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A B S T R A C T   

Unmanned aerial vehicles (UAV) have made life easier in many ways, and their applications in civil practice are 
increasing rapidly. However, this benefit is not entirely risk-free, as unwanted accidents and incidents can cause 
serious harm and interrupt other aerial activities. In this paper, we investigate a dataset of UAV accidents and 
incidents in Australia and put up some precautionary exercises to reduce the risk of future events. To that end, 
univariate and bivariate distributions of past events are analysed, and the exploratory factor analysis technique is 
used to identify frequent accident and incident patterns. The findings show that equipment issues or/and lack of 
coordination between aerial activities are two of the accidents and incidents categories; therefore, necessitating 
regular safety inspections for UAVs and establishing an integrated monitoring system for aerial activities are 
expected to reduce the risk of accidents and incidents.   

1. Introduction 

Unmanned aerial vehicles or drones are shown beneficial to many 
non-military purposes including remote sensing (Nex and Remondino, 
2014), maintenance (Ham et al., 2016), disaster management (Deruyck 
et al., 2016), safety (Irizarry et al., 2012), construction (Hubbard et al., 
2015), mining (Lee and Choi, 2016), and agriculture (Tokekar et al., 
2016). Following the cost effective application of drones in various 
disciplines, a surge in their utilization and market uptake is envisaged 
(Sachs, 2016, Gettinger, 2017). This trend underpins the importance of 
safety aspects of drone operation, calling for a comprehensive research 
in this area to develop appropriate safety measures and procedures. 

The regulation of drone operation is a multifaceted issue, as 
imposing any form of restriction can negatively affect the market uptake 
of drones and hinder all its potential benefits for the society and the 
economy (Perritt and Sprague, 2016). Drones were initially assumed 
have similar operational and safety requirements as traditional aircrafts 
(Clothier and Walker, 2006), however, it gradually became evident that 
the two sectors are facing with different sources of risk and need sepa-
rate treatments (Wild et al., 2017). Despite the isolated preliminary 
attempts by some nations, there is no universally acceptable standard to 
facilitate and regulate non-military drone operation. Besides, there is 

significant room for improvement in the current regulations. Further 
clarification is required regarding vital issues such as airworthiness 
certificate (Clothier et al., 2011, Cuerno-Rejado and Martínez-Val, 2011, 
Szabolcsi, 2014a), liabilities and insurance (Mathews, 2014, Sehrawat, 
2018), pilot licensing (Jones, 2017) and reporting accidents and in-
cidents (Wild et al., 2016). 

One important barrier towards a comprehensive evidence-based 
approach to analyse drone operation is data scarcity and inconsistency 
in reporting style (Wild et al., 2016). In this study, we explore a small 
dataset on past drone accidents and incidents to provide more insight 
about the cause and the pattern of the observed cases. The dataset of this 
study is collected by Australian Transport Safety Bureau (ATSB). 
Consulting the existing safety manuals, the reported occurrence cases 
are categorised with respect to occurrence category, hazard category, 
phase of flight, colliding object, and operation type. The univariate and 
bivariate distributions of these categories are interrogated to identify 
common safety concerns. Moreover, se utilizes the exploratory factor 
analysis method to identify prevailing patterns in drone accidents and 
incidents. The findings of this practice are expected to help planners and 
policy makers to devise effective policies to regulate drone operations. 

This paper is organised as follows. Section 3 discusses the process of 
refining the dataset of this study and section 4 discusses the utilized 
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methodology. Section 5 presents the modelling results, and section 6 
provides the interpretation of the results. Finally, the findings of this 
study are summarised in section 7. 

2. Literature review 

In April 2014, at the Geraldton horse race competition in Western 
Australia, the filming drone lost the ground control and hit one of the 
competitors (Taillier, 2014). In the December of the same year, a filming 
drone, which was supposed to promote kiss-on-camera in a restaurant 
chain in the New York City, hit a photographer and cut her nose with its 
spinning blades. Ironically, the photographer was there to make a report 
from the drone operation (Allen, 2014). Four months later in March 
2015, at the Melbourne Cricket Ground at the world cup cricket final, a 
drone, which was intended to provide an aerial perspective of the action 
for the television coverage, lost the ground control and collided with 
terrain (SANDILANDS, 2015). In April 2016, in Cape Town South Africa, 
a drone crashed through an office window and hit an office worker in his 
head (Borrello, 2016). These instances are a few examples of faulty 
operations that could inflict serious injuries. Moreover, there are ample 
reports on drones’ faulty operation causing damage to the drone itself or 
its surrounding environment. Almost all the predictions for the future 
usage of drones unanimously envisage a rapidly growing trend for 
drones’ applications, which necessitate a comprehensive plan and reg-
ulatory program to ensure safe and harmless operation of drones in the 
future. This study aims at exploring the past drone accidents and in-
cidents to provide more insight about the cause and the pattern of the 
observed cases, which eventually can help planners and policy makers to 
devise effective policies to regulate drone operations. 

Before starting the discussion, it is noteworthy to clarify the termi-
nology around this versatile flying gadget. International Civil Aviation 
Organisation (ICAO) defines unmanned aerial vehicles (UAV) as air-
crafts that operate without on-board pilot (Cary and Coyne, 2011). The 
term unmanned aircraft system (UAS) is used to refer to the system that 
makes a UAV work, i.e. the UAV, the person who is controlling it and the 
system in place connecting them. Note that UAV can refer to an 
autonomous unmanned aircraft as well. Remotely piloted aircraft (RPA) 
and remotely piloted aircraft system (RPAS) are two other terms 
equivalent to UAV and UAS respectively, but they do not include 
autonomous UAV. Finally, drone is a more common term used by people 
and media to refer to UAV and RPA. In this paper, we use UAV and drone 
interchangeably to refer to the unmanned aircraft and UAS to refer to the 
system. 

In the last 10 years, rather than military purposes, a wide range of 
commercial applications for drones have been introduced, such as: 
remote sensing and 3D mapping (Nex and Remondino, 2014, Colomina 
and Molina, 2014), infrastructure maintenance (Ham et al., 2016, Máthé 
and Buşoniu, 2015), disaster management (D’Onfro, 2014, Deruyck 
et al., 2016, Quaritsch et al., 2010), real estate (Luppicini and So, 2016), 
safety (Irizarry et al., 2012), construction (Hubbard et al., 2015, Liu 
et al., 2014), mining (Lee and Choi, 2016), agriculture (Zhang and 
Kovacs, 2012, Tokekar et al., 2016) and cargo (Iwata and Matsumoto, 
2013). One of the main reasons behind drones’ numerous applications is 
the ability of mounting high-quality cameras or precise sensors on these 
flying machines, which provide a chance to reduce the cost of data 
gathering or accomplishing many desired tasks. In 2017 during Grenfell 
Tower fire, a drone assisted firefighters by providing high-resolution 
footage and determining the high-risk zones after the fire and assess-
ing the structural damage (Margaritoff, 2017). In agriculture, moni-
toring crops in vast farms requires time and money but it could be 
automatically handled by UAVs (Veroustraete, 2015, Stehr, 2015, Mal-
veaux et al., 2014). Inspection in remote areas that are currently un-
dertaken with helicopter crew is another challenge that drones could 
ease the process as purchasing a semi-intelligent and programmable 
drone is cheaper than hiring helicopter crew for an hour. In infrastruc-
ture management and construction management fields, health 

monitoring, of infrastructures to establish current status of assets and 
determining defects, demand a considerable budget which can be 
considerably reduced with the help of UAS (Varghese et al., 2017, 
Kovacevic et al., 2016, Chan et al., 2015, Zakeri et al., 2016). In safety 
science, drones are utilized to collect trajectory of individual vehicle at 
high risk zones such as merging areas in highways to study the drivers 
behaviours (Gu et al., 2019) or similar data is used for lane changing risk 
analysis (Park et al., 2018). 

The rapidly growing market of drones had a value of 27 billion US 
dollars in 2016 and was expected to reach a total value of 100 billion 
dollars between 2017 and 2020 (Sachs, 2016). This growth will provide 
a considerable number of job opportunities in businesses especially in 
construction, agriculture, insurance, and oil/gas. According to the 
Goldman Sachs Research report, it is expected that in 2020 around 8 
million shipments will be handled by small drones (Sachs, 2016). At the 
moment over 800 million US dollars is spent for drones in the fire-
fighting industry specifically for scene monitoring, search and rescue, 
post-fire assessment and jungle firefighting (Gettinger, 2017). A study in 
2017 manifested that in the US more than 340 agencies including police, 
sheriff, fire, state government, and city councils are actively using 
drones (Gettinger, 2017). This figure shows over 500% increase in the 
number of agencies using drones in only two years (Gettinger, 2017). 

In the United States, the number of registered drones is currently 
more than registered traditional manned aircraft (Administration, 
2013). Despite the increasing number of registered drones, a commen-
surate body of research on the safety of drones has not been conducted. 
Most of the academic studies about drones are devoted to technical sides 
of this device including: GPS and antenna (Virone et al., 2014), flight 
control (Andrievsky and Fradkov, 2002), gyro and gimbal (Jędrasiak 
et al., 2013), navigation (Zhang et al., 2011), radar and communication 
(Gupta et al., 2016), mission payload modules (Yan et al., 2010), battery 
(Suzuki et al., 2012), and ground control (Walter et al., 2004). 

While useful and with versatile applications, overlooking safety 
regulations around UAVs might result in disastrous outcomes. If no 
preventive and precautionary action is taken, safety becomes a major 
issue in the near future. Currently, the operation of small drones is 
limited to visual sight of the ground controller that decreases the po-
tential applications of the small UAVs (Clarke, 2014a). There is a 
controversial dialogue around the legal enforcement for small UAVs to 
enforce some restriction on small drones’ operations. This could provide 
a safer public environment; however, businesses analytics believe that 
these limits will lead to losing a considerable number of job opportu-
nities in the market (Perritt and Sprague, 2016). 

Australian Transport Safety Bureau (ATSB) recently has published a 
report about the growing safety concerns about the UASs (Bureau, 
2017). This report reviews the reported collisions of small UAVs within 
2012–2016. According to this report, most of the collision records 
occurred in 2016, around 40% of the collisions are related to ground 
control while only 10% of accidents caused by technical issues including 
engine breakdown. Considering the geographical distribution of the 
collisions indicates that most of the collisions happened in the major 
cities. However, this could be due to a bias in reporting collisions to 
ATSB in major cities. Due to the active industries in agriculture, con-
struction, mining, and infrastructure maintenance in remote areas who 
claim for a large number of purchased drones, it is expected to have a 
more comparable number of reported accidents in the remote areas and 
metropolitan areas. This can be an indication that UAV users in the 
metropolitan areas are more likely to report drone accidents compared 
to the uses in rural regions. 

In details, the drone safety concerns are including any incident or 
accident that UAVs are involved in. In this paper, the main causes of 
drones’ collisions are investigated using a recent dataset collected by 
Australian Transport Safety Bureau (ATSB). Clothier and Walker 
(Clothier and Walker, 2006) believe that the required level of safety for 
drones is quite similar to traditional aircraft. They claim that although 
the drones and manned aircraft are designed to handle different tasks, 
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both are exposed to similar sources of risks. However, Wild et al. (2017) 
consider the two sectors to be facing with different sources of risk and 
need separate treatments. 

Large UAVs are similar to regular airplanes in terms of embedded 
navigations and communication technologies, but small drones are 
technologically different. Clarke (2014b) and Dalamagkidis et al 
(Dalamagkidis et al., 2008) studied the adoptability of existing aviation 
regulatory for small drones by focusing on public safety. Laarouchi et al. 
(2017) tried to identify the main cause of collision in their study and 
they showed that accidents are more frequent for small drones than 
large drones. 

It has been found that safety is the main obstacle against integrating 
commercial drones in the National Airspace System (NAS) (Melnyk, 
2013). Shelley (2016) investigates the potential harm of falling a drone 
on a human and criticises the existing regulations. Similarly, the weight 
for small drones is examined in other studies to define a threshold to 
prevent potential serious harm caused by small drones (Low, 2017, Koh 
et al., 2018a, Breunig et al., 2018, Koh et al., 2018b). 

According to the regulations, a manned aircraft requires an airwor-
thiness certificate to be permitted to fly. Airworthiness is a standardized 
certificate that ensures an aircraft is safe to fly. In the literature there is a 
considerable amount of research devoted to how to determine the 
airworthiness of a UAV (such as (Haddon and Whittaker, 2003, Clothier 
et al., 2011, Allouche, 2001, Hodson, 2008, Cuerno-Rejado and Martí-
nez-Val, 2011, Szabolcsi, 2014b Szabolcsi, 2014a). In mid-2013, this 
concern was legislated by FAA for UASs and Optionally Piloted Aircrafts 
(OPAs) (Administration, 2013). Moreover, after a few suspicious drone 
activities (Schmidt and Shear, 2015, OGURA, 2015), a fundamental 
discussion has been formed about the security concerns of UAVs and 
how aviation legislation could control the commercial drone industry 
while not limiting their growing applications (Maddox and Stuckenberg, 
2015, Finn and Wright, 2012). Besides, in the literature, there are many 
papers focused on the safety of military UAVs (such as (Neubauer et al., 
2007, Giese et al., 2013, Weibel and Hansman, 2006)). 

In this paper, we focus on the collision of commercial UAVs to extract 
prevailing patterns in the observed accidents and incidents which can 
help with developing effective legislation and regulation for UAV op-
erations. We believe, on one hand, there is a big technological difference 
between military and commercial drones, and on the other hand, the 
functionality and purpose of small drones is drastically different from 
the manned aircraft. Therefore, neither the safety procedure for military 
drones, nor the existing regulations and procedures for manned aircraft 
cannot be simply adapted to off-the-shelf consumer drones. The 
distinctive performance and applications of commercial drones neces-
sitate a tailor-made and comprehensive legislation around drone oper-
ations. The comprehensive legislation is meant to reduce the rate of 
accidents by providing appropriate safety procedures, and more 
importantly, should clarify responsibilities and liabilities in case of ac-
cidents. The latter one is essential for the business to grow, as without a 
clear vision about risks and rewards, insurance and financial firms are 
reluctant to participate in the market. Currently in Australia, the civil 
and aviation safety authority (CASA) strongly recommend organisations 
to consider third party personal and property insurance or UAV insur-
ance as a part of their business, however, there is no regulatory 
requirement from CASA. Types of insurance are applicable to drone 
users: HULL and operation insurance. HULL insurance covers the dam-
age or loss to the UAV, and operation insurance covers any damage to 
third party. 

3. Data 

There is no accurate data available on UAV usage in Australia (Bu-
reau, 2017). Australian Transport Safety Bureau reports the number of 
registered UAV with CASA is around 1000 by 2017. However, not all the 
UAVs require registration for their operation. 

The dataset of this study is obtained from the Australian Transport 

Safety Bureau (ATSB). The main aim of ATSB is improving safety and 
public confidence for all modes of transport, including aviation. The 
dataset includes 138 records of accidents and incidents for UAS under 
civil operation from June 2000 to June 2018 across Australia. It is 
noteworthy to mention that these accidents are only the ones that have 
been reported to ATSB. It is plausible to assume it is more likely for sever 
accidents to be reported, which means the less sever accidents are un-
derrepresented in this study. The original dataset includes the date and 
location of the occurrence, the details of the UAV and a short summary 
about the occurrence. Based on the severity of the occurrence, the re-
cords are classified in three levels of accident, serious incident and inci-
dent, where accidents are the most severe collisions and incidents the 
least sever ones. 

3.1. Data classification 

To conduct a quantitative exploratory analysis, we converted the 
descriptive summary about the accidents and incidents into quantitative 
variables which describe the occurrence attributes. Since there is no 
standard or manual to offer a unified set of variables for UAS safety 
analysis, we adopted a list of attributes from the standards in aviation or 
previous studies and made modifications when necessary. The main 
reference in this section is CAST/ICAO Common Taxonomy Team 
(CICTT, 2011), which has developed common taxonomies and defini-
tions for aviation accident and incident reporting (CICTT, 2011) and the 
study of Wild et al. (Wild et al., 2017). We could identify seven cate-
gorical variables to explain the severity of the occurrence. One of the 
variables incidents the severity of incidents and accidents, and one of the 
variables indicates the state where the incidents and accidents are 
recorded. The details of the remaining five variables are presented in the 
following subsections. To distinguish between the variables and the 
levels (possible outcomes for a variable) in this paper, we use quotation 
marks when referring to “variables” and italic style when referring to 
their levels. 

3.1.1. Occurrence category 
CICTT, defines “occurrence category” to classify the cause of acci-

dents or incidents at a high level (CICTT, 2011). There are more than 30 
categories defined by CICTT for this variable; however, many of them 
are specifically defined for operations involving large size aircraft con-
ducting commercial air transport. We excluded irrelevant categories, 
modified the related ones, and added some new categories to explain the 
UAS accident and incidents of this study.  

• Awareness. Refers to all accidents and incidents that pilot’s loss of 
awareness about the location of UAV has led to the occurrence.  

• Bird. This category is adapted from CICTT and refers to bird strikes.  
• Collision. This category includes collision to any obstacle and barrier 

except for birds. CICTT has a category called “collision with obstacle 
(s) during take-off and landing (CTOL)”, but as the operation altitude 
for UAV is not as high as the commercial aircrafts, we modified this 
category to include collisions during hovering and cruise as well.  

• Near occurrence. Includes all the near collisions between two UAVs or 
between a UAV and other aerial vehicles and objects such as manned 
aircrafts and parachutes. It also includes cases when a UAV in-
terrupts or is sighted in the proximity of another UAV, or manned 
aircraft (ATSB, 2017). This category is a modified version of “air-
prox/ TCAS alert/ loss of separation/near midair collisions/midair 
collisions (MAC)” in CCITT (CICTT, 2011).  

• Navigation. Refers to all the cases, where the navigation of UAS is the 
cause of accident or incident. This category is a sub-category of “air 
traffic management or communications, navigation, or surveillance 
service issues” (ATM) by CICTT.  

• System component failure – non-power plant (SCF-NP). The definition 
of this variable in CICTT includes a clause about unmanned aircraft: 
“includes failure or malfunction of ground-based, transmission, or 
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aircraft-based communication systems or components –or– datalink sys-
tems or components”. We used the same definition here.  

• System component failure – power plant (SCF-PP). This category is also 
adapted from CICTT and it includes failures or malfunctions related 
to the battery and power plant controls of the UAS.  

• Loss of ground control (LGC). Includes all the cases where losing the 
control of UAV is the cause of accident or incident. Note that, CICTT 
has two categories called “loss of control – ground” and “loss of 
control – inflight” but the definition of these variables is different 
from LGC. Loss of ground control occurs due to three major reasons: 
equipment failure where either the UAV or the controller does not 
respond properly, increasing the distance between the UAV and the 
controller, and electro-magnetic interference which can affect the 
communications.  

• Turbulence. Directly extracted from CICTT, refers to encounters with 
turbulence. 

3.1.2. Hazard category 
“Hazard category” is also defined by CICTT to identify the cause of 

accidents or incidents (CICTT, 2014). CICTT considers four hazard cat-
egories and we used the same categories to summarise the UAS accidents 
and incidents in this study. However, we altered the definition and usage 
of them as discussed below.  

• Environmental. This label is used when the cause of occurrence is a 
factor of the environment, such as severe weather events. This label 
is also used for the cases where bird strike is the cause of occurrence. 

• Technical. This category refers to the cases where technical de-
ficiencies have caused the accident or incident.  

• Organisational. This category is defined by CICTT to identify the cases 
where operational policies, procedures, and organisational regula-
tions are the cause of occurrence. We used this label to the cases 
where lack of coordination between UAS operators and other 
organisations.  

• Human. This category encompasses physical, medical, cognitive and 
psychological functioning of involved humans. 

3.1.3. Phase of flight 
CICTT defines twelve categories for the phase of flights to specify the 

phase of operation of accidents and incidents (CICTT, 2013). Except for 
take-off and landing, the rest of the categories are not suitable for UAS 
operations. Therefore, we added a phase called cruise which is defined as 
follows.  

• Take-off. From detaching from the ground, or pilot’s hands, until 
reaching the operational altitude.  

• Landing. from reducing altitude for landing purpose until UAV 
touches the ground. This phase includes non-conventional landing 
methods such as using parachute.  

• Cruise. All the phases that cannot be labeled as take-off or landing. 
This includes cruising, hovering and changing altitude while 
completing the pre-assigned tasks. 

3.1.4. Colliding object 
This category is added in this study to identify common obstacles 

causing UAV accidents and incidents. The following categories are 
defined based on the dataset of this study; thereby, it may not be 
comprehensive for UAS occurrence analysis.  

• Terrain  
• Water  
• Tree  
• Other solid objects  
• Bird  
• Human 

3.1.5. Operation type 
This variable clarifies the type of activity during which an accident or 

incident is occurred. Similar to “colliding object”, this category is 
derived based on the available dataset of this study. The reported ac-
tivities are listed below:  

• Survey  
• Training  
• Test  
• Agriculture  
• Emergency medical service (EMS)  
• Rescue 

4. Methodology 

The processed dataset includes seven categorical variables that can 
potentially explain the severity of incidents and accidents. To conduct a 
quantitative analysis, the categorical are converted into multiple binary 
variables, resulting in 38 explanatory variables. This study uses the 
exploratory factor analysis (EFA) method to reduce the dimensionality 
of observed variables and represent them in a more tractable form with a 
fewer number of latent variables (Tryfos, 1998). More importantly, EFA 
can uncover potential underlying structures in the data. Identifying 
these structures is essential in developing standard taxonomy for data 
recording, as well as developing safety measures and procedures. EFA 
investigates whether the observed variables x =

(
x1,⋯xp

)
can be sum-

marized by a set of unobserved factors (aka latent variables) f =
(

f1,⋯, fq
)

. To obtain a parsimonious description of the variables, q is 

expected to be considerably smaller than p. The underlying relationship 
between observed variables and latent variables is assumed to be a 
stochastic as formulated in equation (1) (Bartholomew, 1980). In this 
equation, g(x) and h(f) are the joint distribution functions of the 
observed and latent variables respectively, and π(x|f) is the conditional 
probability function of x given f . The integral is defined over R which is 
the range space of the latent variables. 

g(x) =
∫

R
π(x|f)h(f)df (1) 

In order to make the analysis simpler and the interpretation easier, in 
many applied EFA studies (Shalizi, 2013) a few simplifying assumptions 
are made about the relationship between observed and latent variables. 

First, the factors are assumed to be independent 
(

cov
(

fi, fj

)
= 0,∀i ∕= j

)
. 

This assumption reduces the dimension of the integral in equation (1). 
Note that the independent assumption only applies to the factors and not 
the observed variables. Second, the relationship between observed 
variables and factors are assumed to be linear. Under these assumptions, 
for an available set of n observation with p attributes, equation (2) il-
lustrates the relationship between observed values and latent factors. In 
this equation, Xn×p is the standardised matrix of observed variables. In 
this matrix, the n observations are stacked on top of each other. The 
standardised version of data indicates that the variables are scaled to 
have a variance of one and the expected value of zero. The Fn×q in this 
equation denotes the matrix of factor scores (value of factors corre-
sponding to each observed instances). The factors are assumed to be 
independent across variables and observations (rows and columns). Φq×p 

is the matrix of factor loadings, and εn×p is the matrix of error terms, 
which represents the stochasticity. The expected value for each variable 
is zero, (E

(
εj
)
= 0, j = 1,⋯,p), but there is no assumption for the vari-

ance of residuals, so the error terms can have unequal variances 
(var

(
εj
)
= σj, j = 1,⋯,p). 

X = FΦ+ ε (2) 

Assuming the number of factors (q) is known, the aim is to estimate 
the loadings (Φ). The rationale behind the estimation process is 
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obtaining a set of factor scores and loadings that preserve the observed 
covariance matrix for the columns of X, in the reduced dimension space. 
The covariance matrix of X is determined by equation (3), where ψ in 
this equation is the covariance matrix of error terms. In this equation, 
which holds true for the population, the covariance matrix ν is not 
dependent on factor scores. 

ν = ψ +ϕT ϕ (3)  

4.1. Method of parameter estimation 

Several methods are available for estimating the parameters of the 
model. In this study, we use the maximum likelihood method, and for 
that purpose, we need to make an additional assumption on the distri-
bution of the factors. The usual assumption is that fi N (0, 1) and factors 
are independent with each other and across observations (Shalizi, 
2013). Under these assumptions, the variables will be normally 
distributed with the covariance matrix of ν. The likelihood for a multi-
nomial normal probability distribution is as shown in equation (4). This 
pertains to a single observation in the sample and in order to obtain the 
likelihood function we need to wrap around all the observations. Also, 
the common practice in the maximum likelihood estimation method is 
to use the logarithm of the likelihood function to obtain parameter es-
timates. Equation (5) shows the log-likelihood function for estimating 
the parameters of the model. In this equation, the covariance matrix is 
replaced from equation (3). In this equation ν̂ is the covariance matrix 
for the observed sample, and tr(.) is trace of a matrix. 

L = (2π)− p/2
|ν|− 1/2exp

{

−
1
2

X’
i ν− 1Xi

}

(4)  

L L = −
np
2

log2π −
n
2

log
⃒
⃒ψ +ϕT ϕ

⃒
⃒ −

n
2

tr(
(
ψ + ϕT ϕ

)− 1 ν̂ (5)  

4.2. Rotation 

The estimated loadings in CFA are not unique (Shalizi, 2013). Factor 
analysis projects observed data from a p dimensional space into a q 
dimensional sub-space. Infinite solutions are possible because setting up 
the coordinate system for the factors is quite arbitrary. Therefore, by 
rotating the axis of factors’ coordinate system, and adjusting the factor 
loadings accordingly, a new set of factor scores and loadings is obtained 
that its performance in preserving the covariance of observed variables 
is identical to the original set of factor scores and factor loadings (Sha-
lizi, 2013). 

Often, when the original estimated loadings are not easy to interpret, 
by rotating the axis, a new version of loadings is generated which can be 
more easily interpreted. One of the commonly used rotation methods is 
varimax which maximizes the variance of the squared loadings for each 
factor. Applying the varimax method helps in detecting factors that are 
related to a fewer number of variables. This method helps to segregate 
the contribution of latent factors in explaining the observed variables 
(Tryfos, 1998). 

4.3. Categorical variables 

The discussion above was based on the assumption that all the var-
iables are ratio variables. When the observed data includes categorical 
variables, which is the case of this study, further consideration is 
required in the factor analysis; otherwise the results will be incorrect or 
potentially very biased (Starkweather, 2014). As discussed above, esti-
mating factor loadings is dependent on the observed covariate matrix 
and Pearson correlation matrix, which is defined for numerical data, is 
no more suitable. In this study all the variables are categorical. To tackle 
this issue, appropriate binary variables are defined, and factor analysis is 
proceeded by Polyserial correlation matrix (Starkweather, 2014). 

4.4. Number of factors 

Usually the number of factors and their nature are not known in 
advance. According to Revelle and Rocklin (Revelle and Rocklin, 1979) 
the methods to determine the number of factors can be categorised into 
three groups. The first method is the use of theoretical arguments, where 
the number of factors is decided based on the interpretability of the 
results. The second method is psychometric rules of thumb such as scree 
test or using the threshold of 1 for the eigenvalues of the correlation 
matrix. The third category is a statistical approach which tries to find a 
parsimonious set of necessary factors to describe the observed data 
(Revelle and Rocklin, 1979). For the dataset of this study, only for the 
cases with less than 8 factors the eigenvalues are above 1, and as this is a 
manageable number of factors, we examined all the cases from 8 factors 
to 1 and compared the results based on their interpretability. It is a 
common practice in EFA that modelers develop several models with a 
various number of factors to obtain a reliable model which supports the 
underling theories and is intuitive in interpretation (Tryfos, 1998). 

4.5. Sample size 

The minimum required sample size to obtain reliable outcome from 
EFA has received considerable attention during the past few decades. 
This is mainly because many studies encounter small samples where 
increasing the sample size may not be possible. Gorsuch (1983) and 
KLINE (2014) suggest an absolute minimum of 100 for sample size in 
EFA. de Winter et al. (2009) studied the conditions in which EFA pro-
vides reliable results for sample sizes below 50. They confirmed that the 
ratio of number of variables on number of factors (p/q) is a strong factor 
analytic determinant, nonetheless it is not a comprehensive measure. 
They showed, the minimum required sample size for p

q = 2 can vary 
between 11 and 48 depending on the number of variables and factors. de 
Winter et al. (2009) concluded that the required condition to achieve 
stable estimates with sample sizes below 50 are high communality, high 
number of variables and small number of factors. Jung and Lee (2011) 
studied the impact of estimation method for small samples (below 50). 
In particular, they compared Maximum likelihood estimator, general-
ised least square error, and regularised EFA (REFA) and concluded REFA 
can return stable results even for cases with a singular sample covari-
ance matrix and where the sample size is smaller than the number of 
observations. Pearson and Mundform (2010) studied the role of sample 
size for stable factor recovery with dichotomous variables and they 
showed that even a sample size of 100 is enough to achieve a reliable 
model with three factors with at least 24 variables when communalities 
are high, and variables have a symmetric distribution. 

For the current study, we acknowledge that increasing the sample 
size can lead in more reliable outcomes, and we advocate for more 
formal and compelling processes to record RPAS accidents and in-
cidents; however, according to the previous studies on EFA for small 
samples, it is safe to proceed with conducting EFA on the available 138 
records of data. 

5. Results 

The analyses of this study are presented in two sections. First, the 
descriptive statistics of the data is discussed, and then the results of the 
exploratory factor analysis are presented. 

5.1. Univariate and bivariate distribution analysis 

After categorising the occurrence records of this study, the fre-
quencies of variables are visualised to assist with exploring existing 
patterns in the data. There are seven categorical variables, including 
“accident category”, and each category has multiple levels. As 
mentioned before, we use quotation marks when referring to “variables” 
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and italic style when referring to their levels. Fig. 1 shows the distribu-
tion of the categorical variables. The unknown cases are omitted from 
these distributions to increase the readability of the figures and to avoid 
biasedness in the interpretation. The omitted cases are less than 10% of 
the records for all the variables except for “hazard category” and 
“colliding object”. Only in 86 records out of the 138 accidents and in-
cidents the “hazard category” was identifiable, which means 38% of the 
records are removed for this variable. Moreover, in 17% of the records, 
the object to which the UAV had collided was not clear, thereby 
removed from the distribution for “colliding object”. 

In the plots of Fig. 1, the frequency bars are broken down into acci-
dent, serious incident and incident which are the predefined levels of 
“category” and revealing the severity of the occurrence. The first plot in 
Fig. 1 pertains to “colliding object”. According to this plot, in most cases, 
the UAV has directly collided into the terrain. Water is the next frequent 
item in a collision, but in this category, there is no case of incident or 
serious incident. This is because finding a UAV after it has sunk into 
water is somehow impossible and all the cases where the UAV is not 
retrieved are labelled as an accident. 

As shown in the plot for “Hazard category”, equipment factor is the 
most frequent category, and human factors is the least frequent one. After 
removing the 52 cases for which this variable was unknown, the hazard 

category for 61% of the accidents and incidents was equipment prob-
lems. In this plot, the share of environmental issues, organisation issues, 
and human factor are 18%, 10% and 9% respectively. 

The breakdown of “occurrence category” shows that loss of ground 
control (LGC) with 31% is the most frequent category. It is followed by 
non-power plant system component failure (SCF-NP) with a percentage of 
25%. After that comes power plant system component failure (SCF-PP) and 
collision with 10% and then the rest of occurrence categories are all 
below 10%. 

Regarding the “operation type”, most of the accidents and incidents 
in the dataset of this study (nearly 77%) were during survey which in-
cludes video recording, laser scanning, and image taking. After survey, 
all other operation categories have a percentage below 10. 

The distribution plot for “phase of flight” shows that nearly 80% of 
accidents and incidents occurred while aircrafts are hovering or 
cruising, whereas only 8% of them happened during take-off. 

Finally, the breakdown of records for the “states and territories” 
shows that Queensland and Western Australia with 34% and 25% of ac-
cidents and incidents are the first two states with the highest number of 
occurrences, and Australian Capital Territory and South Australia with 2% 
and 4% are the regions with the lowest percentages. 

To further interrogate the observed accident and incident records, 

Fig. 1. Distribution of observed variables. The levels for hazard category include: Human factors, Organisational Issues, Environment Issues and Technical issues. For 
more details refer to section 2.1.2. The levels for the cause of occurrence include: Awareness, Bird, Collision, Loss of Ground Control, Navigation, Near Occurrence, 
System Component Failure (Non-Power Plant), System Component Failure (Power Plant), and Turbulence. For more details refer to section 2.1.1. 
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the joint distribution plots for all the variables against “occurrence 
category” are displayed in Fig. 2. The horizontal axis in all the plots in 
this figure shows “occurrence category”, and the size of the circles 
represent the number of observations for each combination. It is note-
worthy to mention the size of the circles varies on a continuous range. 
Regarding the join distribution of “colliding object” versus “occurrence 
category”, for most of the occurrence categories, the UAV has collided to 
terrain or water, except for the categories of collision, where tree and 
static objects have the highest portion, and bird, which obviously in-
dicates the collision was with a bird. The joint distribution of “hazard 
category” and “occurrence category” shows that human factor (HF) was 
only detected when the occurrence was because of loss of awareness. 
Equipment factor has resulted in loss of ground control (LGC), navigation 
problems, and system component failure (SCF). Also, near occurrence is 
merely observed with organisational issues (OI). The joint distribution of 
“operation type” and “occurrence category” is not much revealing as the 
survey category is dominant with only some scattered observations in 
other categories. The joint distribution for “phase of flight” and 
“occurrence category” suggests that LGC, navigation and SCF_NPP are the 

main observed occurrence categories for the accidents and incidents 
during landing and take-off. The last plot in Fig. 2 is the joint distribution 
of “states and territories” and “occurrence category”. In this plot, except 
for ACT and SA for which the number of observations is very low, for 
other regions almost all the occurrences categories are present. 

The manual process of creating joint distribution functions to extract 
meaningful patterns is tedious, cumbersome and highly subjective. 
Therefore, we employed exploratory factor analysis method, as a more 
systematic approach, to analyse the structure of data and obtain clear- 
cut categories for UAS occurrence data. 

5.2. Exploratory factor analysis 

The EFA of this study is conducted with the assistance psych package 
in the statistical software package of R. As discussed in the methodology 
section, each categorical variable should be transformed into multiple 
binary variables to allow for calculating polyserial correlation matrix 
(Starkweather, 2014). To decide about the suitable number of factors, 
the value of eigenvalues for various number of factors is plotted in Fig. 3. 

Fig. 2. Joint distribution of observed variables versus occurrence category. The levels for occurrence category include: Awareness, Bird, Collision, Loss of Ground 
Control, Navigation, Near Occurrence, System Component Failure (Non-Power Plant), System Component Failure (Power Plant), and Turbulence. For more details 
refer to section 2.1.1 In these plots, the size of the circles depicts number of observations in each category. These values vary on a continuous range, and the legend 
present three examples as visual references. 
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All the 138 records of accident and incident are utilised to estimate the 
factor loadings in the models. As a rule of thumb (Revelle and Rocklin, 
1979), cases where the eigenvalue of factors is less than 1 are not suit-
able. This rule leaves us with the maximum number of seven factors. In 
this study, we develop all the factor models with number of factors from 
7 to 1 and select the most suitable model, which is parsimonious in 
number of factors yet enlightening in terms of summarising observed 
data into distinct occurrence categories. 

The most suitable factor model turned out to include 5 factors. This 
number of factors is exactly what the rule of thumb (Revelle and 
Rocklin, 1979) suggested. Table 1 shows the estimated factor loading 

(Φ). This table only includes the loadings that are either higher than 0.3, 
or lower than − 0.3. This is the threshold we considered for significant 
impact from factors on variables. 

The EFA practice of this study summarises the observed accidents 
and incidents using five factors. Each factor can be a representative of a 
common type of collision. In this section, first the prevailing occurrence 
pattern for each factor is explained, then the improvements in regula-
tions that can prevent each category of accidents and incidents are 
discussed. 

5.2.1. Human factor in RPAS occurrence 
The first two identified factors cover the occurrences that are related 

to human factors. Factor 1 represents cases where loss of awareness is 
the “cause of occurrence”. According to the factor loadings in Table 1, 
the “hazard category” for this factor is primarily noted as human factors, 
and this type of collision is more frequent during the landing phase. 
Factor 2 represents colliding to static objects where colliding to trees or 
other static objects is the primary “cause of occurrence” for the failures 
represented by this factor. Besides, Loss of awareness is also an important 
“cause of occurrence” for these failures. In both these cases human factor 
seems to the main reason therefore providing training can help with 
reducing the risk for these types of occurrences. Current CASA regula-
tions require pilots to have remote pilot licence to fly drones larger than 
2 kg, and there are considerably high level of training and education 
provided by CASA which is an indication of a proactive approach 
regarding human factors. 

5.2.2. Coordination 
The next two factors pertain to coordination issues. Factor 3 

Fig. 3. Eigenvalues versus number of factors.  

Table 1 
Factor loadings.   

Variables Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Category Accident   − 0.484  − 0.871 
Incident   0.655  0.342 
Serious Incident     0.727 

State ACT 0.778     
NSW     − 0.402 
QLD     0.307 
SA  0.56    
VIC      
WA    0.302  

Operation type Agriculture 0.587     
EMS 0.67  0.562   
Other 0.587     
Rescue 0.797     
Survey − 0.35     
Test 0.491     
Training 0.422     

Cause of occurrence Loss of awareness 0.505 0.328    
Bird    0.994  
Collision  0.814    
Loss of ground control      
Navigation      
Near miss   0.849   
Non-power plant system failure   0.327 − 0.445 
Power plant system failure      
Turbulence 0.533     

Hazard category  Environmental Issues    0.809  
Equipment problem  − 0.541 − 0.342 − 0.399  
Human factor 0.348     
Organisation issues   0.984   

Colliding to Bird    0.994  
Human 0.821     
Other objects  0.562    
Terrain  − 0.519 − 0.357 − 0.353  
Tree  0.564    
Water     − 0.315 

Phase of flight Cruise    0.374 − 0.401 
Landing 0.332 − 0.37    
Take off     0.501  
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represents the cases where organisations issues is the “hazard category”. 
Most of the recorded cases that contribute to this factor are the ones that 
occurred due to the lack of coordination among multiple aerial opera-
tions. Detecting aircrafts, helicopters, parachutes landing, or other 
drones in the vicinity of the UAV flight path and terminating the oper-
ation is the common pattern for these cases. These occurrence cases can 
be avoided if an integrated coordination system for aerial activities is 
established. 

Factor 4 represents collisions where bird strike has occurred. The 
“hazard category” for accidents and incidents that contributes to this 
factor are mainly environmental issues (which as mentioned in section 
2.1.2 includes bird strike) and the “colliding object” for these cases is 
bird. Also, the dominant “phase of flight” for these accidents and in-
cidents is cruise. 

5.2.3. Equipment 
Finally, the last factor represents the occurrences that are caused by 

hardware issues, related to the electronical and/or mechanical compo-
nents of the UAS. In addition to human factor and coordination, this is 
the third dimension that requires higher attention regarding RPAS 
safety. 

6. Discussion 

After identifying the common causes of RPAS accidents and in-
cidents, several recommendations are put forward in this section. 

First and foremost, the existing regulations and safety procedures are 
mainly concerned with human factor, and there is no mechanism to 
coordinate and organise drone operations and other aerial activities. 
This is the main shortcoming that led to the accidents and occurrences 
contributing to factor 3. The recent interruption in helicopters’ water 
bringing operation in the bushfire in Tasmania (Bevin and Dunlevie, 
2018), and the disruption caused in the Gatwick Airport which affected 
150,000 passengers just before Christmas (Britton and Clarke, 2018), 
could have been avoided if a proper monitoring and surveillance system 
for drone operation was in place. Currently, CASA has developed phone 
apps for drone users to inform them about restricted flying zones and 
basic safety procedures. This platform can be extended to incorporate 
aerial activities so drone flyers can be notified about their surrounding 
aerial activities. 

In Australia, before 2019 only a certified pilot can fly a commercial 
drone heavier than 2 kg, after obtaining flight permission. For com-
mercial drones under 2 kg, licenced pilot is not needed if the fly is within 
the standard operating conditions. In this case, the operator only needs 
to notify CASA before the operation. The level of authorities’ supervision 
was even less for non-commercial drone operation. Recently, as this 
paper was developed, CASA passed a new set of regulations under which 
operator licence is required for any commercial operation of drones 
heavier than 250 g. 

Second, regular examination of drones’ airworthiness can reduce the 
risk of occurrences due to hardware issues. If drones are to be registered 
on a yearly basis, in a similar fashion as motor vehicles’ registration 
need to be renewed every year, then low-quality and obsolete drones 
which have a higher risk of failure can be written-off. The importance of 
such a procedure is underpinned by the fact that 60% of the observed 
accidents and incidents are due to equipment failure. 

Finally, the compatibility of drone operations with natural environ-
ment requires special consideration. The recorded cases related to bird 
strike is an indication of impact on habitats and wildlife. Investigating 
the reasons behind bird strike requires further studies in collaboration 
with zoology. 

Before concluding the paper, a technical note about the outcome of 
EFA is noteworthy. Although the numbers in Table 1 are helpful in 
identifying common occurrence categorising, some of the numbers in 
this table can be misleading if not interpreted correctly. On one hand, 
there is no standard procedure for reporting accidents and incidents so 

there might be patterns in data that are due to the bias in reporting the 
occurrence. For example, the estimated factor loadings for the states 
does not necessarily indicate higher or lower frequency of an occurrence 
type in a particular state, but it can be due to different attitudes in 
reporting accidents and incidents in different states. On the other hand, 
due to the limited dataset of this study, some of the estimated parame-
ters may be inflated. For instance, there is only one case where the 
“colliding object” is human, and depending on other attributes of this 
occurrence case, the estimated factor loading for colliding to human is 
artificially high for factor 1. Obviously, this factor loading cannot be 
indicative of a relation between loss of awareness and colliding to human. 

7. Conclusion 

This paper conducted a post-accident analysis on civil unmanned 
aircraft system accidents and incidents in Australia. First and foremost, 
this study is advocating for a comprehensive and consistent taxonomy 
with unique identifiers for each category to permit common coding in 
UAS accidents/incidents reporting. This is an essential prerequisite to 
targeted accident prevention, as the first step to rectify risk is recog-
nizing its source. 

The analysis of univariate and bivariate distributions of collisions’ 
attributes showed technical issue is the “hazard category” for more than 
60% of collisions in the dataset of this study (top right plot in Fig. 1). 
Equipment factor has mainly resulted in loss of ground control (LGC), 
navigation problems, and system component failure (SCF). This is while 
there is no proper mechanism in place to monitor the airworthiness of 
UAVs. Also, nearly 80% of the collisions occur during the cruise phase of 
flight, which suggests that safety procedures for civil manned aircraft 
cannot be directly adopted for UAS due to the dissimilarities in their 
typical operation altitude. 

In addition to analysing the attributes’ distributions, exploratory 
factor analysis (EFA) is utilised as a systematic approach to detect po-
tential constructs behind the attributes. Based on the results, accidents 
and incidents can be divided into five categories of “loss of awareness”, 
“bird strike”, “organisation issues”, “colliding to static objects” and 
“equipment failures”. Current regulations around UAS is mainly con-
cerned with “loss of awareness” and “colliding to static objects”. This 
paper suggests a comprehensive registration system which imposes 
regular safety inspections for UAVs can help to reduce the “equipment 
failures” accident and incident type. Moreover, to avoid the operation of 
UAVs interfering other aviation sectors, an integrated control system is 
required to help with coordinating UAVs’ operations and other sectors. 
Lastly, the regulations must consider environmental impacts of UAVs’ 
operations and impose restrictions where UAV can be a threat to the 
wildlife. 

The main direction to continue this study is collecting a more 
comprehensive dataset. The available dataset in this study is obtained 
from self-reported accidents and incidents, therefore, cannot provide a 
holistic view towards drone safety. The limited dataset of this study does 
not allow for the generalisation of the findings. The proposed registra-
tion system with proper legislations, to enforce recording and reporting 
accidents and incidents can be helpful to collect a more enriched source 
of data for further investigations. 
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