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WEB (water extract of banana): An efficient natural base for one-pot multi-
component synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines

Alireza Allahi and Batool Akhlaghinia

Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

ABSTRACT
One-pot multi-component synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines derivatives using
WEB (water extract of banana peels ash) as a green catalyst is described. A variety of aromatic
aldehydes (with electron-donating and electron-withdrawing groups) in conjunction with aromatic
and aliphatic thiols are known to tolerate this reaction condition using WEB. The reaction has sim-
ple work up procedure without using toxic solvents.
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Introduction

Among the nitrogen containing heterocycles, the pyridine
nucleus as a key structural subunit in a range of bioactive
compounds, both naturally occurring and synthetic is of
considerable interest.[1] Substituted pyridine derivatives par-
ticularly 2-amino-3,5-dicarbonitrile-6-thio-pyridines, are
among the most promising candidates for demonstrating
biological activity, and are also considered as medicinally
‘privileged scaffold’[2] for developing pharmaceutical agents
due to their potential therapeutic applications.[2–11] These
pyridine skeletons were reported to inhibit PrPSc accumula-
tion in scrapie-infected mouse neuroblastoma cells
(ScN2a),[8] MAPK-activated PK-2,[3] IKK-2 for treating
HBV infection,[4] and modulate androgen receptor func-
tion.[5] Additionally, these compounds are often used as

anti-prion,[2,7,8] anti-hepatitis B virus,[4] anti-bacterial,[9] and
anti-cancer[3] agents and as potassium channel openers for
the treatment of urinary incontinence.[6] Also, the import-
ance of this class of compounds can be recognized as poten-
tial targets for the development of new drugs for the
treatment of Parkinson’s disease, hypoxia, asthma, kidney
disease, epilepsy, cancer,[10] and Creutzfeldt-Jacob dis-
ease.[7,8,11] Therefore, with the aim of developing new drug
molecules, the synthesis or structure modifications of highly
functionalized pyridine derivatives have attracted huge atten-
tion from both synthetic and medicinal chemists.[10]

Recently several scientists have used the multi-component
reaction (MCR) strategy as one of the most prominent
existing procedure to synthesize 2-amino-3,5-dicarbonitrile-
6-thio-pyridines via the cyclocondensation of aldehyde,
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malononitrile and thiol. Much attention has been paid to
one-pot multicomponent reactions particularly for the devel-
opment of the library heterocyclic compounds[12–17] due to
atom economy, green conditions, procedural simplicity, and
cost-effectiveness over conventional multistep synthesis.
Various synthetic methods with their own merits and
demerits have been developed for the construction of these
compounds following this route with intervention of differ-
ent basic (KOH,[18] K2CO3,

[19,20] DBU,[21] Na2SiO3,
[22]

TBAB/Cs2CO3,
[23] MgO,[24] Et3N,

[25] DABCO,[25] ZrOCl2/
NaNH2,

[26] piperidine,[11] silica-bonded N-propyldiethylene-
triamine,[27] TBAF,[28] CH3COONa,

[29] 2-HEAA,[30] KF/
Al2O3,

[31] molecular sieves 4Å,[32] [bmIm]OH,[33]

[bmim][Br],[34] CaO NPs[35]) as well as acidic catalysts
(c-Fe2O3-2-HEAS,[36] Sc(OTf)3,

[37] silica NPs,[38] CuI
NPs,[39] boric acid,[40] Zn(II) and Cd(II) MOFs,[41] phospho-
tungstic acid/CTAB,[42] ZnCl2,

[43] o-iodoxybenzoic acid[44]).
Nevertheless, some of the previously reported methods

suffer from one or more drawbacks such as using toxic or
expensive catalyst and reagent[21,23] and exotic reaction con-
ditions (use of microwave irradiation or an ionic
liquid).[29,33,34] Therefore, continuing interest in developing
an environmentally safer, green and practical synthetic route
using a readily available and inexpensive catalyst for the syn-
thesis of the pyridine derivatives has remained a significant
challenge. With respect to the role of green chemistry to
reduce or eliminate the use or generation of hazardous sub-
stances, significant awareness has been increased to using
natural feedstocks as available, nontoxic, and metal-free
reagents in greener catalytic processes under mild and con-
venient reaction conditions.[45–51]

In the past few years, Sonogashira and Suzuki-Miyaura
cross-coupling reactions have been reported using Pd(OAc)2
and ‘Water Extract of Banana’ (WEB).[52,53] Moreover,
greener Dakin oxidation under metal catalyst, base and solv-
ent free reaction conditions has been performed employing
H2O2-WEB system.[54]

Based on the previous reports[52–54] and in continuation
of our recent studies,[55–84] with the aim of reducing the
environmental impacts, this is the first report for the one-
pot multicomponent synthesis of 2-amino-3,5-dicarbonitrile-
6-thio-pyridines employing WEB as a natural feedstock
without the help of any toxic reagent, external base, transi-
tion metal catalyst, external additives, and organic solvent
(Scheme 1). In this study, the water extract of banana has
been prepared by an aqueous extract of banana peels. It is

believed that various chemical processes could be catalyzed
using banana peels (WEB) (based on their basic behavior
upon the presence of sodium carbonate and potassium car-
bonate), which supplied long-term economic and environ-
mental impacts in the near future.

Results and discussion

From the economic and environmental points of view, the
use of an inexpensive and environmentally friendly natural
feedstock extract without purification or characterization is
very appealing and has been an active area of research. In
this research, a one-pot multi component reaction of alde-
hydes, malononitrile and thiols was conducted using WEB
as internal base to produce 2-amino-3,5-dicarbonitrile-6-
thio-pyridines. In search for the best experimental reaction
conditions, benzaldehyde (0.25mmol), malonitrile
(0.5mmol) and thiophenol (0.25mmol) in refluxing EtOH
were adopted as the model substrates for investigating the
multi-component synthesis of 2-amino-3,5-dicarbonitrile-4-
phenyl-6-(phenylthio)pyridine using WEB under different
reaction conditions. The results of the optimizations are
summarized in Table 1. It was found that in the absence of
WEB, only Knoevenagel adduct (I) (see Scheme 2) was
obtained alongside a trace amount of product after 24 h
(Table 1, entry 1). But when the reaction was conducted in
the presence of WEB (0.5mL) the reaction was completed
(yielding 90%) in 20min (Table 1, entry 2). Increasing the
amount of WEB up to 1mL afforded the desired product as
the same as using 0.5mL of WEB (Table 1, entry 3), but
lower amount of WEB (0.4mL) produced 2-amino-3,5-
dicarbonitrile-4-phenyl-6-(phenylthio)pyridine in a lower
yield (80%) even after 60min (Table 1, entry 4). To verify
the effect of temperature, by applying 0.5 and 0.4mL of
WEB, in two separate flasks the model reaction was per-
formed at 65 �C (Table 1, entries 5–6). It was evident from
Table 1 that using 0.4mL of WEB at 65 �C afforded lower
yield of the desired product. Additionally, the effect of other
temperatures (55 and 60 �C) was also screened on the model
reaction (Table 1, entries 7–8). It was found that the reac-
tion prolonged with very poor yields at 55 and 60 �C. Based
on the obtained results, reaction proceeds smoothly toward
completion in excellent yield (90%) using 0.5mL of WEB at
65 �C. After finalizing the amount of catalyst and tempera-
ture for this reaction, the next target was to choose proper

Scheme 1. Synthesis of structurally different 2-amino-3,5-dicarbonitrile-6-thio-pyridines using WEB.
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solvent. Various solvents like CH3CN, CH3OH, THF, CHCl3
and toluene have been tested and compared their results
with EtOH mediated reaction (Table 1, entries 10–14). Prior
to using solvents, the reaction was examined under neat
conditions, but reaction failed to afford more than 60% yield
in 60min (Table 1, entry 9). Comparatively, in all tested sol-
vents, reaction was carried out but afforded lower yields.
Reaction in CH3CN proceeded smoothly in agreement with
EtOH, but because of safety and economic considerations,
EtOH was chosen for further experiments. The toxicity and
the hazardous nature of CH3CN confined its use for this
one-pot multi component reaction.

After optimization the reaction conditions, we turned our
attention to investigate the scope and general applicability of
this methodology by carrying out the one-pot multi compo-
nent reaction of variety of electronically divergent aldehydes
with respect to thiols using WEB (Table 2). As is evident
from the results shown in Table 2, aryl aldehydes as well as
heteroaryl aldehydes (pyridine-4-carbaldehyde and thio-
phene-2-carbaldehyde) were found to be highly compatible
with the optimized reaction conditions and gave the desired
products in excellent yields (Table 2, entries 12–13). A var-
iety of electron-donating or electron-withdrawing groups,
such as OH, OMe, CH3, Br, Cl, F and NO2 groups were
used to obtain the corresponding products with excellent
yield.[24,26] The results shown that, aromatic aldehydes bear-
ing electron-donating or electron-withdrawing groups con-
densed with malononitrile and thiols very smoothly and
produced the corresponding 2-amino-3,5-dicarbonitrile-6-
thio-pyridines in short reaction times (Table 2, entries 7–11
vs entries 2–6).

Surprisingly it was found that 2-naphthaldehyde, as a
bulky aldehyde, was suitable to obtain the corresponding
pyridine derivative in the present one-pot multicomponent
reaction (Table 2, entry 14). Thereafter, various thiols were
tested under the optimized reaction conditions. As given in
Table 2, both aromatic and aliphatic thiols can undergo the

present one-pot multicomponent condensation reaction with
satisfactory yields.

Most of the synthesized molecules are known (a–h &
j–p) and were characterized by 1H NMR, 13C NMR, and
mass spectrometry and comparison of their melting points
with known compounds. Novel compounds (i & q) were
fully characterized with the help of the usual spectroscopic
techniques including FT-IR, 1H NMR, 13C NMR, mass spec-
troscopies and elemental analysis.

The HPLC trace and LC-MS method have high sensitiv-
ity, good linearity, and feasibility, which are used to con-
firmed the structure of compounds as well. For this
purpose, the structure of two selected products (g & h) were
recorded by LC-MS analysis and also, the purity of another
two derivates (a & f) were determined by high performance
liquid chromatography (HPLC). The results can be seen in
the Supplemental Materials file.

FT-IR spectroscopy of the purified products revealed two
absorption bands at 3465–3453 and 3328–3322 cm�1 due to
N–H stretching vibrations and also one absorption band at
2218 cm�1 for –C�N stretching. An absorption band about
757 cm�1 is mainly attributed to thioether linkage. In add-
ition, the disappearance of the band at about 1720 cm�1

attributed to the carbonyl group is evidence for the product
formations. In the 1H-NMR spectra (in DMSO) of the prod-
ucts, the NH2 protons were observed downfield as a singlet
(2H) at about d¼ 8 ppm and protons of the aromatic ring
were appeared as multiplet at d¼ 7.5–7.7 ppm.[25,32,40] All
the aromatic carbon atoms of compounds exhibited signals
at d¼ 115–166 ppm in the 13C NMR spectra. The C-3 and
C-5 carbon atoms of the pyridine ring, attached to the
nitrile group, exhibited signals at d¼ 88 and 94 ppm,
respectively. The mass spectra detected the expected

Table 1. Reaction condition optimizations for preparation of 2-amino-3,5-
dicarbonitrile-4-phenyl-6-(phenylthio)pyridine.

Entry
Catalyst
(mL) Solvent

Temperature
(�C)

Time
(min)

Isolated
yield (%)

1 – EtOH Reflux 24 (h) Trace
2 0.5 EtOH Reflux 20/60 90/90
3 1 EtOH Reflux 20/60 90/90
4 0.4 EtOH Reflux 20/60 60/80
5 0.5 EtOH 65 20/60 90/90
6 0.4 EtOH 65 20/60 40/60
7 0.5 EtOH 55 20/60 50/65
8 0.5 EtOH 60 20/60 60/80
9 0.5 – 65 20/60 30/60
10 0.5 CH3CN 65 20/60 50/70
11 0.5 CH3OH 65 20/60 40/50
12 0.5 THF 65 20/60 30/40
13 0.5 CHCl3 65 20/60 40/60
14 0.5 Toluene 65 20/60 30/40

Table 2. One-pot multi-component synthesis of 2-amino-3,5-dicarbonitrile-6-
thio-pyridines using WEB.

Entry R1 R2 Product
Time
(min)

Isolated
yield (%) Ref.

1 C6H5 –C6H5 A 20 90 20
2 4-HOC6H4 –C6H5 B 45 80 86
3 3-HOC6H4 –C6H5 C 40 85 39
4 4-H3COC6H4 –C6H5 D 35 80 87
5 3-H3CC6H4 –C6H5 E 40 85 39
6 4-H3CC6H4 –C6H5 F 40 90 30
7 3-BrC6H4 –C6H5 G 25 85 37
8 4-ClC6H4 –C6H5 H 25 90 86
9 2-ClC6H4 –C6H5 I 25 85 Novel
10 4-FC6H4 –C6H5 J 20 85 86
11 4-O2NC6H4 –C6H5 K 10 90 88
12 4-NC5H4 –C6H5 L 20 90 89
13 2-SC4H3 –C6H5 M 25 85 19
14 2-C10H7 –C6H5 N 30 80 30
15 C6H5 4-ClC6H4 O 20 90 20
16 C6H5 CH3(CH2)2CH2 P 30 85 30
17 C6H5 CH3(CH2)6CH2 Q 35 80 Novel
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molecular ion signals corresponding to the respective
molecular formula of the synthesized compounds.

Based on a literature report[32] a proposed mechanism
for the synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyri-
dines using WEB is depicted in Scheme 2.

Previously, it was found that potassium carbonate,
sodium carbonate, potassium chloride, and sodium chloride
are the major constituents of WEB along with a host of
other trace elements.[85] The mechanistic approach involves
the Knoevenagel condensation of aldehyde with malononi-
trile in basic media forming Knoevenagel adduct (I). In the
following steps, the Michael addition of the second molecule
of malononitrile on Knoevenagel adduct (I) and subsequent
nucleophilic addition of thiolate to CN afforded intermedi-
ates II and III respectively. Thereafter, intramolecular cyc-
lization lead to formation of dihydropyridine (VII) as the

most stable tautomeric form (IV, V, VI). Finally, 2-amino-
3,5-dicarbonitrile-6-thio-pyridine (VIII) was obtained upon
air oxidative aromatization.

In another variation, the catalytic ability of WEB in a
one-pot multicomponent preparation of 2-amino-3,5-dicar-
bonitrile-6-thio-pyridine derivatives is compared with that
of catalysts reported by others previously. We have tabulated
the results of some commonly basic and acidic catalysts in
the literature for the same transformation in Table 3. As
Table 3 indicates, despite the merits of most of the previ-
ously reported methods, the newly developed catalytic sys-
tem acts better rather than other ones from the aspect of
economic and environmental factors.[52–54] The current
study is much superior to almost all of them in terms of the
reaction time (entries 2, 4–11, 13–14), solvent (entry 5) as
well as price and toxicity.

Scheme 2. Proposed mechanism for the WEB mediated preparation of 2-amino-3,5-dicarbonitrile-6-thio-pyridines.
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Conclusion

We have reported an efficient synthetic method for 2-
amino-3,5-dicarbonitrile-6-thio-pyridine derivatives by suc-
cessive one-pot multi-component reactions of various alde-
hydes and thiols with malononitrile using WEB as a green
catalyst. The WEB as a natural feedstock has a basic nature
which helps the reaction proceed under the mild reaction con-
ditions. The scope of using WEB is broad with respect to a
range of aromatic/and hetero aromatic aldehydes with elec-
tron-donating and electron-withdrawing groups in conjunction
with aromatic as well as aliphatic thiols. It has also been shown
that the yields are high and reaction completion time is within
10–45min. Short reaction times, good to excellent yields, safe
process and simple work-up (without using toxic solvents)
make this method an attractive and useful contribution to the
present organic synthesis for the preparation of 2-amino-3,5-
dicarbonitrile-6-thio-pyridine derivatives.

Experimental

General

The purity determinations of the products and the progress
of the reactions were accomplished by TLC on silica gel
polygram STL G/UV 254 plates (Merck, Germany). The
melting points of products were determined with an
Electrothermal Type 9100 melting point apparatus (UK).
The Fourier transform infrared (FT-IR) spectra were
recorded on an Avatar 370 FT-IR Therma Nicolet spectrom-
eter (USA). Elemental analyses were performed using a
Thermofinnigan Flash EA1112 CHNO-S Series analyzer and
agreed with the calculated values.

The nuclear magnetic resonance (NMR) spectra were
provided on Brucker Avance 300MHz instruments in
DMSO-d6 (Germany). Chemical shifts are given in d relative

to TMS. Coupling constants J are given in Hz.
Abbreviations used for 1H-NMR signals are: s¼ singlet,
d¼ doublet, t¼ triplet, q¼ quartet, m¼multiplet. Mass
spectra were recorded with a CH7A Varianmat Bremem
instrument at 70 eV electron impact ionization, in m/z (rel
%) (Germany). Chromatographic separation was conducted
on a HPLC system (Waters 600, USA). The HPLC instrument
consisted of an In-line degasser AF, a smart line pump 600,
with a 50-lL loop and with a 2487 Dual k Absorbance
Detector. Chromatographic separations were carried out using
a Thermo-C18 column (USA) packed with octadecyl bonded
silica with Column Dimensions 4.6� 250mm and 175Å pore
size at 30 �C. Mobile phase was in isocratic elution mode with
a mixture of acetonitrile/water (80:20, v/v), flow rate of 1.0mL/
min. The sample injection volume was 50mL and analytes
were monitored at 365nm. The samples were filtered through
0.45mm, 13mm cellulose acetate syringe filters prior to injec-
tion. The LC/MS experiments were also performed on the
Agilent 6410 triple quadrupole LC/MS system with the Agilent
1200 series (Column: Agilent Eclipse XDB-C18, 4.6� 150mm,
5mm). All yields refer to isolated products after purification by
recrystallization from EtOH. The Supplemental Materials con-
tains sample 1H, 13C NMR and mass spectra of the products
a–q (Figures S1–S41).

Preparation of WEB (water extract of banana)

WEB (Water Extract of Banana) (scientific name: Musa bal-
bisiana Colla; family: Musaceae; species: Musa balbisiana)
was obtained according the method reported previously.[52]

Firstly, banana peels ash was obtained by drying the banana
peels followed by burning it into ash. Afterwards, the
obtained ash (5 g) was suspended in of distilled H2O
(100mL), magnetically stirred for 10min at room

Table 3. Comparison of the catalytic activity of WEB with some literature precedents using other catalysts for synthesis of 2-amino-3,5-dicarbonitrile-4-phenyl-6-
(phenylthio)pyridine.

Entry Catalyst Substrates and reagents Explanations
Time
(min)

Yield
(%)

1 – KOH, EtOH (solvent), reflux[18] Low yield, using 10mol% base 30 86
2 – K2CO3, PEG-400 (solvent), 40 �C[19] Long reaction time, using 10mol% base 60 92
3a – DBU, 10% aqueous ethanol (solvent), 35 �C[21] Low yield, expensive base (DBU) 15 80
4 Na2SiO3 EtOH (solvent), r.t[22] Long reaction time, using toxic base, low yield 60 78
5b TBAB/Cs2CO3 MeOH (solvent), r.t[23] Long reaction time, expensive reagents 3 h 92
6 MgO NPs EtOH (solvent), reflux[24] Long reaction time, low yield 5 h 78
7 – Et3N, EtOH (solvent), reflux[25] Long reaction time, low yield 2.5 h 35
8c – DABCO, EtOH (solvent), reflux[25] Long reaction time, low yield 2.5 h 45
9 – Piperidine, EtOH (solvent), reflux[11] Long reaction time, using toxic reagent 27 h 43
10d – TBAF, H2O (solvent), 80 �C[28] Corrosive and highly flammable liquid

and vapor reagent
50 92

11 [bmIm]OH EtOH (solvent), r.t[33] Long reaction time, using ionic base 1.1 h 92
12 Sc(OTf)3 EtOH (solvent), reflux[37] Low yield, expensive catalyst 15 85
13 Silica NPs EtOH (solvent), reflux[38] Long reaction time, low yield 3 h 70
14 CuI NPs EtOH/H2O (solvent), reflux[39] Long reaction time 100 90
15 Zn(II) and

Cd(II) MOFs
Solvent-free, 100 �C[41] High temperature, using expensive catalyst 30 86

16 WEB EtOH (solvent), 65 �C Excellent yield, short reaction time, using
feedstock, mild reaction conditions,
easy work-up

20 90

a1,8-Diazabicyclo[5.4.0]undec-7-ene.
bTetrabutylammonium bromide.
c1,4-Diazabicyclo[2.2.2]octane.
dTetra-n-butyl ammonium fluoride.
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temperature and then filtered through sintered glass cru-
cible. The filtrate is termed WEB.

Typical procedure for preparation of 2-amino-3,5-
dicarbonitrile-4-phenyl-6-(phenylthio)pyridine using WEB

To a magnetically stirred solution of benzaldehyde
(0.25mmol, 0.0265 g), malononitrile (0.5mmol, 0.0330 g),
and thiophenol (0.25mmol, 0.025mL) in EtOH (2mL),
WEB (0.5mL) was added. The reaction mixture was stirred
at 65 �C for 20min in the open air. The progress of the reac-
tion was monitored by TLC. After completion of the reaction,
the reaction mixture was gradually cooled to room temperature
and diluted with distilled water (5mL). Afterwards, the result-
ing solid product was collected by simple filtration and washed
several times with distilled water and dried. Pure product was
then obtained from the resulting solid by recrystallization from
EtOH (90% yield, 0.295 g).
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