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Abstract——We aim to provide a tool for independent system
operators to detect the collusion and identify the colluding
firms by using day-ahead data. In this paper, an approach
based on supervised machine learning is presented for collusion
detection in electricity markets. The possible scenarios of the
collusion among generation firms are firstly identified. Then,
for each scenario and possible load demand, market equilibri‐
um is computed. Market equilibrium points under different col‐
lusions and their peripheral points are used to train the collu‐
sion detection machine using supervised learning approaches
such as classification and regression tree (CART) and support
vector machine (SVM) algorithms. By applying the proposed ap‐
proach to a four-firm and ten-generator test system, the accura‐
cy of the proposed approach is evaluated and the efficiency of
SVM and CART algorithms in collusion detection are com‐
pared with other supervised learning and statistical techniques.

Index Terms——Market power, collusion detection, machine
learning, support vector machine (SVM), classification and re‐
gression tree (CART), statistical method.

I. INTRODUCTION

IN a competitive electricity market, producers cannot af‐
fect the market price. They can only determine the

amount of their own production according to the market
price. Therefore, the optimum production level will be calcu‐
lated by the intersection of the marginal cost curve with mar‐
ket price. The limitations of power systems have pushed the
electricity markets from competitive environment toward oli‐
gopoly market. In an oligopoly market, there is a possibility
for producers to affect the market price. The producers who
are interested in raising the market price may increase their
bids (economic withholding) or reduce the production (physi‐
cal withholding) to influence the market price in their favor‐
able direction. The producers, who can affect the market
with any of the above mentioned methods, have the so

called “market power” [1], [2]. In addition to raising prices
higher than the competitive level, the ability of maintaining
the market price for a long period is important.

After the liberalization of the electricity market, price ma‐
nipulation and market power of individual producers [3]-[5]
can result from the joint decision and the alliance of two or
several producers. In such cases, the collusion is done in the
form of implicit and explicit [6], [7]. A long-term alliance
between several firms to inflate the market price out of its
competitive range is called collusion. Generation firms,
which cannot obtain their desired profit through fair competi‐
tion in oligopoly market, may collude and set their bid and
market prices to a value abnormally higher than what oligop‐
oly competition commands. Explicit collusion is a hidden
agreement for the interaction among electricity power pro‐
ducers who share confidential information in order to control
the market price. The goal of a coalition is to adopt or en‐
force unified strategies to increase the profit of its members.
However, the influence of a coalition does not remain limit‐
ed to the bids of its members and will alter the bids of its
competitors. Stakeholder’s choice of coalition is based on
the projected profit after the formation of the coalition. In
other words, each agent selects the coalition that provides
the maximum profit. Members of an explicit coalition share
the profit that is obtained through price manipulation
[8], [9].

With the advent of modern wholesale electricity markets
in developed countries, these markets have become the sub‐
ject of many discussions. These discussions often originate
from the nature of the electricity markets, e.g., they are of‐
ten controlled by a few number of firms, the traded electrici‐
ty cannot be stored, the demand has an inelastic nature, and
technical limitations such as the congestion of transmission
line can lead to the isolation of sub-markets. These character‐
istics provide an enabling environment for coalitions, which
can be regarded as the collusion [10]. The absence of the
competition in a market where prices are set by the collu‐
sion leads to the violation of the consumers’ rights and the
reduction of producer’s efficiency. In light of these adverse
effects, regulatory organizations often prohibit such coali‐
tions to protect the competition [11], [12]. This paper focus‐
es on the explicit collusion and proposes an approach to re‐
veal and detect such collusive behaviors. However, it is not
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easy to automatically detect such collusive behaviors.
The basic approach is to use supervised learning, but the

major problem of this approach is the unavailability of data
specifically referring to collusion. The alternative is to use
unsupervised learning techniques for this purpose [13], [14].
The detection mechanism introduced in [13] focuses on cir‐
cular trading, in which a ring of colluder trades a certain
share repeatedly to raise their price. The proposed method is
based on the interpretation of stock flow graph with Markov
clustering algorithm. Reference [14] focuses on the detection
of cross trading and investigates the aptitude of different
clustering algorithms for collusion detection in electricity
markets. Reference [15] detects the collusion using a two-
step process in an energy market. Firstly, the behavioral pat‐
tern of the collusion is investigated. Then, by using a
change-point analysis, the behavior of each agent is studied
to reveal the possible structural breakpoints. The existence
of such breakpoints could be a sign for the collusion and has
to be analyzed more in a verification phase. In the verifica‐
tion phase, behavioral similarities of candidates are checked
using statistical methods. The execution of market power
and the inefficiencies of restructured electricity market in Al‐
berta, Canada, are studied in [16]. The hourly wholesale mar‐
ket data set from 2008 to 2014 is used to find that firms con‐
duct considerable power in the highest demand hours with
bounded excess generation capacity. A game-theoretic model
is used in [17] to analyze the behaviours of independent sys‐
tem operator (ISO) and the generator leading to collusive
transactions. Reference [18] demonstrates the relationship be‐
tween market concentration and collusion sustainability and
their dependence to the strength of the network externalities.
In [19], from the regulatory body’s viewpoint, a model pow‐
ered by game theory and agent-based systems is used to in‐
vestigate the behaviours of each market player. The pro‐
posed method looks at the tacit collusive behaviour of gener‐
ation firms as well as the possibility of explicit collusion.
Reference [20] intends to detect the possibility of collusive
behavior in the liberalized retail electricity market by testing
the validity of the Cournot model of imperfect competition.
The monthly data on the Japanese electric power industry
are applied from 2005 to 2010. It indicates that the possibili‐
ty of collusive behavior among the incumbents cannot be ex‐
cluded. Moreover, the test results imply that larger market
size and firm size might reduce the possibility of collusion
among incumbent retail electricity suppliers. Reference [21]
provides an approach to analyze the development of tacit col‐
lusion between a generator company (Genco) and a distribut‐
ed company (Disco) in a simulated electricity market. Behav‐
iors of Gencos and Discos are modeled using state-action-re‐
ward-state-action (SARSA) learning algorithm, and the mod‐
el is used to tune continual exploration and make the trade-
off between the exploration and exploitation. A typical mar‐
ket with three Gencos and two Discos to prove the possibili‐
ty of tacit collusion between a Genco and a Disco is ana‐
lyzed, which shows that the development of this type of col‐
lusion increases their utilities. Reference [22] studies the col‐
lusion during bilateral agreement in the direct electricity pur‐
chase market. Firstly, a multiple-to-multiple (MTM) model

of bilateral negotiation in direct electricity purchase market
is provided based on the traditional Rubinstein negotiation
model. Then, the collusion is divided into two categories.

Specifically, the collusion can be divided into two catego‐
ries. One is based on the pre-specified information and the
other is based on process communication. Then, the bidding
strategies under the above two collusions are studied in de‐
tail. Finally, the impact of the collusion on the market is ana‐
lyzed through simulations, and regulatory proposals are pro‐
posed. Reference [23] investigates the competition on local
electricity markets to avoid the effects of market power and
analyze the impact of tacit collusion on the possibility of ex‐
ercising market power. It shows that more competitions
would diminish the effects of market power, especially when
a high-level competition with market shares of no more than
20%, because each competitor is needed for peak produc‐
tion. They also indicate that the overall effect of tacit collu‐
sion seems to be small in order to manipulate the market
price by the colluder. Furthermore, tacit collusion in the
form of signaling has no impact on base agent markups.
This paper uses supervised learning methods to detect the
collusion in electricity markets. Market equilibrium is firstly
computed for different loads and collusions. Market equilibri‐
um data and their neighboring operation points are used to
train the collusion detection machine by applying support
vector machine (SVM) and decision tree algorithms. The ef‐
ficiencies of these algorithms are compared with other super‐
vised learning and statistical method.

The rest of this paper is organized as follows. Section Ⅱ
describes the process through which Nash equilibrium is
modeled and market equilibrium is computed. Section Ⅲ
overviews the machine learning approach used to detect the
collusion. In Section Ⅳ , the method of finding quasi-actual
system operation points is described. In Section Ⅴ, the devel‐
oped collusion detection method is applied to the model of a
typical electricity market, and then the results are discussed
and analyzed in Section Ⅵ.

II. MODELING OF EQUILIBRIUM POINT

In practice, there is no enough data from different collud‐
ed scenarios to train the collusion detection machine. The
purpose of equilibrium point modeling is to simulate and col‐
lect data for the training process in subsequent steps. Nor‐
mal operation points are usually fluctuating around Nash
equilibrium. Nash equilibrium is the point where no firm is
better by changing its strategy unilaterally [24]. In other
words, the deviation from the Nash equilibrium point by par‐
ticipants will not increase their profits. For the modeling of
equilibrium point, it is necessary to define the assumptions
and conditions of market operation in the restructured power
industry. For this purpose, we assume that the day-ahead
market is a pool-based market with uniform pricing. Assume
that the cost of generating Qsi by unit i is as follows. These
coefficients reflect the operation cost of unit i when it gener‐
ates Qsi.

C(Qsi)= ai ×Qsi +
1
2

bi ×Qs2
i (1)
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where ai and bi are the cost function coefficients of unit i.
Also, the utility of consuming QDj by consumer j is:

C(QDj)= cjQDj -
1
2

djQ
2
Dj (2)

where cj and dj are demand function coefficients of consum‐
er j. These coefficients reflect the utility of consumer j when
he or she consumes QDj. ρ true denotes the true linear supply
function of generation unit i, which is also the real marginal
cost of unit i as follows:

ρ true (Qsi)= ai + bi ×Qsi (3)

As strategic data, these marginal costs are confidential for
the producers. On the supply side, a set of firms is defined
as follows:

F ={ f1f2...fk} (4)

The goal of firm f ∈ F is to maximize its profit by deter‐
mining the optimal parameters of a similar linear bid func‐
tion as follows:

ρbid (Qsi)= α i + β i ×Qsi (5)

These coefficients reflect the purchasing cost from unit i
when it generates Qsi. To obtain a unique solution, one must
avoid changing both α and β. Instead, one parameter should
be kept constant, e. g., β i=bi, and the other parameter α i

should be altered [20]. ISO supervises the schedule of gener‐
ators and market clearing price (MCP) with the aim of maxi‐
mizing social welfare without violating the technical con‐
straints. The objective of ISO can therefore be modeled as
follows:

max JISO =∑
jÎD

(cjQDj -
1
2

djQ
2
Dj) -∑

iÎ S

(aiQsi +
1
2

biQs2
i ) (6)

s.t.

∑
i ∈ S

Qsi-∑
iÎD

QDi = 0 (7)

Qsmin
i £Qsi £Qsmax

i (8)

where JISO is the social welfare; S is the set of generation
units; D is the set of consumers; and Qsmin

i and Qsmax
i are the

capacity limits of unit i. Firm f maximizes its profit by deter‐
mining the optimal bid for its units using the following bi-
level optimization.

ì

í

î

ï
ï
ï
ï

max π f = å
iÎ f

(λ ⋅Qsi - ai ⋅Qsi -
1
2

Qs2
i )

s.t. (6)-(8)

αmin
i £ α i £ αmax

i

(9)

where π f is the profit of firm f; αmin
i and αmax

i are the lower
and upper limits of α i, respectively; and λ is the power bal‐
ance constraint (7). The strategy of firm f to outbid other
firms is obtained by solving a mathematical program with
equilibrium constraints (MPECs) consisting (9). Decision
variable of generation firm i is α i. Market equilibrium is ob‐
tained by solving equilibrium problem with equilibrium con‐
straint (EPEC) that consists of the sets of MPECs for all gen‐
eration firms. To solve the EPEC, KKT conditions for opti‐
mization problem of each generation firm are proposed.
Then, KKT conditions of all generation firms are solved si‐

multaneously using dual-variables-based algorithm [25],
which is an iterative algorithm. In each iteration, the first ac‐
tive constraint with the biggest dual variable is identified
and KKT conditions are revised. The algorithm continues un‐
til all active constraints at market equilibrium are identified
and KKT conditions are revised based on active constraints.
The remaining KKT conditions are linear equations with
unique market equilibrium [25].

III. MACHINE LEARNING

The concept of machine learning originates from pattern
recognition and computation learning theory in artificial in‐
telligence [26]. The algorithms developed with machine
learning concepts are expected to do their tasks for unspeci‐
fied data [27]. Machine learning has a multitude of tasks,
the most important of which may be the supervised learning
[28]. In the supervised learning, the algorithm with a certain
input, a certain output, and a group of labeled training data
is provided. The algorithm then uses machine inference to
develop a function capable of emulating the process and
mapping the new data.

A. SVM Algorithm

SVM algorithm [29], [30] is one of the most widely used
supervised algorithms in data classification. In fact, SVM al‐
gorithm is a binary classifier that defines the optimal bound‐
ary between two (or more) classes. Mathematically, SVM us‐
es a linear hyper-plane to separate two classes by maximiz‐
ing the distance of each class from this plan. The algorithm
uses a quadratic programming to find data samples that are
in the border of each class, and these samples are known to
support vectors. Then, the algorithm searches for the hyper-
plane which firstly has the maximum distance from each sup‐
port vector. Secondly, the distances between the hyper-plane
and each support vector are equal. As mentioned above, the
support vector algorithm is used only to separate the two
classes from each other. But for collusion detection and diag‐
nosis of the firms involved in the collusion, the number of
different classes may depend on the type of the collusion,
and the number of firms is more than those of the two class‐
es. Hence, for the category and classification of different
types of the collusion, specific methods of multi-class SVMs
must be used, which include one against one and one
against all methods [31], [32]. If the data are inseparable by
a linear hyper-plane, the data are mapped to a higher dimen‐
sional space which is called feature space by kernel func‐
tion. Through this procedure, the algorithm becomes capable
of fitting the maximum-margin hyper-plane in a transformed
feature space. This transformation could be linear or nonlin‐
ear and the transformed feature space could be of a higher
dimension. Note that in the transformed feature space, the
classifier is a hyper-plane, but in the original input space, it
could be nonlinear [33]. Factors deciding the SVM perfor‐
mance are the chosen kernel function and its parameters as
well as the soft margin parameter C. Gaussian kernel, which
has a single γ, is a typical choice for SVM [34]. The com‐
mon practice for finding the best values of C and γ is to con‐
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duct a grid search, i.e., to repeat the calculations with differ‐
ent C and γ combinations and determine the values yielding
the best accuracy through cross-validation [35].

B. Classification and Regression Tree (CART) Algorithm

As a predictive model, decision tree is one of the super‐
vised learning and non-parametric methods with the hierar‐
chical structure which is used to classify different types of
data, and its results are delivered in a flowchart-like tree
structure. According to the dependent variable type, this algo‐
rithm is divided into two categories: classification trees for
discrete variables and regression trees for continuous vari‐
ables. In this algorithm, the fragmentation of the data is im‐
plemented by using the features as a tree. For better under‐
standing, it is written by using as if-then rules [36]. In each
stage of this method, a feature for the data is selected based
on the training data and the data set is divided into a class
grouping based on the chosen features. This continues until
all the data in a category has a single label. One of the most
famous decision tree algorithms is CART algorithm, which
leads to the creation of a tree with binary division intro‐
duced in [37]. CART algorithm is a non-parametric decision
tree learning technique, which is used to classify any type of
the data. In other words, the CART algorithm produces ei‐
ther the classification or regression trees, depending on
whether the dependent variable is categorical or numerical,
respectively. At each stage, the Gini index is used to select
the best attribute for the data used. One important applica‐
tion of machine learning is to model costumer behaviors in
financial markets, which comes from the fact that finding
mathematical rules to model the behaviors of individual cos‐
tumers is a very complex process, e.g., in credit card fraud
detection. It would be extremely hard to find reasons and
rules for justifying safe versus fraudulent behaviors without
the help of machine learning approaches. This research is an‐
other attempt to model the behavior of market participants
without the detailed knowledge about their incentives. In cre‐
ating synthetic data, it is assumed that we know safe or
fraudulent behaviors, but we let machine learning approach
distinguish those behaviors without access to any of rules
used to create synthetic data.

IV. COLLUSION DETECTION AND CLASSIFICATION

A. Data Generation

The objective of this paper is to provide a tool that would
allow ISO to detect collusion and identify the colluding
firms using the day-ahead data, which is pursued via ma‐
chine learning paradigm. One problem that obstructs the use
of trainable machines in collusion detection and classifica‐
tion is the lack of adequate knowledge about the data associ‐
ated with different collusion among participants. According
to Section Ⅱ , equilibrium points are obtained for different
load demands and different kinds of collusion scenarios. To
achieve a proper collusion detection technique, the modeling
should go beyond the limits of a single period or a certain
class of load demand. An exact match between market opera‐
tion point and computed market equilibrium is rare. But ma‐

ture electricity markets are often close enough to the equilib‐
rium to allow the peripheral points of the equilibrium to be
assumed as quasi-actual operation points [25], [38].

Moreover, due to different changes that occur every day
in power systems, and the fact that power producers do not
know these changes, market players are not faced with a stat‐
ic environment. Hence, electricity markets may not work ex‐
actly on their Nash equilibrium. However, since daily chang‐
es in game environment is small in comparison to the whole
environment, and all producers are rational and smart, it is
reasonable to assume that electricity markets work at a point
close to their Nash equilibrium. Thus we consider peripheral
equilibrium points for creating synthetic data. Nash equilibri‐
um point is located in a ball with the center of Nash equilib‐
rium and a specified radius. To implement this assumption,
the intercept of supply curve of each generation unit is al‐
tered around its value at the equilibrium point. And the re‐
sulting points are considered as quasi-actual operation
points. To determine quasi-actual data, suppose αp is the set
that contains the intercept of bid of all generation units at
the pth equilibrium point. Balls B (αp, hαp) are defined for
equilibrium points p = 1, 2, ..., P, where αp and hαp are the
center and radius of the ball p, respectively; P is the number
of equilibrium points computed for different load levels and
collusion scenarios; and h is the deviation percentage that
represents the extent of deviation of quasi-actual data from
the considered equilibrium points. Quasi-actual data are se‐
lected randomly within these balls. To create the quasi-actual
operation points for collusion states, we need to model elec‐
tricity market and collusion. To model the collusion, the
firms participating in the collusion are considered as a single
entity, which means that generation firms that participate in
the collusion seek to optimize the sum of profits of all firms
participating in the collusion, instead of optimizing their
profits separately and independently. In other words, in elec‐
tricity markets, the collusion means that two or more power
producers collaborate to increase electricity price for a long
time. The producers’ bid is colluded so that sum of profits
of all colluding firms is maximized. To generate the data
that reflect collusion behavior, equilibrium points for all pos‐
sible collusion scenarios are computed. To simulate the collu‐
sion, in each scenario, all colluding power producers are con‐
sidered as one firm that maximizes the profit of the coali‐
tion. Equilibrium points and their peripherals for different
collusion scenarios at different load levels are considered as
synthetic data for machine learning.

B. Training Machine for Collusion Detection

According to Section Ⅳ -A, the equilibrium points and
quasi-actual operation points are used for training the ma‐
chines. In order to detect the collusion and the firms partici‐
pating in it, some attributes or criteria are required to distin‐
guish the operation points related to the collusion from those
without the collusion, which are used to train the trainable
machines. After training, the data of a real operation point
are given to the trained machine, and the machine detects
the occurrence of the collusion and firms participating in
this violation. The attributes or criteria used for training the
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collusion detection machine are as follows:
1) Marginal cost of generators (MC).
2) Bid price of generators (BP).
3) Lerner index for different generators (LER).
4) Market share of each producer with load demand (MS).
5) Herfindahl Hirschman index of the market with each

load demand (HHI).
Privately-owned generators naturally refuse to publicly re‐

port their marginal cost functions. It is assumed that ISO es‐
timates marginal cost functions of all generators using the
available model in [39], [40]. The Lerner index measures the
extent to which the bid price of a given firm exceeds its real
marginal costs. In other words, the Lerner index measures a
firm’s level of electrcity power and describes the relation‐
ship between the elasticity and price margins. The Herfind‐
ahl Hirschman index is accepted as an indicator of market
competition that measures the level of the concentration in a
given market [41], [42]. The market simulation performed in
this paper aims to calculate the above-mentioned criteria at
the quasi-actual operation points under different collusive
conditions. In this paper, for model assessment and error esti‐
mation of classifier, k-fold cross-validation estimator is used
as a randomized method for error estimation [43]. Algorithm
1 shows the procedure of the collusion detection method,
where SC is the collusion scenario.

V. SIMULATION RESULTS AND ANALYSIS

In this section, the proposed approach is applied to an
electricity market with four firms and ten generators. Table Ⅰ
shows the list of generators owned by each producer and Ta‐
ble Ⅱ shows the characteristics of each generator. Parameters
in Table Ⅱ are coefficients of marginal cost function (MCi =

ai + bi ×Qsi) and the capacity limits of units. In this paper,
we assume that the auction in electricity markets is a static
and incomplete information game.

Table Ⅲ shows the list of bilateral and multi-lateral collu‐
sion scenarios for the studied market. There are 10 different
scenarios for bilateral and multi-lateral collusion. The goal is
to distinguish collusion scenarios from collusion-free scenari‐
os and identify the colluding firms. To compute the equilibri‐
um point for no collusion scenario, we have four coupled bi-
level optimization problems, each optimization for one gener‐
ation firm. To simulate the collusion between Firm 1 and
Firm 2, we have three coupled bi-level optimization prob‐
lems, an optimization for Firm 1 and Firm 2, an optimiza‐
tion for Firm 3, and an optimization for Firm 4. We assume
the load demand varies between 3000 MW and 5000 MW
(Qmax

D = 5000) with 50 MW steps (DQD = 50). Hence, we have
41 different load levels. To create quasi-actual data for ma‐
chine training, equilibrium points for 41 different load levels
and different collusion scenarios are computed. Operation
points located inside balls B (αp, h 100 αp) are considered as
quasi-actual points. Collusion detection attributes or criteria
are computed for each quasi-actual operation point.

In this paper, the range of variation applied on the inter‐
cept of linear bid function is considered ±10% of the inter‐
cept value at the equilibrium hmax =±10. Therefore, the simu‐
lation is performed for different data sets. As shown in Fig.
1, five distinct data sets are defined, for h equal to 2, 4, 6,
8, 10, respectively.

Each data set is specified with its deviation percentage
and consists of all quasi-actual operation points located at
balls B (αp, hαp 100) for p = 1, 2, ... P. The set of all above-

mentioned criteria for all units at any given scenario and

TABLE Ⅰ
UNIT OWNED BY EACH FIRM

Firm

Firm 1

Firm 2

Firm 3

Firm 4

Unit

1, 2, 3

4, 5

6, 7

8, 9, 10

TABLE Ⅱ
PARAMETER OF GENERATION UNIT

Firm

1

2

3

4

Unit

1

2

3

4

5

6

7

8

9

10

ai

25

20

30

30

26

32

22

35

25

20

bi

0.032

0.050

0.038

0.042

0.060

0.040

0.055

0.036

0.045

0.030

Qsmin
i

0

0

0

0

0

0

0

0

0

0

Qsmax
i

800

600

600

400

650

700

700

600

400

600
Algorithm 1: Collusion detection algorithm
for h=h1:Δh: hmax do
      1. create historical data
      for SC=1:SCmax (collusion scenarios) do
            for LD =QD1:QD:QDmax do
                  Compute:
                  a) Market equilibrium (6)-(11)
                  b) Generation power at equilibrium
                  c) Collusion criteria
                  x←[MC, BP, LER, MS, HHI]
                  end
            Save criteria and label for each scenario
            X←x
            Y←SC (label)
            end
      Data←[X  Y ]
      2 Train machine learning algorithm
      3 Analyze colluding behaviour as the loop below:
      for each new sample do
            new sample belongs to anomaly cluster
                                             OR
            is not statistically similar to normal operation
            Flag colluding agents
            Otherwise
                  Collusion==No
            end
      end
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load is called a data sample. Each data sample forms a
10´ 5 matrix. Row i indicates unit i and column j indicates
criterion j.

A. Collusion Detection Using Equilibrium Point Data for
Machine Training

In this section, we only use operation points related to
market equilibrium points for machine training and valida‐
tion. It is also supposed that peripheral equilibrium points,
which are selected randomly as quasi-actual operation
points, are only used for the testing machine. For machine
training, there is a data sample, or a 10´ 5 matrix of detec‐
tion criteria for each load level in each of the collusion sce‐
nario. A data sample consists of 10 sub-samples and each
sub-sample is related to each generation unit. In other
words, each sub-sample indicates the behaviors and features
of each generator.

Considering 41 different load levels and all collusion sce‐
narios given in Table Ⅲ , there are 451 data sample, in
which 41 data samples are related to fair competition and
the rest of the samples are referring to the collusion (41 data
samples for each collusion scenario). There are overall 4510
sub-samples, and all of these instances are used in training
process, as shown in Fig 2.

For any equilibrium point, only one peripheral point is
considered. All of the peripheral points are used as test sam‐
ples. Figure 3 show the confusion matrix for SVM and
CART algorithms in the test process for data set related to
h=±2. A confusion matrix contains the information about ac‐
tual and predicted classifications done by the related classifi‐
cation algorithm [23]. The performance or accuracy of a
learning algorithm is commonly evaluated using the confu‐

sion matrix. Each row represents the instances in an actual
class (target class) while each column of the matrix repre‐
sents the instances in a predicted class (output class). For ex‐
ample, in Fig. 3, in the whole 410 sub-samples of class 11,
only 93 sub-samples are correctly predicted to belong to this
class, and the rest instances are incorrectly predicted to be‐
long to other class. According to Figs. 3 and 4, in the whole
4510 sub-samples related to the all classes in the test data,
SVM and CART algorithms correctly predict 3817 and 3238
sub-samples of the actual classes (target classes), respective‐
ly. Based on these tables, machine learning has a less accura‐
cy for the separation of samples of all classes. Specially, the
error of the machine is more likely to be used to detect the
instances of class 11, and class 11 has the highest error rate.
Table Ⅳ and Table Ⅴ show the erro percentage of collusion
detection and the classification for different data sets in train‐
ing, validation, and test processes using SVM and CART al‐
gorithms, respectively. For all deviation percentage in α and
different data sets, optimal Gaussian kernel and soft margin
parameters C = 100 and γ= 5 are selected using k-fold cross-
validation method.

The percentage error and σ in the training and validation
process refer to the average percentage and standard devia‐
tion of error in 10-fold cross-validation method (10 times

451 data samples
41 fair competition

data samples

1 2 … 41

410 collusion
data samples

1
10 sub-samples

Training data for the machine learning

410 sub-samples for
fair competition

4100 sub-samples 
for competition

2 … …10 1 2 … …10 1 2 … 101 2 … 10

1 2 … 410{ 10 sub-samples{

Fig. 2. Samples and sub-samples in training process.

0
0

4
0

1
0

0
0

0
2

29
373

7
0

1
1

10
1

0
1

347
33

5
0

4
8

0
0

31
5

0
1

0
409

0
0

2
0

32
0

2
0

392
0

0
3

0
0

0
0

2
1

1
0

38
361

0
5

0
0

1
1

0
0

365
33

1
0

0
0

0
0

0
0

1
4

0
398

21
0

0
0

0
0

0
0

327
0

210
82

1
0

1
0

0
0

70
0

23
320

1
1

0
1

0
0

0
6

93
0

4051
2
3
4
5
6
7
8
9
10
11

Predicted class

A
ct

ua
l c

la
ss

1 2 3 4 5 6 7 8 9 10 11
0 0 0 5 0 0 0 0 0 0

Fig. 3. SVM confusion matrix in test process.

α
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Fig. 1. Percentage of equilibrium point deviation to create peripheral point.

TABLE Ⅲ
DIFFERENT SCENARIOS OF COLLUSION

Scenario

Fair competition

Firm 1 and Firm 2

Firm 1 and Firm 3

Firm 1 and Firm 4

Firm 2 and Firm 3

Firm 2 and Firm 4

Firm 3 and Firm 4

Firm 1, Firm 2, and Firm3

Firm 1, Firm 2, and Firm4

Firm 1, Firm 3, and Firm4

Firm 2, Firm 3, and Firm 4

Collusion type

Collusion free

Bilateral collusion

Multi-lateral collusion

Label

1

2

3

4

5

6

7

8

9

10

11
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training), respectively. Table Ⅳ and Table Ⅴ show that the
machine learning does not have a proper performance when
the learning and testing data are separated from each other.
In other words, we consider equilibrium points as training
data which refer to specific points. When we use the periph‐
eral equilibrium point in the test process which refers to a
space around the equilibrium point, by applying this ap‐
proach to create historical data, the machine will not have a
proper performance. Therefore, the utilization of equilibrium
points alone in the train process is not sufficient, and periph‐

eral points of the equilibrium should be utilized in the ma‐
chine training process to provide a proper tool for collusion
detection.

B. Collusion Detection Using Equilibrium Points and Periph‐
eral Points For Training of Supervised Learning

In this section, equilibrium points and their peripheral
points are used in all processes. In order to create a more
comprehensive model of the detector machine, we investi‐
gate more points around the equilibrium points. Therefore,
five peripheral points are considered in each ball B (αp,
hαp 100). Hence, there are 2255 data samples in each data

set, and each data sample consists of 10 sub-samples. Ma‐
chine learning approaches randomly select 80% of data sam‐
ples for the learning and validation process, and the remain‐
ing data samples are allocated to the test process. For data
set related to h=±2, Fig. 5 shows the SVM confusion matrix
for categorizing 11 classes in the test process. The erro per‐
centag for the relevant data set is equal to 3.77%. Table Ⅵ
and Table Ⅶ show the satisfying erro percentage of algo‐
rithms for different data sets in training, validation, and test
processes. By utilizing the equilibrium points and their pe‐
ripheral points in training and validation process, the ma‐
chine has a suitable performance in collusion detection and
classification, considering collusion-free state as a class and
all collusion states defined in Table Ⅲ as the other class.

Figure 6 shows that quasi actual operation points of the
market can be classified into two classes, collusion and col‐
lusion-free for h=±6. Only marginal cost and Herfindahl
Hirschman index are used as detection attributes. Consider‐

ing γ= 0.6 and C = 100, SVM is able to separate the training
and test samples correctly into two classes with the accuracy
of 94% and 93%, respectively. In this section, we evaluate
the accuracy and efficiency of SVM and CART algorithms
together and with other algorithms in collusion detection and
classification. According to Table Ⅶ and Table Ⅷ, the ef‐
ficiency of SVM in collusion detection and identifying the
collaborator firms for all different data set is higher than that
of CART algorithm. SVM and CART algorithms are used to
identify colluding firms. SVM algorithm has a proper perfor‐
mance and higher accuracy in identifying colluding firms
than CART algorithm.

Furthermore, the results obtained by SVM and CART al‐
gorithms are compared with those of other algorithms such
as multi-layer perception (MLP) neural networks, radial ba‐
sis function (RBF) neural network [46], [47], K-nearest
neighbor (KNN) [48] and Bayesian classifier [49].

Table Ⅷ shows that SVM outperforms other methods
due to its capability in providing a good out-of-sample gener‐
alization with proper parameter tuning for C and γ [34]. In
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TABLE Ⅳ
PERCENTAGE ERROR OF SVM ALGORITHM

Deviation percentage
of data set

α± 0.02α

α± 0.04α

α± 0.06α

α± 0.08α

α± 0.10α

Train

0.0225± 0.001

0.0234± 0.004

0.0244± 0.003

0.0222± 0.005

0.0231± 0.003

Validation

0.0285± 0.020

0.0276± 0.030

0.0256± 0.015

0.0264± 0.025

0.0291± 0.030

Test

0.1596± 0.010

0.2288± 0.021

0.2996± 0.010

0.3470± 0.030

0.3860± 0.002

TABLE Ⅴ
ERROR PERCENTAGE OF CART ALGORITHM

Deviation percentage
of data set

α± 0.02α
α± 0.04α
α± 0.06α
α± 0.08α

α± 0.10α

Train

0.0152± 0.005
0.0232± 0.008
0.0161± 0.003
0.0184± 0.005

0.0175± 0.004

Validation

0.0632± 0.05
0.0563± 0.05
0.0688± 0.04
0.0612± 0.02

0.0644± 0.03

Test

0.282± 0.04
0.301± 0.03
0.322± 0.06
0.394± 0.04

0.409± 0.01
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Fig. 5. SVM confusion matrix in test process.

7



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. XX, NO. XX, XX XXXX

other words, by choosing appropriate generalization grades,
SVM can be robust even when the training sample has some
biases. Furthermore, SVM is a useful tool for insolvency
analysis when the data are not regularly distributed or have

an unknown distribution as the data of Figs. 3 and 5. In fact,
in many real-world problems such as electricity markets, col‐
located data are not linearly separable like the data of Fig. 6.
Therefore, SVM can work well with higher accuracies. As
shown in Table Ⅷ , CART algorithm also has a good per‐
formance, because it is inherently non-parametric. In other
words, no assumptions are made regarding the distribution
of predictor variables. Thus, CART algorithm can handle nu‐
merical data that are highly skewed or multi-modal as well
as categorical predictors with either ordinal or nonordinal
structure [37].

C. Collusion Detection Using Equilibrium Points and Periph‐
eral Points in Statistical Method

In order to compare the obtained results from supervised
algorithm with other methods, we analyze the statistical
method in collusion detection and anomaly detection in elec‐
tricity market. In this section, we divide all original data into
two groups, normal data and anomaly data. Then, collusion
detection algorithm is examined for 0£ h£±18. For each de‐
viation, we calculate F1 score as a precision criterion which
can be calculated as:

F1 =
2Pr Re

Pr +Re
(10)

Re =
Tr
Ac

(11)

where F1 score is a well-known method of evaluating predic‐
tive models on skewed data sets [50], which considers the
contribution of both precision and recall as an instance, and
models with lower precision or recall will lead to lower F1

score; Tr corresponds to the points that the algorithm detects
as positive samples; Ac is the positive point in the data sets;
and Pr and Re are precision and recall, respectively, which
are calculated using:

Pr =
Tr

Po
(14)

where Po is the point that the algorithm detects as positive
point but it may have errors. Since our data set could have
fewer observations in one of the classes, F1 score is an effec‐
tive way to evaluate the predictive model. F1 score can nev‐
er be higher than 1. Moreover, the bigger value of F1 repre‐
sents the more accurate classifier in general. Based on the
obtained result of Fig. 7, it is obvious that for h< 15, the sta‐
tistical method has a better performance than the supervised

TABLE Ⅷ
ERROR PERCENTAGE OF DIFFERENT ALGORITHMS

Deviation
percentage of

data set

α± 0.02α

α± 0.04α

α± 0.06α

α± 0.08α

α± 0.10α

Error (%)

MLP

25.6

30.2

32.5

36.2

37.6

RBF

24.3

25.2

34.4

36.5

38.7

KNN

15.4

25.3

32.3

35.6

36.5

Bayesian

52.4

54.3

57.7

57.6

59.5

CART

4.75

11.51

17.80

21.14

24.32

SVM

3.77

9.39

14.00

19.60

22.40

TABLE Ⅶ
SATISFYING ERROR PERCENTAGE OF CART ALGORITHM

Deviation percentage
of data set

α± 0.02α

α± 0.04α

α± 0.06α

α± 0.08α

α± 0.10α

Train

0.0145± 0.003

0.0515± 0.004

0.1080± 0.001

0.1476± 0.004

0.1849± 0.004

Validation

0.0448± 0.002

0.1032± 0.030

0.1671± 0.050

0.2030± 0.030

0.2380± 0.030

Test

4.75± 0.003

11.51± 0.03

17.80± 0.04

21.14± 0.02

24.32± 0.03

TABLE Ⅵ
SATISFYING ERROR PERCENTAGE OF SVM ALGORITHM

Deviation percentage of
data set

α± 0.02α

α± 0.04α

α± 0.06α

α± 0.08α

α± 0.010α

Train

0.0076± 0.002

0.0854± 0.001

0.1230± 0.002

0.1560± 0.002

0.1880± 0.002

Validation

0.0356± 0.002

0.1054± 0.015

0.1570± 0.022

0.1910± 0.036

0.2140± 0.041

Test

0.0377± 0.001

0.0936± 0.003

0.1460± 0.005

0.1960± 0.008

0.2240± 0.005
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Fig. 6. Classification of created operation points in 11 scenarios into collu‐
sion and collusion-free classes.
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methods in detecting anomaly data in electricity market. The
detection of collusion occurrence and identification of collud‐
ing firms are the main issues of collusion detection. Figure 7
shows that statistical methods outperform the supervised
methods in collusion detection. On the other hand, since the
statistical method cannot identify colluding firms, they can‐
not be appropriate tools for collusion detection. Therefore,
supervised learning algorithms are more suitable for collu‐
sion detection. In order to determine the importance of the
above-mentioned criteria in collusion detection and classifica‐
tion, we eliminate one of the criteria from the set of criteria
and then analyze the collusion detection algorithm for all da‐
ta sets. Table Ⅸ shows the decrease in accuracy of the algo‐
rithms after eliminating different criteria. According to Table
Ⅸ , the importance of HHI index in collusion classification
is greater than other criteria. Also, the elimination of MC
and LER at the same time strongly reduces the accuracy of
the algorithms, which indicates that MC or LER is important
and necessary as a major criterion in collusion detection and
classification.

Table Ⅸ shows a downward trend in the performance of
the algorithms after eliminating different criteria. These re‐
sults will be true until the designed algorithms could be used
for categorizing 11 classes. In other words, if the number of
scenarios in a new case study is less than 11, it will be possi‐
ble that the accuracy of algorithms is less after removing the

indexes due to the sensitivity of SVM and CART algorithms
to a large number of classes. Consider the bilateral collusion
states as a class and multi-lateral collusion states defined in
Table Ⅲ as the other class, Fig. 8 shows the classification of
generated data set into two classes, if h=±2, and only bid
and market share are used as detection attributes.

As shown in Fig. 8, considering γ= 0.2 and C = 100, after
eliminating several criteria such as MC and LER, SVM has
appropriate accuracy and discriminates the training and test
samples related to the two classes with the accuracy of 93%
and 92%, respectively. The red and blue samples (training
and test samples of the bilateral class) among multi-lateral
collusion samples are related to the bilateral collusion sam‐
ples created at the high load levels. Thus, bid price in these
samples is higher than that in other same samples. The bid
price in multi-lateral collusion is much higher than that in bi‐
lateral collusion at lower load levels close to 3000 MW.

The collusion detection framework is also examined under
unconstrained condition, i.e., if generation constraints are ig‐
nored. The results of this part are not discussed in this pa‐
per. In the unconstrained case, the accuracy and performance
of the collusion detection algorithm based on the mentioned
approach are slightly better than that under the constrained
condition. In the constrained model, the obtained data have
some bias and have been distributed erratically. It means that
all of the learning algorithms have a relative relevance to the
data analyzed and evaluated. Despite a few problems with
the generated data in the constrained model, e.g., its non-reg‐
ularity distribution, SVM and CART algorithms outperform
other algorithms and have an appropriate performance in the
constrained model. Generally, the existing electricity markets
are oligopoly markets, which means that the number of gen‐
eration firms is limited although each generation firm may
have several generation units in practice. A test system with
10 generation units classified in 4 generation firms is consid‐
ered in this paper. The total running time of the computer is
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W
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)
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Fig. 8. Classification of created operation points for 10 scenarios in bilater‐
al and multi-lateral collusion classes.
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Fig. 7. F1 score curve in collision detection data.

TABLE Ⅸ
ACCURACY DECLINE OF ALGORITHMS IN VALIDATION AND TEST PROCESS

FOR 11 CLASSES AFTER ELIMINATING DIFFERENT CRITERIA

Eliminated criteria

MC

LER

HHI

MS

BP

MC and LER

Accuracy decline (%)

ID3

0-3

0-2

15-20

0-2

0-2

5-20

CART

0-3

0-2

15-20

0-2

0-2

5-20

SVM

0-3

0-2

10-15

4-6

0-2

7-20
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used as a criterion for computation complexity. The total run‐
ning time for collusion detection in a 2.5 GHz laptop is near‐
ly 20 s. Although the number of generation units is much
more than 10 in practice, the number of generation firms is
not much more than 4. Hence, the number of the players is
not much more than 4 in practice. Therefore, the complexity
and scalability of the computation are not big issues.

VI. CONCLUSION

In this paper, an approach for collusion detection in elec‐
tricity market is proposed based on machine learning. First‐
ly, the possible scenarios of collusion among generation
firms are identified. Then, for each load level and possible
collusion scenario, the market equilibrium is computed and
peripheral points of the equilibrium are determined. Collu‐
sion detection criteria are computed for the equilibrium and
their peripheral points. The computed criteria are used to
train the learning machines using SVM and decision tree al‐
gorithms. Simulation results show that the accuracy of the
used machines is acceptable in collusion detection. As the se‐
lected peripheral points deviate from the equilibrium points,
a downward trend in the accuracy of the collusion detection
algorithm is observed. SVM and decision tree algorithms are
compared with other machine learning approaches, and it is
observed that SVM and decision tree algorithms are the
most appropriate techniques to detect the collusion. Finally,
the impact of each criterion on the collusion detection accu‐
racy is evaluated and the MC and LER indices play more
important roles in collusion classification performance than
other criteria. ISO runs the collusion detection program at
any hour. If the results show the collusion of two or more
firms for a long time period, the collusion is valid. However,
if the results show the collusion occurs only in an hour, it
cannot be considered as a collusion.
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