51 practically, these methods are not well matched for calculation of flows with extensive regions
of low Mach numbers, that is, Mach numbers less than 0.3. It has been shown that, even using the most sophisticated
procedures, density-based algorithms are less efficient than pressure-based algorithms for incompressible flows.52

Most of the studies done based on the pressure-based algorithm for simulation of flows at all Mach numbers have
focused on the corrections of the algorithm and simple numerical schemes such as the central difference scheme,
the upwind difference scheme, or the combination of these two schemes have been used.1-8 Issa and Javareshkian14,15

were among the first researchers to implement a high-resolution TVD scheme into a pressure-based algorithm. Most
researchers believe that the pressure-based algorithm in which all equations are solved at the same time, that is, fully
coupled algorithm,19-22 is more efficient for compressible flow simulations. Because of the nature of the coupled govern-
ing equations, these methods are less efficient, in terms of numerical cost. Most of the studies have been performed on
steady flows. In most cases, transient flows have not been studied at all, because the formulations have been derived in
steady form.

It can be said that, so far, no research has been carried out on the implementation of WENO family schemes for the
development of pressure-based algorithms to study shocks and discontinuities in compressible flows. The main objective
includes the development of a method for simulation of flows at all Mach numbers by extending the formulation to
ensure all properties, especially shock-capturing. This method is developed in a unified formulation that can be used
for one- and two-dimensional, compressible and incompressible flows. Also, it is suitable for both steady and unsteady
flows. Although the study of viscous flows is not within the scope of the present work, the method is developed in a
way that is appropriate for studying viscous and inviscid flows. In the present work, for the first time, the discretization
details and linearization procedure of the equations by using the WENO scheme in the pressure-based framework are
introduced. The paper ends with the simulation of flows in different regimes for the assessment of general features of
the developed method in shock and discontinuity capturing. The results are compared either with available theoretical
solutions or with other numerical solutions reported in literatures. For this purpose, a density-based code is used which
has been written based on the method presented in Reference 53 and, its results are computed and presented. It is shown
that the developed method has the same accuracy as the density-based algorithm in unsteady compressible flows, while
the developed method has a lower computational cost. Also, the results reported in the literatures related to the TVD
pressure-based method are used for comparison in steady flows and shock tube test case.
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2 GOVERNING EQUATIONS AND ALGORITHM

Regardless of the body forces, the mathematical models expressing transport of mass, momentum, and scalar flux can be
summarized as follows:

𝜕𝜌

𝜕t
+

𝜕
(
𝜌Uj
)

𝜕Xj
= 0 (1)

𝜕
(
𝜌Uj
)

𝜕t
+

𝜕
(
𝜌UjUi − τij

)
𝜕Xj

= 0 (2)

𝜕 (𝜌𝜙)
𝜕t

+
𝜕
(
𝜌Uj𝜙 −𝓆j

)
𝜕Xj

= S𝜙 (3)

The stress tensor and scalar flux vector are usually expressed in terms of basic independent variables. The scalar flux
vector for energy equation is usually given by Fourier’s law:

𝓆j = Γ 𝜕T
𝜕Xj

(4)

The stress tensor for a Newtonian fluid is

τij = −P𝛿ij

viscous terms
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−2
3
𝜇
𝜕Uk

𝜕Xk
𝛿ij + 𝜇

(
𝜕Ui

𝜕Xj
+

𝜕Uj

𝜕Xi

)
(5)

In the present work, although the inviscid flow (viscous terms ≅ 0) is considered, but the method is developed in a way
that is appropriate for studying viscous and inviscid flows. Equations of continuity, momentum, and energy equations
can each be rewritten into the following general transport equation that is helpful for the presentation of the general
discretization Equation (6):

𝜕 (𝜌𝜙)
𝜕t

+
𝜕
(
𝜌Uj𝜙

)
𝜕Xj

= S𝜙 (6)

where 𝜙 can equal 1, U1 or U2 and e for continuity, momentum and energy equations, respectively. The nonlinear parts
of the momentum and the energy equations are explicitly considered in the source term, S𝜙. For inviscid flows, S𝜙 equals
0 for the continuity equation, − 𝜕P

𝜕x
and − 𝜕P

𝜕y
for the momentum equation in x and y direction and, −P

(
𝜕U1
𝜕x

+ 𝜕U1
𝜕y

)
+

𝜕

𝜕x

(
Γ 𝜕T

𝜕x

)
+ 𝜕

𝜕y

(
Γ 𝜕T

𝜕y

)
for the energy equation. To complete the governing equations, an equation of state is needed. In

this paper, the perfect gas equation is considered as the equation of state as follows:

P = 𝜌RT (7)

In the current study, the discrete form of general equation is obtained by employing the finite volume method based
on a general coordinate structured grid shown in Figure 1.

For the sake of brevity, the derivation of the two-dimensional discretized equations is considered with reference to
only one cell face of the control volume, namely e. the derivation for other cell faces can be performed similarly. The
following equation is obtained by using the divergence theorem for general transport equation, Equation (6), over each
control volume:

𝛿V
𝛿t
(
(𝜌𝜙)CC

m+1 − (𝜌𝜙)CC
m) + Ie − Iw + In − Is = S𝜙𝛿V (8)

The flux, I, includes the convective flux, IC, and the diffusive flux, ID. The interpolation of the diffusion term does
not have any visible effect, while the method of calculating the average conveted (cell face) value of the dependent flux
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F I G U R E 1 Control volume
arrangement and nomenclature [Colour
figure can be viewed at
wileyonlinelibrary.com]

(e.g., 𝜙e) plays an important role and, it affects the accuracy, numerical oscillation, conservation and boundedness of the
numerical scheme. In the present work, the diffusion term is approximated by a central difference scheme. As an example,
it can be written for cell-face e as follows:

ID
e = e (𝜙CC − 𝜙E) (9)

To calculate the convective flux, a method must be used that is able to capture sharp discontinuities like shock waves
and contact discontinuities. The convective flux is calculated as:

IC = ICupwind −
(

ICupwind − ICWENO
)

(10)

Equation (11) is obtained by substituting Equation (10) into Equation (8).

𝛿V𝜌m
CC

𝛿t
(
𝜙CC

m+1 − 𝜙CC
m) + (ICupwind

e +e
(
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E
)
− Fe𝜙

m+1
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)
−
(

ICupwind

w +w
(
𝜙m+1

W − 𝜙m+1
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)
− Fw𝜙

m+1
CC

)
+
(

ICupwind

n +n
(
𝜙m+1

CC − 𝜙m+1
N
)
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m+1
CC

)
−
(

ICupwind

s +s
(
𝜙m+1

S − 𝜙m+1
CC

)
− Fs𝜙

m+1
CC

)
= S𝜙𝛿V +

[(
ICupwind

e − ICWENO

e

)
−
(

ICupwind

w − ICWENO

w

)
+
(

ICupwind

n − ICWENO

n

)
−
(

ICupwind

s − ICWENO

s

)]m
(11)

The difference between the high-order and low-order convection fluxes is shifted to the right of the equation.
Substituting the upwind convection terms, it is obtained as:(

𝜌𝛿V
𝛿t

− Fe +e + Fw +w − Fn +n + Fs +s

)m

𝜙CC
m+1

= H
(
ϕm+1) + (S𝜙𝛿V

)m +
(
𝜌𝛿V
𝛿t

𝜙CC

)m

+
[(

ICupwind

e + ICWENO

e

)
−
(

ICupwind

w + ICWENO

w

)
+
(

ICupwind

n + ICWENO

n

)
−
(

ICupwind

s + ICWENO

s

)]m

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
differed correction terms

(12)

In order to guarantee the stability of the solution, only the upwind convective fluxes included in H(𝜙m+ 1), are consid-
ered implicitly. For improving the accuracy of the results, the contribution of the other flux parts like deferred correction
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terms, S𝜙𝛿V and ((𝜌𝛿V/𝛿t)𝜙CC),are evaluated based on known quantities in the old time-step (mth), that is, explicitly.
These terms are added to the source term, S𝜙, and form a new source term as:

S′𝜙 = S𝜙 + Terms calculated explicitly (13)

The new source term, S′𝜙, contains quantities arising from non-orthogonality, external sources, dissipation terms,
deferred correction terms, and (𝜌𝛿V/𝛿t)𝜙CC of the old time-step/iteration level. With the preceding above consideration,
the general discretized equation takes the form

aCC𝜙CC
m+1 =

E,W ,N,S∑
k

ak𝜙
m+1
k + S′𝜙 (14)

where H
(
𝜙m+1) = ∑E,W ,N,S

k ak𝜙
m+1
k and the ak are coefficients whose expressions can be driven using upwind difference

scheme for convective terms and include diffusion terms. aCC is as follows:

aCC = 𝜌𝛿V
𝛿t

+ aE + aW + aN + aS (15)

Computations of high-order convective fluxes including mass, momentum and energy fluxes are performed by approx-
imate Riemann solver which uses the WENO scheme for interpolation from the nodes at the neighboring points. The
high-order convective flux can be written as

ICWENO

e = 1
2

⎛⎜⎜⎜⎜⎝
ICLeft + ICRight − R̃|Λ̃|L̃(QRight

e − QLeft
e

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dissipation term

⎞⎟⎟⎟⎟⎠
(16)

Tilde, ∼, indicates that the values in matrix are considered based on Roe average. To calculate the eigenvalues (𝛬), left
(L), and right (R) eigenvectors, the appropriate matrixes for curvilinear coordinate system which have been presented in
Reference 54 are used. For a curvilinear grid, conservative variable vector and convective flux vector are shown by Q and
Iξ, in e cell face, as follows:

Q =

⎛⎜⎜⎜⎜⎜⎝

𝜌

𝜌U1

𝜌U2

𝜌e

⎞⎟⎟⎟⎟⎟⎠
, I𝜉 =

⎛⎜⎜⎜⎜⎜⎝

𝜌U𝜉

𝜌U𝜉U1 + PG𝜉1

𝜌U𝜉U2 + PG𝜉2

𝜌U𝜉 (e + P∕𝜌)

⎞⎟⎟⎟⎟⎟⎠
U𝜉 = U1G𝜉1 + U2G𝜉2

G𝜉1 = yne − yse, G𝜉2 = −(xne − xse) (17)

where U1, U2, P, e are the velocity in x and y direction, the static pressure and the internal energy, respectively. ξ and 𝜂
are the coordinate axes in the curvilinear coordinate system. The first, the mass flux, and fourth, the energy flux, terms of
the flux vector (I𝜉) are in line with the curvilinear coordinate system, (𝜉, 𝜂). The second and third terms, the momentum
fluxes, are in line with a Cartesian coordinate system.

Obviously, any multidimensional high-order scheme can be used into the procedure and this is one of the benefits
of the developed method. For the sake of completeness in the present work, a five-point stencil WENO reconstruction is
considered. It is known as the third-order WENO reconstruction, WENO3R, which can be written in the following form
to construct left and right states at the cell boundary from the solution available at neighboring points.

QLeft
e = 𝜔1

2
(−QW + 3QCC) +

𝜔2

2
(QCC + QE) (18)
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QRight
w = 𝜔1

2
(QW + QCC) +

𝜔2

2
(3QCC − QE) (19)

Each two neighboring points form a section which is called stencil. 𝜔1, 𝜔2 are the nonlinear weight factors and are
defined as

𝜔1 = 𝛼1

𝛼1 + 𝛼2
, 𝜔2 = 𝛼2

𝛼1 + 𝛼2

⎧⎪⎨⎪⎩
𝛼1 = 𝜆1

(𝛽1+𝜖)2

𝛼2 = 𝜆2

(𝛽2+𝜖)2

⎫⎪⎬⎪⎭ (20)

𝛽1, 𝛽2 are called smoothness indicators which are defined as

𝛽1 = (QCC − QW )2, 𝛽2 = (QE − QCC)2 (21)

Equations (18)–(21) indicate that if the smoothness indicator increases, the function Q becomes smoother in the
stencil. Therefore, if there is a discontinuity such as shock wave in the stencil, its weight approaches to zero, and the other
stencil becomes more effective. In Equation (18), the linear weighting coefficients, 𝜆1, 𝜆2, equal 1/3 and 2/3, respectively.
For Equation (19), these coefficients are different and 𝜆1 = 1/3, 𝜆2 = 1/3. It is recommended to consider 𝜖 = 10−6 for
eliminating zero denominators.

2.1 Solution algorithm

Most of contemporary pressure-based methods employ a sequential iteration technique in which the different conser-
vation equations are solved one after another. This iteration level is usually considered as outer iteration. The common
approach taken for performing continuity is to combine the continuity equation with momentum to derive an equation
for pressure, namely pressure-correction. For unsteady test cases, the present work employs the PISO algorithm intro-
duced by Issa.55 In PISO algorithm, at each time step, the discretized equations are implicitly solved by a sequence of
predictor and corrector steps which are considered as inner iteration. Issa has shown that if the number of internal iter-
ation loops is more than one, the time accuracy will be equivalent to second order accuracy. Also, Xiao et al (fig. 8(B) of
Reference 22) have shown that the choice of time integration scheme does not have any visible effect in the computed
results. PISO algorithm is especially efficient for unsteady flows, as it does not involve expensive iteration. For steady test
cases, SIMPLE algorithm is employed. At each time step, linear equations of momentum and scalar are solved by strongly
implicit procedure and pressure-correction equation is solved by Bi-conjugate gradient method.

3 PRESENTING THE RESULTS

In the coming section, both two-dimensional and one-dimensional inviscid flows are computed. The results are compared
either with existing numerical solutions obtained by the others or with analytical solution, where available.

The first validation is the flow through a shock tube in which subsonic, transonic, and supersonic flows are computed
and compared with analytical solution presented in Reference 56. Then, the results of inviscid unsteady flow through
two-dimensional Riemann problem defined by Lax and Liu57 are compared with the existing numerical simulation,
including the WENO3R density-based results presented in Reference 57. For the third test case, the steady bump channel
flows ranging from subsonic to supersonic regime are investigated and compared with the TVD-Van Leer results reported
in literature. This section ends with a supersonic steady flow test case through a ramp with Min = 2.

3.1 One-dimensional shock tube

An important practical application of unsteady one-dimensional flow is the shock tube problem. Figure 2 illustrates
the initial condition of the shock tube which is a long constant area tube divided in two sections by a diaphragm. One
section is filled with high pressure gas and the other section is filled with the low-pressure gas. At t> 0, the diaphragm
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F I G U R E 2 the initial
condition of shock tube test case1
[Colour figure can be viewed at
wileyonlinelibrary.com]

raptures and a shock wave travels to low pressure region, while an expansion wave propagates to high pressure region
with the speed of sound, h4, at its front. Theoretically, since the gas state in shock region is obtained by an irreversible
process and the gas in expansion region is obtained by an isentropic process (constant entropy, T2 ≠T3), a contact
discontinuity exists between regions. Therefore, four different regions have to be captured, as a result of a numerical
computation.

For this test case, the pressure ratio is considered P4/P1 = 10 and, the number of grid points and time step equal 100 and
0.000005 s, respectively. The CFL (Courant-Friedrich-Lewy) number based on speed of sound (CFL No. = (U1 + c)𝛿t/δx)
is considered 0.035. It has been shown that if the CFL is less than 0.1, the shock tube numerical solution is independent
of the CFL.58 Based on ideal gas assumption, the initial temperatures of T4 = 352.89, T1 = 282.31 K are calculated. Same
gases are chosen on both sides of the diaphragm (CP = 1005(J/kg K), 𝛾 = 1.4). For all flow variables, zero normal gradient
boundary conditions are imposed at all boundaries. The final simulation time is considered 0.006 s and, the expansion
and shock waves do not reach the outlet boundary at this time. Figure 3 shows the dimensionless pressure, dimensionless
density, velocity and Mach No. variations along the shock tube at t = 0.006 s computed with different schemes and algo-
rithms. The pressure and density have been normalized by reference values at high pressure region at initial condition.
Guided by the findings from Figure 3, it is clearly seen that simulation results reproduce the discontinuities in the velocity,
pressure, density and Mach number with very good accuracy and all these field parameters are in good agreement with
the analytical (exact) solution. Predicted pressure distributions in Figure 3(A) show that the pressure-based WENO3R
result is well consistent with that of the density-based WENO3R. However, the WENO3R pressure-based result is a little
bit more accurate than the others in the expansion region. In Figure 3(B), comparison of the density variations along the
shock tube for different schemes well depicts the performance of schemes. In case of the first order upwind scheme, the
overall smearing of the contact discontinuity is mainly attributed to the first-order accuracy used for convective fluxes
which produces excessive false diffusion. In zoomed views of Figure 3(B), the results of density show that the developed
pressure-based WENO3R method is more accurate than the density-based results. The contact discontinuity position has
been exactly predicted using this method. Based on the presented results, it is clear that all schemes in the shock disconti-
nuity have almost enough accuracy, but the accuracy of the results in contact discontinuity is quite different for different
schemes. It seems that this zone is more sensitive to numerical accuracy and this issue must be considered in numeri-
cal simulations. Figure 3(C) shows that the velocities of the shock wave and the head of expansion fan have been well
predicted.

In addition to qualitatively comparing the results, l2-norms of filed variables are also calculated in order to quantify
the results quantitatively as

||𝜑||2 =

√√√√k=Number of Cells∑
k=1

|𝜑ref
k − 𝜑k|2 (22)

The analytical solution is considered as reference solution. The computed l2-norms have been tabulated in Table 1 for
different schemes and algorithm. The l2-norms have been computed at t = 0.006 s for a grid with 100 cells. Although the
pressure-based WENO3R method yields smaller l2-norms, but it is clear from the results presented in Figure 3 that the
results for both algorithms (WENO3R density-based/pressure-based) are consistent.

For the sake of completeness, pressure-based TVD results for density variation presented in Reference 14 are compared
with pressure-based WENO3R results. In Figure 4, as it is seen, the WENO3R solution is steeper and more accurate
in contact discontinuity and shock regions. It is obvious because WENO3R has second order accuracy in these regions
while TVD switches to the first order accuracy in discontinuities. Of course, coarse grid should be used to better evaluate
the accuracy of the WENO and TVD schemes. Actually, the main idea of using high-order accuracy in high resolution
schemes is to control the computational cost by reducing the number of grid cells. Since the result of the TVD scheme
has been used based on Reference 14, it is not possible to compare on a coarse grid.
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(D) Mach No. distribution along the shock tube

(B) Normalized density distribution along the shock tube

F I G U R E 3 Comparison of the shock tube results at t = 0.006 s [Colour figure can be viewed at wileyonlinelibrary.com]

3.2 Two-dimensional Lax configuration

For the next test case, unsteady two-dimensional (2-D) Lax configuration is investigated, namely configuration 16.
The performance of five-point stencil high-resolution WENO3R scheme is discussed by using selected benchmark
test case. This test case has been described by Lax and Liu.57 The interested reader is referred to their archival
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T A B L E 1 Computed l2-norms of field
variables for shock tube, for the solutions
obtained by various schemes/algorithm

Scheme/algorithm Density Pressure Mach

Upwind-pressure based 8.184635E-02 7.86797E-02 1.724959E-01

WENO3R-pressure based 5.081382E-02 4.98245E-02 1.286552E-01

WENO3R-density based 5.859061E-02 5.53074E-02 1.436417E-01
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F I G U R E 4 comparing the TVD14 and WENO3R pressure-based results for density in the shock tube [Colour figure can be viewed at
wileyonlinelibrary.com]

manuscript for the details of the wave structures of each configuration for other benchmark test cases. 19 config-
urations have been presented by Lax and Liu.57 Actually, this configuration is a kind of 2D shock tube with dif-
ferent pressure ratios, that is, different shock strength in the same field. Using configuration 16 as test case, the
shock-shock and expansion-shock interaction can be investigated. Also, the performance of developed WENO3R
pressure-based scheme is evaluated in unsteady 2-D flow. Figure 5 indicates the initial condition of the test case.
The ratio of specific heats, 𝛾 , is considered 1.4. For the sake of brevity, just the pressure and density contours are
presented.

Zero normal gradients for all flow variables are imposed at the domain boundaries. One of the most common methods
for boundary conditions is to consider virtual cells behind the boundaries. For a wall where the cells end there, the
reflexive boundary condition is shown in Figure 6. For example, the fifth order accuracy requires 3 virtual cells that are
shown in the figure.
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F I G U R E 5 Initial conditions for two-dimensional Riemann test case (configuration 16)
defined by Lax and Liu57

F I G U R E 6 Boundary and virtual cell conditions according to the
accuracy of the interpolation scheme near boundary

3.2.1 Grid study

Lax configuration is a numerical test case rather than a physical test case. So, there is no analytical solution or exper-
imental data to quantify the results. In these cases, normally, the computed results with a fine grid are considered as
reference solution. For this aim, in this sub-section a grid study is performed and the results of this study are presented
in Figures 7 and 8. Four grid sizes of 100× 100, 200× 200, 400× 400, and 800× 800 are considered. To examine the results
more quantitatively, Figure 8 shows the density distributions along the diagonal of the geometry. Computed results using
pressure-based WENO3R show that results do not change with increasing the grid size more than 400× 400 cells. Addi-
tionally, Figure 9 illustrates that using a grid with fine mesh may drastically increase the CPU elapsed time. So, in the
current study, the grid size 400× 400 is chosen for performance investigation of the developed pressure-based WENO3R
method (Table 2).

3.2.2 Investigating Lax configuration 16 using different methods

The comparison of the results computed by using different methods is illustrated in Figure 10. The results involve
expansion, shock, and contact discontinuity. The density filed obtained by the pressure-based WENO3R method is
compared with the benchmark. This comparison is shown in the top row of Figure 10. The bottom row presents the
density and pressure contours simulated by density-based and pressure-based algorithms. Since the range and num-
ber of lines have not been mentioned for the results presented by Lax, therefore 40 equidistant lines are considered
for presenting the results in Figure 10. In part (C) of the figure, density lines obtained by WENO3R density-based
(red lines) are compared with density lines (black lines) overlaid on density contour computed using the WENO3R
pressure-based.

As expected, the sharp non-oscillatory gradients have been well obtained using the developed WENO3R
pressure-based code. Also it can be seen that there is no significant and visible difference between the pressure-based
WENO3R and density-based WENO3R results. Our investigations clearly show that from accuracy point of view, the dis-
sipative character of the scheme is more crucial than the selection of the solution algorithm. The developed WENO3R
pressure-based method well predicts the sharp gradients, especially for contact discontinuities compared with the bench-
mark. The reason is that the approximate Riemann solver is highly sensitive to how well a discontinuity is aligned with
the underlying grid of the problem. For the test cases in which the grid is not aligned with the discontinuities, cross cou-
pling between the Riemann problems in the different directions introduces numerical dissipation error. The developed
code considers the effects of the cross coupling.
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F I G U R E 7 Computed results for configuration 16 at time t = 0.2. Comparison of density lines (0.55–1)0.15 equidistant contour lines
are shown using WENO3R scheme for different grid sizes [Colour figure can be viewed at wileyonlinelibrary.com]

To quantify the results quantitatively, the l2-norm is computed and presented in Table 3. The slight difference in
computed l2-norm means that the pressure-based algorithm, like the density-based algorithm, is suitable for simulating
the flow field with discontinuities.

3.2.3 Computational cost

All computations have been carried out using the Fortran compiler on a windows 10, 64-bit operating system made up of
Core(™) i7-4790 Intel (3.6 GHz) utilizing a 16.0 GB installed memory (RAM). For configuration 16, the total CPU elapsed
time obtained using pressure-based and density-based algorithms is presented in Table 4. Although we have not tried
any efforts for writing optimal code, but our investigations on all Lax configurations show that from computational cost
point of view, the WENO pressure-based algorithm is obviously more efficient than the WENO density-based, and the
WENO pressure-based decreases the average computational cost up to 15% compared to WENO density-based. This is
completely predictable. The non-linear system of governing equations and explicitly solving the equations can affect the
computational costs of the density-based algorithm.
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(A) Density along the reference line with negative slope

(B) Zoomed view for “a” panel
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(C) Density along the reference line with positive slope
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F I G U R E 8 Density
variation for configuration 16
along the reference lines
regarding to Figure 7 [Colour
figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 9 CPU elapsed time for different grid sizes,
configuration 16 [Colour figure can be viewed at
wileyonlinelibrary.com]
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T A B L E 2 CPU elapsed time for different
grid sizes, configuration 16 Grid size 100× 100 200× 200 400× 400 800× 800

CPU elapsed time (s) 118.0317 1636.855 7024 35442.92

F I G U R E 10 Configuration 16 at time t = 0.2 [Colour figure can be viewed at wileyonlinelibrary.com]

3.3 Subsonic, transonic, and supersonic flow over a bump channel

In this section, steady flows are considered at different speeds ranging from subsonic to supersonic, over a bump inside a
channel. The channel has a height of 1.0 m and a length of 2.0 m for subsonic and transonic cases, and 3 m for supersonic
case. The bump has been placed at the center of the geometry on the lower wall and has a chord of 1.0 m. The channel
geometry is shown in Figure 11. In this study, in cases of subsonic and transonic flows, the thickness-to-chord ratio of the
bump is considered 10% and, in case of supersonic flow, it is 4%. These are test cases frequently used in literatures, for
example References 15,22.
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Scheme/algorithm Density Pressure

WENO3R-pressure based 1.2261E-01 1.2022E-01

WENO3R-density based 1.0740E-01 1.0138E-01

Note: Reference solution is obtained by a grid size 800× 800.

T A B L E 3 Computed l2-norms of density and pressure fields for
configuration 16 obtained by grid size 400× 400

Scheme/algorithm CPU elapsed time (s)

WENO3R-pressure based 7024

WENO3R-density based 7826

T A B L E 4 CPU elapsed time for different methods, configuration 16

Inlet Outlet

Upper wall

Lower wall

(B) Grid for supersonic case

(A) Grid for subsonic and transonic cases 

F I G U R E 11 Geometry and
structured mesh for the flow simulation
in bump channel [Colour figure can be
viewed at wileyonlinelibrary.com]

3.3.1 Subsonic test case

To simulate subsonic flow within the bumped channel, a steady inlet Mach number of Min = 0.5 is set. Also, the pressure
is specified and fixed as Ptotall,in = 120,198.9 Pa and Pout = Pref = 101,330 Pa, at the inlet and outlet of the channel. The
reference value for temperature is specified to Ttotall,in = 302.55 K. For the simulations, a structured relatively coarse grid
with 98× 26 cells is employed. The Mach lines overlaid on Mach contour of the simulated steady result are shown in
Figure 12 using WENO3R and TVD pressure-based methods. The Mach number profile at the upper and lower walls
is illustrated in Figure 13. As expected, the Mach number distribution computed using different schemes are in good
agreement, because there are not any shock or discontinuity in the flow field. Almost all the schemes developed for the
Euler equations are acceptable for smooth flows without strong gradients.

In case of steady simulations, the outer iteration is ended according to a fractional change criterion typically of the
form.

Residual (m) = Max

(|||||𝜑
m − 𝜑m−1

𝜑ref

|||||
)

< 𝜀 (23)

where 𝜑ref are reference values at the inlet of the flow field and, 𝜀 is a small positive number. m is the iteration counter.
In the present work, 𝜀 has been considered 10−5. Since the accuracy of the results in the subsonic flow is almost the
same for different schemes, it is better to check and compare the convergence rate in this case. Figure 14 illustrates
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F I G U R E 12 The Mach lines overlaid on Mach contour for bump
channel, Min = 0.5, subsonic test case
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F I G U R E 13 Mach number distribution along the lower and
upper walls of bump channel, Min = 0.5; computed results using
Upwind and WENO3R schemes vs results from Reference 22
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 14 Convergence rate of the Upwind and WENO3R
schemes in the sense of the local truncation error for bump channel,
subsonic test case [Colour figure can be viewed at
wileyonlinelibrary.com]

the convergence rate for subsonic flow in bumped channel. As it is seen, at the beginning of the convergence process,
due to the reduction of dissipation in the WENO3R scheme, the WENO3R convergence process moves away from the
Upwind. However, due to the increasing accuracy of the calculations, the convergence process of the WENO3R scheme
improves so that in the middle of the convergence process, similar behavior is seen between the schemes. Because the
deferred correction method has been employed to develop numerical method, so the convergence rate of the developed
WENO3R pressure-based method is similar to first order upwind scheme, especially at the end of simulation. Actually, the
convergence characteristic of the upwind scheme has been used to develop the WENO pressure-based numerical method.

3.3.2 Transonic test case

In order to study transonic flow for the bump channel, the boundary conditions are specified in the same manner as for
the previous subsonic flow case, but in the current test case, the flow speed is increased which results in a steady inlet
Mach number of Min = 0.675. The boundary conditions at inlet and outlet are specified as M = Min, Ptotall,in = 137,498.77,
Ttotall,in = 314.04 K and Pout = Pref = 101,330 Pa,. Simulations are computed by using the same grid as used for the subsonic
case. Figure 15 presents the Mach lines overlaid on Mach contour using WENO3R and TVD pressure-based methods.
The Mach number distribution along the upper and lower walls is shown in Figure 16. As it is seen, for the transonic
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(A) TVD scheme, ref. [15] (B) WENO3R scheme 
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F I G U R E 15 The Mach lines overlaid on Mach contour for bump channel, Min = 0.675, transonic test case [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 16 Mach number distribution along the lower and
upper walls of bump channel, Min = 0.675; computed results using
WENO3R schemes vs results from Reference 22 [Colour figure can
be viewed at wileyonlinelibrary.com]
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case, the computed result with WENO3R shows that a normal shock occurs on the top of bump due to increase in flow
speed, because of bump curvature. Obviously, the WENO3R result is in excellent agreement with the result reported in
Reference 22. The position of the shock and the amplitude of the shock are well predicted by employing the developed
pressure-based method. The WENO3R result has been obtained by a coarser grid (2548 cells) compared with the TVD-Van
Leer result reported in Reference 22 (6500 cells).

3.3.3 Supersonic test case

To achieve a supersonic flow case; velocity, pressure, and temperature are specified so that inlet Mach number is set
1.4. Similar to previous test cases, the boundary conditions at inlet are specified as Min = 1.4, Pin = Pref = 101,330 Pa
and T = Tref = 288 K. In supersonic test case, all the flow parameters are extrapolated at the outlet. In this case, the
thickness-to-chord ratio equals 4%. Simulations are carried out on similar grid shown in Figure 11, with size 90× 30. The
Mach lines of the computed steady result are plotted in Figure 17. The Mach number profiles at channel walls are drawn
in Figure 18. According to this figure, the shock is well captured using pressure-based WENO3R method. Comparing
the WENO3R with TVD-Van Leer results, it can be concluded that the developed pressure-based WENO3R code predicts
more accurate results even with fewer number of cells. Also, the WENO3R predicts locally subsonic region at the upper
wall, while it has not been captured using TVD-Van Leer scheme. Although, Cheng et al have shown that this locally
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F I G U R E 17 Mach lines for bump channel in supersonic,
Min = 1.4 flow; comparing WENO3R with TVD Scheme15 using
pressure-based algorithm
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F I G U R E 18 Mach number distribution along the lower and
upper walls of bump channel, Min = 1.4; computed results using
WENO3R (present paper) and TVD-Van leer result from Reference
22 [Colour figure can be viewed at wileyonlinelibrary.com]

subsonic region can be captured by using a fine grid with size 14,500 cells, employing TVD-Van Leer scheme. Of course,
with the explanations mentioned in the introduction, it was predictable that WENO3R would have better performance
than TVD-Van Leer, however this performance is well seen at higher Mach number.

3.4 Supersonic flow over a wedge

The final test case is steady supersonic flow over a 10◦ wedge. The computation is performed on a structured grid with size
90× 30 shown in Figure 19. For this test case; velocity, pressure and temperature are specified so that inlet Mach number
is set Min = 2. The boundary conditions are similar to previous supersonic test case and, they are specified as Min = 2,
Pin = Pref = 101,330 Pa and T = Tref = 288 K. The Mach lines for WENO3R and TVD schemes are plotted in Figure 19. As it
can be seen, the oblique shock captured by WENO scheme is more compact and thinner than TVD. Figure 20 indicates the
Mach distribution along the upper wall and wedge surface. This figure shows that the pressure-based WENO3R method
well predicts Mach after the oblique shock and the Mach Angle (𝛽) with an error of less than one.

As can be seen from the drawn Mach lines; in some areas, especially after the shock, oscillations in the form of fine
waves are seen in the lines. These slight fluctuations are sign of dispersion in the method. But the results show that this
dispersion is almost completely controlled and improves the accuracy of the results. Comparing the Mach lines of the
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F I G U R E 19 Mach lines for a 10◦ wedge in supersonic flow for different schemes
using pressure-based algorithm [Colour figure can be viewed at wileyonlinelibrary.com]

(A) TVD scheme[15]

(B) WENO3R scheme

TVD

F I G U R E 20 Mach distribution along upper wall and wedge
surface for a 10◦ wedge in supersonic flow, grid size 90× 30 [Colour
figure can be viewed at wileyonlinelibrary.com]
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WENO3R and TVD schemes, it can be said that although the dispersion of the WENO3R is higher than TVD scheme,
however it is better controlled and, this shows the power of the WENO scheme.

4 CONCLUSIONS AND REMARKS

A pressure-based semi-implicit procedure has been developed that incorporates bounded high-resolution WENO3R
scheme and, therefore, it is well suitable for all flows including steady and unsteady. For the present study, the bound-
edness criterion has been determined based on WENO scheme which has been applied to the convective fluxes and

Downloaded from https://iranpaper.ir

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


2268 BALAJ and DJAVARESHKIAN

mass flux. However, this is the advantage of the present method that it has been developed in a flexible manner which
any high-order scheme can be simply incorporated in to the procedure. The unsteady test cases have been simulated
using WENO3R density-based algorithm and their results have been compared with WENO3R pressure-based results.
The steady numerical simulations for the bumped channel have been compared with the TVD coupled pressure-based
method. The comparisons showed that there is excellent agreement between the present calculations and either the ana-
lytical or other numerical solutions for one- and two-dimensional test cases in compressible flows. Also the developed
WENO3R pressure-based method has a lower computational cost. It has been shown that from computational cost point
of view, the developed pressure-based WENO3R is more efficient, up to 15%, than a density-based WENO3R. It has been
illustrated that the WENO scheme predicts sharp non-oscillatory gradient around discontinuities and predicts discon-
tinuities better than TVD scheme, even using lower number of grid cells. It is concluded that the developed method is
suitable for simulation of compressible flows where shock waves, expansion fans and discontinuities exist.
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NOMENCLATURE
A cell area (m2)
a coefficients in the discrete equations
CP specific heat capacity (kJ/kg K)
F mass flux (kg/s)
c speed of sound (m/s)
I flux
P static pressure (Pa)
Q conservative parameter
R right eigenvector
L left eigenvector
Λ eigenvalues matrix
Sϕ source term for 𝜙
t time (s)
T temperature (K)
U velocity vector (m/s)
U1 x velocity (m/s)
U2 y velocity (m/s)
 diffusion coefficient
Xj X1 = x, X2 = y
𝜌 density (kg/m3)
𝜔 weight coefficient in WENO scheme
𝛽 smoothness indicator
𝜆 weighted linear coefficient in WENO scheme
γ specific heat ratio, Cp/Cv
Γ thermal conductivity
𝜇 fluid viscosity
𝛿t time step (s)
𝛿V cell volume (m3)

𝛿ij Kronecker delta,
{

0 if i ≠ j
1 if i = j

e Internal energy (J)
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SUB INDEX
CC cell center
e Eastern cell face
w Western cell face
n Northern cell face
s Sothern cell face
ne Northern and Eastern cell faces interface
se Sothern and Eastern cell faces interface
E Eastern cell center
N Northern cell center
S Sothern cell center
W Western cell center
𝜂 the vertical coordinate axis in the curvilinear coordinate system
𝜉 the horizontal coordinate axis in the curvilinear coordinate system

SUP INDEX
m mth time step
C convection
D diffusion
Left left side of cell face
Right right side of cell face
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