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Abstract Within the framework of the proximity formal-
ism, we present a systematic study to analyze the effects of
the α-decay energy through the effective sharp radius param-
eter on the α-decay half-lives of 227 nuclei in the range
61 ≤ Z ≤ 99. Wentzel-Kramers-Brillouin (WKB) calcu-
lations with the proximity potential Zhang 2013 are carried
out to obtain the theoretical values of the α-decay half-lives.
In this work, we introduce a new Qα-dependent (QD) form
of the effective sharp radius which significantly reduces the
standard deviation of estimated half-lives using the Zhang
2013 model in comparison with the corresponding exper-
imental data in our selected mass range. We evaluate the
validity of this simple formula using the Geiger-Nuttall (G-
N) plots and semi-empirical formulas. The modified form of
the Zhang 2013 model is also found to work well in α-decay
studies of superheavy nuclei (SHN) with Z = 117 − 120.
Our results reveal that the calculated half-lives for the use
of new proposed form of the effective sharp radius in the
proximity potential can reproduce the closed-shell effects at
neutron magic number N = 126 and N = 184.

1 Introduction

Alpha-decay is the nuclear decay process whereby the par-
ent nucleus emits an alpha particle. Experimentally, new ele-
ments can be identified by the observation of α-decay chain
from unknown parent nucleus to a known nuclide [1–8]. In
this situation, it can be said that α-decay of nuclei is one
of the efficient frameworks to identify new chemical ele-
ments or new nuclides. Also, for many years the α-decay
process from heavy and superheavy nuclei is considered as an
important tool for investigating the nuclear structure such as
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the ground-state half-life, the nuclear incompressibility, the
nuclear spin and parity, the shell effects, and the nuclear inter-
action [9–15]. Theoretically, α-radioactivity can be treated as
a simple quantum tunneling phenomenon through a potential
barrier between α cluster and the daughter nucleus. Hence,
one can use the Wentzel-Kramers-Brillouin (WKB) approx-
imation method to estimate the penetration probability of
the emitted α particle. It is well known that the selection of
an appropriate model to determine the interacting potential
between α-particle and daughter nucleus plays an important
role in calculating the α-decay half-lives within the frame-
work of the WKB method. Up to now, various successful the-
oretical models, both phenomenologically and microscop-
ically, towards the description of the α radioactivity pro-
cess have been developed such as the cluster model [16–18]
the liquid-drop-model [19–22], the density dependent M3Y
effective interaction [13,14,23,24], the unified model for α

decay [25,26], and the generalized liquid-drop-model [27–
30]. Another trustworthy theoretical formalism for estimat-
ing the α+core interaction potential is that adopted by Blocki
et al. and is based on the proximity-force theorem [31]. It
is well known that the nuclear proximity potential can be
described as the product of two factors; one is a geometrical
factor depending upon the mean curvature of the interact-
ing surfaces and the other is a universal function depending
upon the separation distance. Note should be taken that, this
function is independent of the masses of colliding nuclei.
Various versions of nuclear proximity potentials are avail-
able in the literature [32–34]. With the passage of time, many
attempts have been performed to systematically evaluate the
validity of the different versions of proximity potentials in
reproducing the α-decay half lives of the heavy and super-
heavy nuclei [35–38]. The main objective of these studies
is to select a suitable nuclear potential for α-decay studies.
Analyzing the role of various physical effects such as the
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temperature of parent nucleus in the α-particle and heavier-
cluster decays of radioactive nuclei within the framework of
the proximity formalism has also received much attention in
recent years [39–41]. It would be desirable to know that the
temperature dependence can be applied to the various parts
of this formalism like the radius parameter Ri , surface thick-
ness parameter b and nuclear surface tension coefficient γ .
For example, Daei-Ataollah et al. [39] introduced a modi-
fied temperature-dependent (TD) surface energy coefficient
in the proximity potential based on the thermal properties of
liquids and hot nuclei. By including the proposed temper-
ature dependence in the proximity potential model denoted
as Dutt 2011, they analyzed the thermal effects of 344 par-
ent nuclei on the α-decay half-lives. It is found that the TD
form of the theoretical model that they used to compute the
nuclear part of the potential is in better agreement with exper-
imental data of the α-decay half-lives than the temperature-
independent one. Additionally, the obtained results confirm
the closed-shell effects around N = 126. In recent years,
several theoretical attempts [42,43] have also been made for
analyzing the thermal effects on the α- and cluster-decay pro-
cesses using the TD form of the effective sharp radius pro-
posed by Guet and coworkers [44] based on the semi-classical
extended Thomas-Fermi density vibrational method in cal-
culating the fission barriers of the nuclei 208Pb and 240Pu.
The proposed form allows us to incorporate the temperature
dependence in the effective radii of α-particle and daughter
nucleus as follows,

R1(2)(T ) = R1(2)(T = 0)(1 + 0.0007T 2), (1)

where the T-IND form of R1(2)(T = 0) can be calculated
by using the existing equations in the various versions of the
proximity potential formalisms. Besides, the temperature T
(in MeV) is correlated to the kinetic energy of the emitted α

particle Ekin = (Ad/Ap)Qα and the α radioactivity energy
Qα through a semi-empirical statistical relation [45,46]. Dur-
ing recent years, a rich knowledge has been provided over
the influence of the temperature dependence of the effective
radius Ri on the studies of α-decay process of heavy and
superheavy nuclei [42,43,47].

In 2013, Ni and co-workers [48] performed the first
attempt to study the nuclear charge radii of heavy and super-
heavy nuclei from the experimental α-decay data. They intro-
duced a simple empirical formula for the nuclear radius as
a function of the logarithm of α emission half-lives and
the released energy Qα of the emitted α particle. However,
researches on the extraction of the radii of heavy and super-
heavy nuclei from the characteristics of α-decay process are
rare. Hence, in the present work, we attempt to present a
new procedure for introducing a clear Qα dependence of the
effective sharp radius in the proximity formalism using the
precise measurements of the α-decay half-lives. In fact, this

procedure considers the dependence of the effective sharp
radius on the α-decay energy as a modification term in the
geometric configuration of the dinuclear system (involving
the α particle and the residual core nucleus) and thus in the
calculations of the α-nucleus potential. To this purpose, we
perform a systematic study over a large number of α-decay
processes involving 227 parent nuclei with Z = 61 − 99.
For calculating the effective α-core nuclear interactions, we
use the static nucleus-nucleus potential introduced by Zhang
et al. in Ref. [49]. We note that the theoretical values of
the α-decay half-lives for different parent nuclei are calcu-
lated in the framework of the semiclassical WKB approx-
imation. The prime motivations behind the present attempt
can be summarized as follows. (i) We would like to intro-
duce a new Qα dependence of the effective sharp radius
Ri (Qα) by minimizing the root-mean-square (rms) devia-

tions σ =
√∑n

i=1(log10(T
calc(i)
1/2 /T exp(i)

1/2 ))2/n, wheren rep-
resents the number of parent nuclei considered in the fitting
procedure, between the logarithmic values of the theoretical
and experimental half-lives for the presently studied α-decay
processes. (ii) The precision of the proposed formula must
be tested for α-decay half-lives. In order to access this aim,
we use it for Zhang 2013 proximity potential to calculate the
theoretical values of log10T1/2 in comparison with the cor-
responding experimental data and also some semi-empirical
formulas available in the literature. (iii) The validity of the
new analytical formula Ri (Qα) will be examined using the
Geiger-Nuttall α-decay law. Additionally, it will be inter-
esting to see whether the proximity potential Zhang 2013
supplemented with this formula can reproduce the shell clo-
sure effects on α transitions. (iv) In the present study, we are
interested in estimating the α-decay half-lives of superheavy
nuclei with a proton number of 117 ≤ Z ≤ 120 and a neutron
number of 162 ≤ N ≤ 200 by using the modified version of
the Zhang 2013 potential.

This article is organized in the following way. Section 2
gives the relevant details of the theoretical frameworks used
to calculate the interaction potential and α-decay half-life.
Section 3 is devoted to the calculation results and the dis-
cussion. We summarized the main conclusions of the present
study in Sect. 4.

2 Theoretical framework

It is well known that the interaction potential between two
reacting nuclei is an essential ingredient that can reflect the
basic characteristics of a theoretical model. In theories of
α radioactivity in heavy and superheavy elements, the α-
nucleus potential can be determined through either a phe-
nomenological or a microscopic approach. Note that this
potential is the sum of three parts; the attractive short range
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nuclear potential VN , the repulsive Coulomb potential VC ,
and the centrifugal parts Vl due to angular momentum,

Vtot(r) = VN (r) + VC (r) + Vl(r)

= VN (r) + Z1Z2e2

r
+ h̄2l(l + 1)

2μr2 , (2)

where r defines the separation distance between the centers
of mass of the α-particle (with a charge of Z1) and daughter
nucleus (with a charge of Z2). Further, in this relation μ =
m1m2
m1+m2

and l are the reduced mass of the α-daughter nucleus
system and the orbital angular momentum carried away by
the emitted α-particle, respectively.

2.1 Nuclear interaction potential

In the present study, the nuclear part of the α+daughter poten-
tial is obtained using a new version of the proximity potential
introduced by Zhang et al. [49]. According to this model, the
nuclear contribution of the interaction potential between two
colliding nuclei can be written as,

VN (r) = 4πbγ R�

(
r − R1 − R2

b

)
MeV, (3)

where the mean radius of the nuclear reaction system R can
be calculated by,

R = R1R2

R1 + R2
fm. (4)

Here, R1 and R2 are the radii of α particle and daughter
nucleus, respectively. They have the following form,

R1(2) = 1.28A1/3
1(2) − 0.76 + 0.8A−1/3

1(2) fm. (5)

In Eq. (3), γ and �( r−R1−R2
b ) are the nuclear surface tension

coefficient and the universal function, respectively. They can
be calculated by Eqs. (4) and (17) of Ref. [49]. Further, the
parameter b represents the width of the nuclear surface and
is taken to be 1 fm.

2.2 Alpha-decay half-life

In the present study, the α-decay half-life T1/2 for the selected
parent nucleus can be calculated by using the following rela-
tion,

T1/2 = h ln2

2Eυ P0Pα

(6)

where P0 is the α preformation factor, which was obtained
as 0.43, 0.35 and 0.18 for even-even, odd-A and odd-odd

parent nuclei, respectively [53]. In addition, the zero-point
vibration energy Eυ can be obtained by the following laws,

even(Z)-even(N) parent nuclei : Eυ = 0.1045Qα

odd(Z)-even(N) parent nuclei : Eυ = 0.0962Qα

even(Z)-odd(N) parent nuclei : Eυ = 0.0907Qα

odd(Z)-odd(N) parent nuclei : Eυ = 0.0767Qα. (7)

In above formulas, Qα is the released energy of the emit-
ted α-particle. It is well known that the value of the α-
radioactivity energy must be positive for the α-decay to be
possible. Accordingly, the decay energy Qα can be calculated
using the mass excess values as follows

Qα = �Mp − (�Mα + �Md), (8)

where �Mp, �Md and �Mα are the mass excesses of the
parent, daughter and alpha nuclei, respectively. Note that the
experimental data of mass excess are taken from the latest
evaluated atomic mass table AME2016 [54,55]. Within the
framework of the WKB approximation, one can calculate
the penetration probability Pα through the Coulomb barrier
between the α-particle and the daughter nucleus as,

Pα = exp

[
− 2

h̄

∫ Rb

Ra

√
2μ(Vtot(r) − Qα)dr

]
(9)

where Ra and Rb refer to two physical turning points deter-
mined from the following condition,

Vtot(Ra) = Qα = Vtot(Rb). (10)

3 Results and discussion

It is the purpose of the present study to systematically analyze
the effect of the Qα-dependence of the effective sharp radius
on the α-decay half-lives of 227 α emitters with Z = 61−99.
In Fig. 1, we display the variation of the calculated values
of Qα as a function of neutron number for isotopes with
Z = 84 − 91, including 187−218Po, 197−215At, 193−214Rn,
199−216Fr, 202−224Ra, 207−225Ac, 210−230Th and 212−231Pa
elements. From this figure it can be seen that for each of the
selected elements within the range of Z = 84 − 91, the Qα-
values almost linearly decrease with increasing the neutron
number in the vicinity of N = 126. A sudden drop can be
seen at N = 126 which is due to the neutron closed shell
effect. Another point to note in Fig. 1 is that the shell effects
become stronger when the proton number approaches from
Z = 91 to Z = 84 and in fact comes close to the proton
magic number Z = 82. As pointed before, we use the prox-
imity potential proposed by Zhang and co-workers in 2013 to
calculate the nuclear potential between the emitted α particle
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Fig. 1 Variation of the
calculated values of the α-decay
energy Qα as a function of the
neutron number of the daughter
nuclei for different isotopes with
Z = 84 − 91

and the daughter nucleus. The proximity model denoted as
Zhang 2013 is one of the latest versions of the proximity for-
malism introduced by analyzing different α-decay process
of natural α-emitters [49]. Notice that, in the present study,
the Qα-dependence of the proximity formalism is taken into
account through an arbitrary function f (Qα) applied to the
radius parameters R1(2), Eq. (5), as follows

Ri (Qα) = Ri × f (Qα). (11)

We use this dependence in the proximity potential Zhang
2013 and then minimize the rms deviation σ between log-
arithmic values of α-radioactivity half-lives of theoretical
and experimental data to estimate the f (Qα) function for
our selected mass range. We display in Fig. 2 the extracted
values of the Ri (Qα)/Ri ratio as a function of the α-decay
energies. It is clearly seen that the function f (Qα) follows a
linear decreasing trend with increasing the Qα-values from
Qα = 0.940 to 10.084 MeV. The observed linear behavior
can be parameterized using the following relation,

Ri (Qα)

Ri
= f (Qα) = 0.96207 − 0.00376Qα. (12)

Since the accuracy of the obtained formula must be carefully
verified, so we investigate its validity for identifying the shell
closure effects. To reach this goal, in Fig. 3, we plot the vari-
ation of the mean radius R of the α-nucleus system with

Fig. 2 The Qα-dependence of the Ri (Qα)/Ri ratio based on the prox-
imity potential Zhang 2013 for the selected α-decay processes with
61 ≤ Z ≤ 99. The present fitted function f (Qα), Eq. (12), corresponds
to the solid line

and without the Qα-dependent (QD) term against the neu-
tron number of daughter nuclei for the isotopic chains with
Z = 84−91. It must be noted that the calculations of the QD
sharp effective radius Ri (Qα) have been performed using Eq.
(12). In Fig. 3 (upper panel), by increasing the atomic number
Z from 84 to 91, we see that the Qα-independent (Q-IND)
values of R exhibit an increasing linear trend by increasing
the neutron number N . In Fig. 3 (lower panel), we can see that
the calculated values of R(Qα) decrease sharply at N = 126
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Fig. 3 Calculated values of the
mean radius of the nuclear
reaction system R with (panel
b) and without (panel a) the
Qα-dependence of the effective
radius versus the neutron
number of daughter nuclei.
Notice that panel b shows the
new results applying QD
relation given by Eq. (12) (a)

(b)

by considering the Qα dependency of the radius parameter
using the obtained formula (12). When N > 126, the QD
values of the mean radius increase with increasing the neu-
tron number. These phenomena reflect the strong shell clo-
sure effects at neutron magic number N = 126. By includ-
ing the present Qα dependence in Zhang 2013 proximity
model, one can obtain the strength of the total emitted α-
daughter nucleus interaction potential. Figure 4 shows the
radial distribution of this potential for two α-decays 212Po
and 237Cm, as two examples. To achieve further understand-
ing, the results of this modified proximity potential are com-
pared with those obtained by the original proximity poten-
tial Zhang 2013 (Q-IND). Remarkably, the short-dotted line
in each panel denotes the α-radioactivity energy Qα . It is
clear from Fig. 4 that when we take into account the Qα-
dependence of the proximity formalism through the presently
suggested formula (12), we find that the height and width of
the total interaction potential shift toward the higher values. It
is shown that for Q-IND and QD versions of the Zhang 2013
proximity potential the values of the outer turning point rout

are identical, whereas the values of inner turning point rin

are different. Under these conditions, one can expect that the
Qα-dependence applied to the interaction potential affects
the barrier penetration probability Pα and thus the calcu-
lated α-decay half-lives T cal

1/2. The variation of the decimal
logarithm of the penetration probability of α particles from
tunneling through the potential barrier based on the Q-IND
and QD forms of the Zhang 2013 model are displayed in
Fig. 5 (left panel), which includes the results of even-Z par-
ent nuclei such as 187−218Po (Z = 84), 193−214Rn (Z = 86),
202−224Ra (Z = 88) and 210−230Th (Z = 90) isotopes, and in
Fig. 5 (right panel), which includes the results of odd-Z par-
ent nuclei such as 197−215At (Z = 85), 199−216Fr (Z = 87),
207−225Ac (Z = 89) and 212−231Pa (Z = 91) isotopes. Note
that the values of Pα are obtained from the one-dimensional
WKB approximation. Our results indicate that the barrier
penetration probability logarithm decreases by imposing the
QD sharp radius parameter (12) in the formalism of the

(a)

(b)

Fig. 4 Total interaction potential between α-particle and daughter
nucleus for α-decay of a 212Po and b 237Cm parent nuclei based on
the proximity models Zhang 2013 (Q-IND) and Zhang 2013 (QD)
employed in the present work

Zhang 2013 model. In addition, as seen in Fig. 5, the calcu-
lations of log10(Pα) strongly indicate the effect of the neutron
closed-shell at N = 126. For further insight, the logarith-
mic values of calculated half-lives with and without taking
into account the effects of Qα dependency in comparison
with the corresponding experimental data are shown in Fig.
6. The obtained results for even- and odd-Z parent nuclei
are plotted in left and right panels, respectively. From Fig.
6, one can conclude that the calculated α-decay half-lives
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Fig. 5 Variation of the decimal
logarithm of the WKB barrier
penetration probability of the
α-particle as a function of the
neutron number of daughter
nuclei using the Q-IND and QD
forms of the potential Zhang
2013 for even-Z isotopes (left
panel) and odd-Z isotopes (right
panel)

Fig. 6 Same as Fig. 5 but for
the decimal logarithm of the
half-lives. The corresponding
experimental data are also
shown for comparison

increase by considering Qα-dependence in the radius param-
eter. In addition, it is shown that such dependence enables us
to improve the agreement between the theoretical and experi-
mental data of log10(T1/2) for the considered α-decay modes.
The strong shell effect of the well-known neutron magic num-
ber N = 126 can also be seen in the half-life calculations.

The effect of inclusion of Qα-dependence on the theoret-
ical half-lives of all 227 α-emitters is displayed in Fig. 7. We
plot the logarithmic differences between the calculated and
experimental values of α-decay half-lives as a function of the
mass number of parent nuclei using the original and modi-
fied forms of the proximity potential Zhang 2013. From this
figure, it is evident that the present Qα-dependence improves
the description of the available experimental half-lives in the
selected mass range. In order to intuitively analyze their devi-
ations, the standard rms deviations σ of the calculated alpha
radioactivity half-life values resulting from the Zhang 2013
(Q-IND) and Zhang 2013 (QD) proximity potentials in com-
parison with the experimental data are tabulated in Table 1.
On analyzing the table, it is found that the present modi-
fied proximity type potential enables us to obtain the more
accurate results of alpha radioactivity half-lives. The present
Qα-dependence in the proximity model Zhang 2013 with the
least standard deviation (σ = 0.444) can be adopted as an
appropriate nuclear potential to study the α-decays. Table
1. The standard deviations between logarithmic values of

alpha radioactivity half-lives of calculations and experimen-
tal data based on the different nuclear proximity potentials.
The standard deviations for different semi-empirical formu-
las we used in comparison with the experimental data are
also shown.

3.1 Comparison with the semi-empirical formula

It is important to investigate the validity of the Zhang 2013
proximity potential supplemented with the new proposed QD
form of the sharp effective radius parameter Ri (Qα) in com-
parison with some semi-empirical formulas available in the
literature. In the past few decades, various efforts have been
made to develop the semi-empirical formulas for the calcu-
lation of the α-decay half-lives. It is well known that almost
all the suggested formulas depend on the mass number A,
the atomic number Z and the released energy of the emit-
ted α particles Qα . Further, the authors tried to determine
the adjustable parameters of these formulas by fitting to the
experimental α-decay half-lives.

• Royer formula 2000 (Royer-00)

In 2000, on the basis of the liquid droplet model consisting
of the proximity effects, Royer [19] proposed a new semi-
empirical formula for α-decay half-life which is dependent
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Fig. 7 The logarithmic differences between the theoretical and exper-
imental values of the alpha half-lives as a function of the mass number
of the parent nuclei using the Q-IND and QD forms of the proximity
potential Zhang 2013

on the atomic mass number, the charge number of the parent
nucleus and the released energy Qα as follows,

log10T1/2 = aZQ−1/2
α + bA1/6Z1/2 + c, (13)

where the adjustable parameters a, b and c depend on the par-
ity of the parent nucleus combination and they are different in
even–even, even–odd, odd–even and odd–odd nucleus [19].
In that study, the alpha emission half-lives have been deduced
from the WKB semiclassical approximation without a pre-
formation factor, which implicitly supposes that the α-decay
is a very asymmetric fission process. The obtained results
for a recent data set of 373 alpha radioactivities revealed that
the RMS deviation between the theoretical and the experi-
mental values of the decimal logarithm of the half-lives is
0.63. While, this deviation is only 0.35 for the even–even
nuclei, see Ref. [19] for details. We labeled this formula as
“Royer-00” formula.

• Modified Royer formula 2010 (Mod-Royer-10)

In 2010, Royer [56] presented a modified analytical for-
mula depending on the angular momentum of alpha particle
to determine the α-decay half-lives log10T1/2(s) as

log10T1/2 = aZQ−1/2 + bA1/6Z1/2 + c

+d
AN Z [l(l + 1)]1/4

Qα

+ eA
[
1 − (−1)l

]
.

(14)

We note that the constant coefficients of this relation have
been adjusted on a recent experimental data set of 344 alpha
transitions. It is shown that the difference between the experi-
mental and theoretical data is relatively weak for most nuclei.
However, the difference is significant for some specific nuclei

Table 1 The standard deviations between logarithmic values of alpha
radioactivity half-lives of calculations and experimental data based on
the different nuclear proximity potentials

Proximity potential Standard deviation

Zhang 2013 (Q-IND) 1.211

Zhang 2013 (QD)-present 0.444

Empirical formula Standard deviation

Royer-00 0.552

Mod-Royer-10 0.572

Royer-AP-17 0.688

DK-09(1) 0.590

DK-09(2) 0.625

Dong-10 0.432

Wong-15 0.410

The standard deviations for different semi-empirical formulas we used
in comparison with the experimental data are also shown

such as 113
53 I, 149

64 Gd, 206
85 At, and 218

91 Pa. The reason for this dif-
ference may be attributed to the uncertainty of the extracted
experimental data on these nuclei. In the present study, this
modified version is marked as “Mod-Royer-10” formula.

• Akrawy and Poenaru formula 2017 (Royer-AP-17)

In 2017, Akrawy and Poenaru [57] introduced a new semi-
empirical formula for calculations of α-decay half-lives
based on the Royer formula (13). They fixed the coefficients
a, b and c of this relationship by fitting the calculated val-
ues of log10T1/2 to the corresponding experimental data of
356 α transitions. The extracted values of these coefficients
for even-even, even-odd, odd-even and odd-odd nuclei have
been presented in Ref. [57]. In that study, the results of three
well-known relationships semFIS, ASAF and UNIV have
been also used for comparison. These results indicate that,
despite its simplicity, the new suggested formula behaves
quite well for reproducing the experimental data. This is
labeled as “Royer-AP-17” formula.

• Denisov and Khudenko formula 2009 (DK-09)

In 2009, Denisov and Khudenko [58] formulated the empiri-
cal formula for α-decay half-lives by taking into account the
electron screening effect as

log10T1/2 = aZQ−1/2
α + bA1/6Z1/2μ−1 + c

+d
A1/6[l(l + 1)]1/2

Qα

+ e
[
(−1)l − 1

]
, (15)

here μ = [A/A − 4)]1/6. To find the constants of this rela-
tion, they fitted the calculated α-decay half-lives to the well-
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defined experimental data for alpha transitions of 344 par-
ent nuclei. In above relation, the constants (a, b, c, d, e) are
extracted as (1.6088, –1.1549, –26.1721, 0, 0) for even–
even nuclei, (1.6910, –1.0726, –30.2365, 0.7198, –0.6965)
for even–odd nuclei, (1.6925, –1.0853, –30.0842, 0.2453,
–0.6406) for odd–even and (1.6577, –0.9874, –30.8222,
0.5893, –0.2914) for odd–odd nuclei, respectively [58]. We
labeled this formula as “DK-09(1)”. Next, the authors mod-
ified these fitting constants as reported in Ref. [59]. In the
present study, this modified version is called “DK-09(2)”.

• Dong formula 2010 (Dong-10)

In 2010, Dong et al. [60] extended the Royes’s formulas
by taking account of the contribution of centrifugal barrier
within the generalized liquid drop model (GLDM). The half-
lives have been calculated for α radioactivity nuclei in the
ground-states and isomeric states. We marked the suggested
formula as “Dong-10” and it is given as follows,

log10T1/2 = a + bA1/6Z1/2 + cZQ−1/2
α

+ l(l + 1)√
(A − 4)(Z − 2)A−2/3

. (16)

It must be noted that the fitting parameters (a, b, c) are
reported in Ref. [60]. One can find that the calculated favored
α-decay half-lives agree well with the corresponding exper-
imental data. Such agreement confirms the reliability of
GLDM in the decay studies of isomeric states.

• Wong formula 2015 (Wong-15)

In 2015, Wong et al. [61] introduced an improved empirical
formula for evaluating recent α-decay half-lives of 341 nuclei
[62] by considering the hindrance effect resulting from the
change of the ground state spins and parities of parent and
daughter nuclei together with a new correction factor for
nuclei near the shell closures.

log10T1/2 = a + bA1/6Z1/2 + cZQ−1/2
α

+ d1−(−1)l l(l + 1)√
(A − 4)(Z − 2)A−2/3

+ S, (17)

where the four parameters a, b, c and d have been obtained
by fitting the experimental data. In addition, the last term S
is a phenomenological correction factor [61]. The obtained
results reveal that the precision in the suggested formula is
higher than that in the previous analytical formula for the α-
decay half-lives such as those introduced by Refs. [19,60].
Note that the authors also employed the Qα-values derived
from different nuclear mass models to predict α-decay with
the suggested formula. In the present work, this formula is
called as “Wong-15”.

According to Ref. [63], one can find out that the above
seven semi-empirical formulas can reproduce the experi-
mental data reasonably well. For a better understanding, the
standard deviations σ between logarithmic values of theoret-
ical and experimental values of alpha radioactivity half-lives
using the selected semi-empirical formulas are summarized
in Table 1. The obtained values of σ reveal that the Wong-
15 and Dong-10 formulas can be suitable choices to study
the α-decay processes considered in the present work com-
pared to other semi-empirical formulas. In fact, the Wong
and Dong formulas along with modified form for the prox-
imity potential Zhang 2013 possess small standard deviations
(σ < 0.445).

3.2 Validity of the Geiger-Nuttall law in α radioactivity

The first significant correlation in α-decay systematics has
been introduced by Geiger and Nuttall [64,65]. What needs
to be emphasized is that the Geiger-Nuttall (G-N) α-decay
law reflects the linear correlations between the logarithm of
the half-lives of alpha radioactive decay processes and the
energy of the emitted α-particles Qα as follows,

logT1/2 = aQ−1/2
α + b, (18)

where a and b are constants. We are now in a position to
probe the validity of the G-N law for the calculated values
of α-decay half-lives within the framework of the present
proximity potential. In order to assess this purpose, in Fig.
8, we display the G-N plots for the values of log10(T1/2)

calculated by the Zhang 2013 model with and without the
Qα-dependence of the effective radius parameter (12) as a
function of the total energy of the α-decay process Q−1/2

α

(in MeV−1/2) for Ra, Rn, Th and Ac isotopes. We would
like to point out that the calculated values of log10(T1/2) for
all isotopes are found to be linear with different slopes and
intercepts which are tabulated in Table 2.

It is quite evident from the tabulated results that the impos-
ing of the effects of the Qα dependency on the proximity
formalism leads to increase the logarithmic values of the
calculated half-lives. Besides, the linearity of the G-N plots
reveals the validity of the presently obtained formula for the
radius parameter Ri (Qα).

3.3 Prediction of α-decay half-lives for superheavy
elements

The synthesis and identification of superheavy nuclei (SHN),
elements with Z > 104 away from the valley of stability, and
study of their decay properties are one of the main topics of
interest in the field of nuclear physics for both theoreticians
and experimentalists. It must be emphasized that α-decay
is the dominant decay mode for such elements. From the
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Fig. 8 The Geiger-Nuttall law
for the emission of α-particle
from a 202−224Ra, b 193−214Rn,
c 210−230Th, and d 207−225Ac
parent nuclei between
log10(T1/2) and Q−1/2

α using the
proximity potentials Zhang 2013
(Q-IND) and Zhang 2013 (QD)

(a) (b)

(c) (d)

Table 2 The slopes a and intercepts b of the G-N plots for α-decay
from different isotopes based on the Zhang 2013 (Q-IND) and Zhang
2013 (QD) models

Parent nuclei Zhang 2013 (Q-IND) Zhang 2013 (QD)

a (MeV1/2s) b (s) a (MeV1/2s) b (s)

202−222Ra 141.82 –53.83 138.32 –51.36
193−214Rn 137.32 –52.83 133.65 –50.27
210−230Th 142.05 –52.98 141.24 –51.68
207−225Ac 139.01 –52.12 135.31 –49.56

experimental point of view, the formation of SHN is very
challenging. However, it has been well recognized that the
fusion reactions (including hot [1] and cold [66] types) can
be used for synthesizing of superheavy elements. For exam-
ple, during recent years the neutron-rich isotopes from ele-
ment Z = 112 to Z = 118 were produced in the fusion-
evaporation reactions induced by 48Ca beam on different
actinide targets [1,4,67–71]. Recently, many experimental-
ists are trying to synthesize the new superheavy elements
such as Z = 119, Z = 120 and so on. Another interesting
attempt in α-decay studies is the prediction of the α half-
lives of unknown isotopes in superheavy region which are
not synthesized yet. We note that the features of predicted
α-decay energy and half-lives for even-even nuclei and odd-
A parent nuclei with Z = 117, 118, 119, and 120 based on
the improved empirical formula by Deng et al. [72] reflect

the strong shell effects at N = 184. Such phenomena sug-
gest that the next neutron magic number after N = 126 is
N = 184. In addition, the results of Ref. [72] revel that the
predictions of α-decay half-lives by this improved formula
can be considered as references for experimental data of new
SHN such as the elements with Z = 117 − 120.

Here and in the following we intend to analyze the varia-
tion trend of Q-IND and QD forms of the mean radius R as
a function of the neuron number of daughter nuclei for even-
even nuclei and odd-A nuclei with Z = 117 − 120 using
Eqs. (5) and (12), respectively. The results are shown in Fig.
9. By incorporating the present Qα-dependence of the sharp
effective radius (12), we can see that the predicted values
of the mean radius of the nuclear reaction system reflect the
strong shell effects at neutron magic number N = 184. In
order to test the present modified form of the Zhang 2013
model for the calculation of the SHN, in the second step, we
have calculated the α-decay half-lives of 45 elements with
Z = 105 − 116 whose experimental data are available. In
Fig. 10, we display logarithms of the ratio between theoret-
ical α-decay half-lives calculated with the Q-IND and QD
forms of the Zhang 2013 model and experimental ones as
a function of the mass number of the parent nuclei. From
this figure, we can find that the incorporation of temperature
effects, using Eq. (12), improves the results of the Zhang
2013 model. We note that the values of the standard devi-
ations σ are fully consistent with these results. In fact, we
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Fig. 9 Same as Fig. 3 but for superheavy nuclei with Z = 117 − 120

give the following values of rms standard deviations for 45
superheavy elements, σ = 1.645 and σ = 0.697 with Q-IND
version of Zhang 2013 model and its QD form obtained by
Eq. (12). In order to test the quality of the present modified
form of the Zhang 2013 model for predicting the α-decay
half-lives of the SHN, we have calculated the half-lives of
110 elements with Z = 117 − 120. In Fig. 11, the calculated
α-decay half-lives are compared with the results of the Q-
IND model and also those obtained by the empirical formula
presented in Ref. [72].

We can see from this figure that predictions by the Zhang
2013 (QD) model are consistent with those obtained by the
formula suggested by the Deng and coworkers. Further, the
α-decay half-lives using our modified model have a valley
around N = 184 which imply the closed-shell effects.

4 Summary

The α-decay half-lives of 227 nuclei with Z = 61 − 99 have
been systematically evaluated using the proximity potential
Zhang 2013 in order to investigate the role of Qα-dependence
of the nucleus-nucleus potential through the effective sharp
radius R1(2) in the α-decay process. The theoretical values
of the α-decay half-lives are calculated using the framework

Fig. 10 The logarithmic differences between experimental α-decay
half-lives and calculations versus the mass number of the parent nuclei
for 45 superheavy elements with Z = 105 − 116. The calculations are
based on the Q-IND and QD forms of the proximity potential Zhang
2013

of one-dimensional WKB approximation. The main conclu-
sions of the present paper can be summarized as follows.

• A new QD form for the effective sharp radius R1(2) can
be obtained if one consider the consistency between the
logarithmic values of theoretical and experimental data
of the alpha radioactivity half-lives. The results of the
proposed model reveal that both height and width of the
total interaction potential between the daughter nucleus
and the α-particle increase by incorporating the present
Qα-dependence of the effective radius, Eq. (12), in the
proximity potential Zhang 2013. While this dependency
will give us possibility to reduce the penetration proba-
bility of emitted α-particle through the potential barrier.

• In this study, we explore the validity of the suggested
form of the effective sharp radius R1(2) by calculating
the α-decay half-lives of all 227 parent nuclei in com-
parison with the corresponding experimental data. The
results show that the α-decay half-lives calculated by
using Zhang 2013 (QD) model (σ = 0.444) are in better
agreement with available experimental data than its orig-
inal Q-IND version (σ = 1.211). In addition, the com-
putational results based on the QD form of the Zhang
2013 model confirm the shell closure effects at neutron
magic number N = 126 on the effective sharp radius,
penetration probability and α-decay half-life.

• We test the quality of the suggested QD form of the effec-
tive radius using the G-N law for different cases of alpha
radioactivity between the calculated values of log10(T1/2)

and Q−1/2
α . It is shown that the logarithmic values of

α-decay half-lives calculated by the modified proxim-
ity potential Zhang 2013 are linearly dependent on the
inverse-square of the released energy Qα . This result can
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Fig. 11 The predicted α-decay
half-lives of even-even nuclei
and odd-A nuclei with
Z = 117 − 120 based on the
Q-IND and QD forms of the
proximity potential Zhang 2013
as a function of the neutron
number of daughter nuclei. The
predictions calculated by Deng
et al. formula [72] are also
shown for comparison

(a) (b)

(c) (d)

demonstrate that the calculations are reliable. In order
to further examine the ability of the simple analytical
formula (12), we have compared the standard deviation
σ of the Zhang 2013 (QD) model with those obtained
by the seven different semi-empirical formulas. On the
basis of the presented results for the selected mass range,
one can find that Wong-15 (σ = 0.410) and Dong-10
(σ = 0.432) formulas are more precise than other five
empirical formulas.

• In the present study, a comparison of the predicted alpha
radioactivity half-lives of superheavy nuclei in region
117 ≤ Z ≤ 120 has been performed using Zhang 2013
(QD) model and empirical formula presented in Ref. [72].
The obtained results reveal that the predictions made by
the modified form of the proximity potential are consis-
tent with counterparts by the formula developed by Deng
et al. [72] for even-even nuclei and odd-A nuclei with
Z = 117, 118, 119, and 120.
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