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Abstract

In this note, the two-wavelet localization operator for square integrable representation
of a general homogeneous space is defined. Then among other things, the boundedness
properties of this operator is investigated. In particular, it is shown that it is in the
Schatten p-class.

Keywords Strongly quasi invariant measure - Two-wavelet Localization operator -
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1 Introduction and preliminaries

The name of localization operator goes back to 1988, when 1. Daubechies first used
these operators as a mathematical tool to localize a signal on the time frequency plane.
Recently, localization operators have been a subject of study in quantum mechanics;
in PDE and signal analysis (see [1,3,10]). Wong [12] has studied the localization
operators in the setting of homogeneous spaces with a G-invariant measure (see also
[2]). The localization operators in the setting of homogeneous space with an admissible
wavelet on general homogeneous space were studied in [11]. Also the two-wavelet
localization operators on the homogeneous space G/H has been investigated in [4,7,
8], where G/H was equipped with a relatively invariant measure. In this paper, we
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continue our investigation on the localization operators with two admissible wavelets
in a completely different and more general approach, by considering a strongly quasi
invariant measure on the homogeneous space G/H. The purpose of this paper is to
explore and develop certain results concerning two wavelet localization operators
in the setting of general homogeneous spaces. At this point for reader convenince
and fixing our notations, we recall some remarkable pointers of Radon measures on
homogeneous spaces.

Let G be a locally compact group and H be a closed subgroup of G. Consider
G/H as a homogeneous space equipped with a strongly quasi invariant measure v.
Note that G acts from the left on G/H in a natural way. We recall that a non-zero
positive Radon measure v is strongly quasi invariant if there is a continuous function
k:G x G/H — (0, o0) such that

dvg(kH) = (g, kH)dv(kH),

for all g, k € G. If the function « (g, -) reduces to constant, then v is called relatively
invariant under G. It is well known that any homogeneous space G/H possesses a
strongly quasi invariant measure and all such measures are constructed by a rho-
function p. We recall that a rho-function for the pair (G, H) is defined to be a
continuous function p : G — (0, co) which satisfies

Ag(h)

p(gh) = Ac(h)

p(g) (g€G,heH), (1.1)

where Ag, Apg are the modular functions on G and H, respectively (see [6]). For any
pair (G,H) and each rho-function p, there is a strongly quasi invariant measure v on
G/H such that

dvg(kH) = (g, kH)dv(kH) (g,k € G),

in which

o (gk)

JkH) = =22,
Kk (g, kH) 0

It is easy to see that

k(g182, X) = K (g1, 82x)k (g2, X),
Kk(e,x) = 1. (1.2)

A positive Radon measure v on G/ H is said to be G-invariant if v, = v for all ge G.
It is well known that G/H admits a G-invariant measure when H is compact. (for a
detailed account of Homogeneous spaces, the reader is referred to [6,7,9]).

Now, we recall the basic concepts of continuous unitary representations and con-
tinuous wavelet transform on homogeneous spaces [5]. For a Hilbert space H, let
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U (H) denote the group of unitary operators on H equipped with the strong operator
topology.
A continuous map

0:G/H— U(H)
gH — (o(gH)x, y)

that o(gkH) = 0(gH)o(kH), 0(g""H) = o(gH)* foreachx,y € Hand g, k € G,
is called a continuous unitary representation of homogeneous space G/H. Moreover a
closed subspace M of H is said to be invariant with respect to ¢ if o(gH)M < M, for
all g € G. A continuous unitary representation o is said to be irreducible if the only
invariant subspaces of H are {0} and H.

Note that, there is a significant relationship between the representations of homo-
geneous space G/H and representations of group G. That is, if ¢ is a representation of
G/H, then it defines a representation o of G in which the subgroup H is considered to
be contained in the kernel of 0. Conversely, any representation o of G which is trivial
on H induces a representation o of G/H by letting o(gH) = 0 (g).

Let o be a unitary irreducible representation of G/H on a Hilbert space H. A vector
n € 'H is said to be admissible if

/ k(g™ g H)l(n, o(gH)n)*dv(gH) < oo. (1.3)
G/H

An admissible vector n € H is called admissible wavelet if ||| = 1.

Note that (1.3) is well-defined [11].

For a representation ¢ of G/H on Hilbert space H and an admissible wavelet 7 for o,
the continuous wavelet transform associated with the admissible wavelet 7 is defined
as the linear operator €2, from H into the space of continuous functions of G/H,

k(g1 gH)

) (Y, 0(gH)n),
n

for all W € 'H, g € G where
Xn = /G/ k(g™", gH) |(n, 0(gH)n)*dv(gH), (1.4)
H

is called the wavelet constant associated to 1 in H.

In the following theorem, we collect some properties of a square integrable repre-
sentation of homogeneous G/H on a Hilbert space H with two admissible wavelets
that are needed in the sequel.

Theorem 1.1 Let ¢ be a square integrable representation of G/H on the Hilbert space
‘H and n, & be two admissible wavelets for o. Then the following holds.
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(i) Forallx,yinH

| €& 8H) (e H @ E Y)dv(eH) = xpetx. )
G/H A/ XnXg ’ , e

in which

Xng = / &L 8H) )0 HE, mydv(gH)
T o ke ’ ’

(ii) There exists a unique self adjoint positive operator C on H such that:

(a) The set of all admissible wavelets coincide with the domain of C.
(b) Forallx,yinH,

/ K81 ogHmo(H)E dv(gH) = (Cn, CEYr, )
G/H  /XnXg

Proof The proof is the same as Theorem 2.1 of [11]. O

The ;¢ in part(i) is called the two-wavelet constant.

In the rest of the paper, we aim to study the two-wavelet localization operators on
a homogeneous space G/H equipped with a strongly quasi invariant measure which
are related to a continuous wavelet transform. In Sect. 2, a two-wavelet localization
operator which is related to continuous wavelet transform (C.W.T) is defined. In this
setting, the boundedness properties of two-wavelet localization operators is investi-
gated. In Sect. 3, we show that the two-wavelet localization operators are in p-Schatten
class.

2 Two-wavelet localization operator

Throughout this section G is a locally compact group and H is a compact subgroup
of G. Consider G/H as a homogeneous space equipped with a strongly quasi invariant
measure v which arises from a rho- function p. Let H be a separable Hilbert space, o
a square integrable representation of G/H on H and 7, £ are admissible wavelets for
0. In this section, first, we define a two-localization operator Y, ¢ Which is related
to the C.W.T @, for each ® € L”(G/H), 1 < p < oo and then we investigate the
boundedness properties of this operator. To do so, we need the following definition.

Definition 2.1 Let H be a Hilbert space and ¢ a square integrable representation of
G/H on H with two admissible wavelets n, £&. A two-wavelet localization operator is
a linear operator Yg ;¢ on H as

k(g™ gH)
(Yopex. y) = / LT Lo
G/H Xn.&

(x, 0(gH)n){0(gH)E, y)dv(gH), 2.1
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forall ® € LP(G/H) and x, y € H, where x, ¢ is the two-wavelet constant.

Now we show that the two-wavelet localization operator is bounded for ® €
LP(G/H),1 < p < 0.
The following proposition shows that Y , ¢ is bounded for ® € L>*(G/H).

Proposition 2.2 By considering the notations above, let ® € L>(G/H); Then Ye ¢
is a bounded linear operator and

1
- (Xnxe)2

1ozl < 10 oo-
e gl

in which n and & are two admissible wavelets.

Proof To do this, using the reconstruction formula and the Schwartz inequality, we
get,

(Yo, ex, y)l
1
< k(g™ g )IO(gH)|l(x, o(g H)n)[{o(gH)E, y)dv(gH)
Ixnel Jo/u
< II®II<>O/ K(g_l,gH)l(x,Q(gH)n>I2dV(gH))%
[xn.el G/H

1
(/ K(g1,gH)|<g(gH)§,y>|2dv<gH))2
G/H

, ! _ :
< QX% o) ( | IQn(x)|2dv> ( / |sz,,<y>|2dv(gH>)
| Xn.¢1 G/H G/H

1
< (XnXé) 2

< 1®llollx NI,
|X17,§|

So for ® € L*°(G/H),

1
- (XUXE)Z

ITopel <
= ]

1Ol0c-

m}

As mentioned earlier, G/H admits such a G-invariant measure when H is compact.
Now we show that Tg , ¢ is bounded for ©® € L'(G/H) in which G/H is equipped
with a G-invariant measure v’.

Proposition 2.3 With the above notations, let ® € LP(G/H),1 < p < oo. Then
Yo,y.¢ is a bounded linear operator and

1
onel < 297 (i) 1= PIel

2.2)
|Xn,&l
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Proof The proof is shown in two steps.

In the first step we show that if © € L' (G/H) then || Y. .]| < |f<§?\ 1O]l;.

In the second step we show that if ® € L?(G/H), 1 < p < oo. then

1

=plel, 2.3)

ple)r
|xn.&1

Mo, el <

Let ® € Ll(G /H). Consider G/H with a G-invariant measure v’ which arises from
rho-function p” = 1 [6]. Note that since H is compact G/H admits such a G-invariant
measure v’ which is equivalent to v, that is d 4 — ¢ in which ¢(gH) = ;)’/(é)), where
v is the strongly quasi invariant measure which arises from rho-function p. Thus

(Yo, pcx, y)l
1
< / k(g™ gH)IOgH)||(x, o(g H)n)l(o(g H)E, y)ldv(gH)
Ixnel Jo/u
1 p(e)

< 1©(gH)||(x, o(gH)n)ll{o(g H)E, y)|p(gH)dV'(gH)
Ixn- &1 Jo/u ¢(gH)

< / p@llxIylOgH)|dv' (gH)
Ixnel Jo u
p(e)

< ——IIOlHxIxll,
|Xn |

where Oy =[5 1©(gH)|dV' (gH).

Now through the use of the Reisz Thorin Theorem, we shows that if ® €
LP(G/H),1 < p < oo, then there exists a unique bounded linear operator
Yeo,ne : H —> H such that

1

1 1
ITo.nell < xe)? O,

ple)?
.
where Yo ; ¢ is given in (2.1) for a simple function ® on G/H for which

v({gH € G/H; ©(gH) # 0}) < oo. 2.4

Let I' : H — L?(R™) be a unitary operator and ® € L'(G/H). Then the linear
operator Y@ p¢ : L*(R") —> L?(R") defined by

TN@’n,g = FT@)n’gF_l,

is bounded and | Y~ g , ¢ || < f’(e)l 1©];.If© L°°(G/H) then the linear operator

YT~y on L2(R") is bounded and [T~ g ]| < ()T;X%)l 1O]loo.
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Denote by S the set of all simple functions ® on G/H which satisfy the condition
(2.4). Let g € L>*(R") and ®, be a linear transformation from S into the set of all
Lebesgue measurable function on R" defined as ®,(®) = T~ g ;,£(g). Then for all
©® e LY(G/H)

p(e)
[Pg(O)2 =T 0ne@l2 = 1T e,ellgll2 < el
Xn.§

11112
Similarly for ® € L°°(G/H),

1
(Xn)(é)7

[P (®)]2 <
|Xn,$|

1®lloollgll2-

Through the Riesz Thorin Interpolation Theorem we get,

1

T~ 0@z = D@ < lp( € -
77

1—
) 22181 g .

So,

1

ple)
I~ ons||_| Oxe) 2P0l

£l
foreach ® € S.
Now, let ® € L?(G/H), for 1 < p < oo. Then there exists a sequence {O}2

of functions in § such that ® is convergent to ® in LP(G/H) as k —> oo. Also,
{Y™ @£} is a Cauchy sequence in B(L2(R")). Indeed,

1
ple)r

L1
o |ans)2( 710 — Opll, — 0.

1T~ 6une =Y @nnel <

By the completeness of B(L2(R™)), there exists a bounded linear operator Y™ g ;¢
on LZ(R") such that YT~ @,,nt converges to T~ g ¢ in B(L2(R™)), in which

1

210,

T~ 6mell < f()|

Thus the linear operator Y@, ¢is bounded,where Yg ; ¢ = r-! T~ gl and

l

1—
Mol < 2% Guxe) 22101,

_|r;|

For the proof of uniqueness, let ® € L?(G/H), 1 < p < oo, and suppose that Pg , ¢
is another bounded linear operator satisfying (2.3). Let & : L?(G/H) —> B(H) be
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the linear operator defined by
E©) =Ye e — Poye, ©€LP(G/H).

Then

1
ple)r

l(l_L)
o] Omxe)? POl p.
n,

2@ =2

Moreover E(®) is equal to the zero operator on H for all ® € S. Thus, E :
LP(G/H) — B(H) is a bounded linear operator that is equal to zero on the dense
subspace S of L?(G/H). Therefore Yo ¢ = Po,j¢ forall ® e LP(G/H). O

3 Compactness and Schatten p-class

Let H be a separable Hilbert space and B; the closed unit ball of H. We recall that a
linear operator 7 on H is said to be compact if 7 (B7) is compact in the norm topology
of H. It is well known that a linear operator 7 on H is compact if and only if 7'(B1)
has compact closure in H. Now Suppose {o, }nen and {8, }nen are orthonormal sets
in H and {A,} is a sequence of complex numbers tending to 0. Let 7" be the linear
operator on H defined by

I'm= E;Cz)ozl)‘n(r/’ an)Pn, neEH

then T is compact. Note that {A,} are eigenvalues of |T'| = (T*T)%.

Given 0 < p < o0, the Schatten p-class of H, denoted by S, is the space of all
compact operators 7 on H with its singular value sequence {1, } belonging to [?, the
p-summable sequence space.

In the case, 1 < p < 00, S is a Banach space with the norm

1
”T”p = [En|)hn|p]p~

Two special cases are worth mentioning: Sy is usually called the trace class and S5 is
usually called the Hilbert—Schmidt class.
For any T' € §; and any orthonormal basis {o}72 | of H, we write

tr(T) = B2 ((Tag, a),

and call this value, the trace of T'. (for more details on Schatten p-classes see [12,13]).
Now we show that the localization operator g ¢ is in the p-Schatten class.
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Theorem 3.1 Based on the above notations, let ® € LP(G/H),1 < p < oo. Then
Yoyt H— HisinS, and

1

ple)r la-1
wm%ﬂ%snrguﬂwﬂpm@m
UB

where ||©]| P = fG/H |©(gH)|?dVv'(gH) and V' is a G-invariant measure on G/H.

Proof Let® € L' (G/H), {nk}72., and {£}72, be any orthonormal set of 7{ and v’ be
a G-invariant measure on G/H which arises from p’(g) = 1, we get

2 Yo, .6k, Mk

1
< 21‘321/ k(g™ g NIOSH)||(nk, o(gHIn) {0 (g H)E, i) ldv(g H)
[ Xn.el G/H
p(e) 00 2,1 o0 234
< O H)|(ZZ 1{nk, o(gH)M D)2 (B2 1{e(gH)E, ni)|7)2dVv (g H)
Ixnel Jo/u
< PO \oem)av (g
Ixnel Jo/u
< P90 <00
|Xn,é‘|

So Y@, € Si. Now by Proposition 2.2, the two-wavelet localization operator
Yo, is a bounded linear operator for ©® € L*°(G/H) and

1
(Xn)(f;‘)2

1©1loc-
| X,

1To,nellse <

Then Reisz Torin Interpolation Theorem [13] implies that the localization operator
Yo,peforl < p<ooisinS),. o

Here, we obtain a formula for the trace class of the localization operator Yg j ¢
where ® € L1(G/H).

Theorem3.2 Let ® € Ll(G/H) be a positive function. Then tr(Ye e) =

%(5, MOt in which V' is a G-invariant measure on G/H.

Proof First note that, since H is compact, G/H admits a G-invariant measure v’. Also
we equipped G/ H with a strongly quasi invariant measure v which arises from a rho-
function p. These two measures are related as follows, % = @, where p(gH) = p(g).
Now, let {nx; k = 1,2, ...} be an orthonormal basis for H. Then by using Fubini’s
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theorem, Parseval’s identity, for ® € L! (G/H) we get

tr(Ye,ne) = 221 (Yo, Mk M)
1 _

=—3 lfG/ k(g™ gH)YO(gH) (i, (g H)n)
H

(0(gH)E, nk)p(g)dv'(gH)

_ PO ogH)E o(gHym O H)dV (gH)
Xn& JG/H
o(e)

= ,MO]1.
Xn,S(E Ml

In the next theorem, we show that the localization operator Yg ; ¢ is compact.

Theorem3.3 Let® € LP(G/H),1 < p < 00. Then Yg ;¢ : H — 'H is a compact
operator.

Proof Let® € LP(G/H) with a G-invariant measure v’. There exists ®,, € C.(G/H)
such that ®, — ® — 0. Let {ng; k = 1, 2, ...} be an orthonormal basis for . Then
by Fubini’s Theorem and the Schwartz inequality, we have

E Y0, 0.6k Yo, neMk)

| )
—2,‘311/ (g™, gH)|On(gH) (. 0 (g H))|
[Xn.£l G/H

l(e(gH)E, Yo,.n.:m)|p(g)dv (gH)
p(e)
Ixnel Jo/u

(B2 1005, ) c0 (e HDE i) P)2dV (g H)
ple)
T el

10 (g B)I(SR24 | i 0 M)

L0, 61Ol < 0.
Thus Y, 5.¢ isin S and it implies that Y, , ¢ is compact. Since

()

1—
Toe — To,mel < 220 Guxe) 27910 — .
Xz |

Then the two-wavelet localization operator is compact. O
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