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Abstract

As an intermediator between the wholesale electricity market and retail market, a typi-
cal load aggregator submits an optimal bid to the system operator to meet the expected
demands of its customers. In this regard, the provision of an effective optimal bidding
strategy is very crucial for a load aggregator to increase its profit. Within this context, this
paper proposes a two-stage artificial neural network based adaptive bidding strategy pro-
cedure for an LA by revealing, modelling, and predicting the aggregative behaviour of the
competitors in an hourly electricity market. To this end, we develop the concept of decen-
tralized equivalent rival whose behaviour in the electricity market reflects the aggregation
of behaviours of all individual competitors. Also, an equivalent market which its outcomes
are approximately equal to those of the real market is modelled. The equivalent market’s
participants are the load aggregator and its corresponding DER. The proposed approach
is capable enough to consider transmission constraints. The performance of the proposed
approach has been examined on an illustrative example and the IEEE 30-bus test system
by considering transmission network constraints. The proposed artificial neural network-
based adaptive bidding strategy has compared with a Q –learning-based bidding approach
and the results are analysed.

1 INTRODUCTION

In order to meet the expected demand of its customers, the
load aggregator (LA) purchases the required energy by offering
its optimal bid in the wholesale electricity market. In fact,
LA can be considered an intermediary entity between the
system operator and scattered small-scale consumers. Under
the participation of LA, not only, small-size consumers are
able to take part indirectly in the electricity market, but also,
more flexibility can be procured from the perspective of system
operation. However, all of these benefits are realized when an
effective bidding strategy for LA is adopted. With respect to
LA bidding strategy, a few remarkable works can be mentioned.
In [1], a bidding strategy for LA has been proposed to reduce
the risk of profit loss arising from the price volatility. In [2],
a bi-level optimization model has been adopted to maximize
the profit of the LA in a day-ahead forward market including
energy and reserve. Artificial Neural Network (ANN) and fuzzy
logic system are employed for Based on the forecasted clearing
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price and load reduction using ANN and fuzzy logic, a bidding
strategy of LA is proposed in [3] with a case study in Taiwan.

Designing an effective bidding strategy approach for an LA is
highly dependent on the rivals’ behaviour. This is an important
lack of information which is observed in the above-mentioned
papers.

In the literature of the electricity market, a few techniques
have been devoted to providing additional information about
competitors such as scenario-based approaches [4, 5], price and
load forecasting [6–14], and competitors’ behaviour analysis [15,
16]. In scenario-based approaches, uncertainties such as rivals’
offers, market prices, wind-power productions, and demand’s
bids have been modelled using a set of scenarios. Scenario-based
approaches are not able to precisely model the competitors’
behaviour and the impression of rivals’ behaviour on market
outputs and participants’ results. Forecasting techniques have
small average errors, but these approaches cannot model the
actual electricity price fluctuation and the influence of individual
participants’ behaviour on forecasted parameters [17].
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The literature which are focused on competitors’ behaviour
analysis mostly have tried to estimate the market players’ aggre-
gate supply curve based on the data which are assumed to be
available. In most cases, these assumptions are incompatible
with the reality of electricity markets. For example, in [18], the
author has assumed the participants’ marginal costs are available
and proposed a bid function equilibrium model to predicting
supply curves of participants based on this information which is
not available in real electricity markets. An inverse optimization
method is proposed in [19] to estimate the market participants’
historic bids which could be used to estimate the aggregate
supply curve. The basic assumption in this paper is the market
players’ technical characteristics and power allocated to them
are available. But this information is confidential in practice.

In our previous paper [20], we proposed an approach to mod-
elling and predicting the market participants’ behaviour based
on practically available data. In [20], we have introduced the con-
cept of the equivalent rival whose behaviour in the electricity
market reflects the aggregation of behaviours of all individual
competitors. Based on this concept, the behaviour of the com-
petitors from the viewpoint of a power plant has been obtained.
A Bayesian inference approach is proposed in [21] to estimate
the net aggregate supply curve which is based on Markov Chain
Monte Carlo and Sequential Monte Carlo methods. In [20], we
have shown the proposed approach can estimate the net aggre-
gate supply curve more accurately than the proposed method
of [21]. Moreover, the proposed approach of [20] allows pre-
diction of the power allocated to the intended power plant and
the market-clearing price with high accuracy. Using the obtained
model of competitors’ behaviour, the proposed approach of
[20] has been used to obtain the optimal bidding strategy. The
approach of [20] focuses on a one-side electricity market and
also neglects transmission constraints. To enable the proposed
approach to consider demand-side bidding, transmission line
constraints, and congestion effects, we introduce the decentral-
ized equivalent rival (DER) concept by extending the equivalent
rival concept of [20].

(i) In this paper, we show the proposed approach, which is
based on the DER concept, is effectively able to model and
predict the competitors’ behaviour in a two-side electricity
market with transmission line constraints. Based on DER
concept, we propose a bidding strategy approach from the
perspective of a Load Aggregator. The main advantages of
the proposed approach are:
The proposed approach is able to model not only the net
aggregate supply curve but also the rivals’ behaviour from
the viewpoint of a load aggregator.

(ii) The proposed approach uses practically available data and
solves the problem of data shortage by the development of
the equivalent market and introducing the DER.
The proposed approach can accurately predict market
results for each of the possible bids of the intended load
aggregator and find the optimal bid based on this predic-
tion.
Using the proposed approach, the actual electricity price
fluctuation and the influence of individual participants’

behaviour on market outputs and participants’ results are
predictable.

(iii) The proposed approach is developed for a two-side elec-
tricity market with transmission line constraints and there
is no limitation for applying the proposed approach.

Within the above framework, the major contributions of this
paper are to propose a novel ANN-based bidding strategy for a
LA, to propose a DER concept for a two-side electricity market
with power network constraints, to reveal and model the com-
petitors’ behaviour from an LA point of view using the DER
concept based on practically available data, and to predict the
power allocated to the intended LA and Local Marginal Price
(LMP) in the respective bus. The organization of the paper is as
follows: After presenting the introduction in section I, section
II-A provides an overview of the proposed approach by pre-
senting concepts of DER and equivalent market. Also, notations
used throughout the paper are introduced in Section 2.2. In Sec-
tion 3, market-clearing model is presented and the development
of the equivalent market is described. In Section 4, the proposed
two-stage ANN-based method for revealing and modelling the
competitors’ behaviour is presented. In Sections 4.1, 4.2, and
4.3, the data fitting problem via ANN, the first stage (bid esti-
mation), and the second stage (bid prediction) are presented,
respectively. In Section 5, the application of the obtained model
of Section 4 in LA’s bidding strategy is described. In Sections 6.1
and 6.2, the effectiveness of the proposed approach is examined
on an illustrative example and IEEE 30-bus test system, respec-
tively. The robustness and adaptability analysis is provided in
Section 6.3. Finally, in Section 7, the overall conclusion of the
paper is presented.

2 PRELIMINARIES

2.1 Approach overview

The DER concept is an extension of the equivalent rival con-
cept that we presented in [20]. In the proposed approach of
this paper, we define a DER entity, from the viewpoint of the
intended LA, with one generation unit and one demand unit
in each bus. The LA and its corresponding DER compete in
an equivalent market. The DER’s corresponding actions in the
equivalent market reflects the aggregation of all of the com-
petitors’ behaviour in the real market. From the perspective of
the LA, this approach models the real electricity market (with
the unknown number of players) by an equivalent market (with
two completely known players, i.e., the LA and its DER). The
actions of DER corresponding units (its generation and demand
units in each bus) must be determined in a way that the results
of the equivalent market-clearing are almost equal to those of
the real market. By determining DER’s units’ bidding strategies,
the competitors’ behaviour is modelled. Using this model, the
LA is able to predict the results of market-clearing, i.e., power
allocated to itself and LMP in the respective bus for any arbi-
trary bids of itself with enough accuracy. Using this additional
information, the LA optimizes its bidding strategy. It is assumed
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that the topology of the power system, transmission lines’ con-
straints, and LMPs are available for all players. In addition, we
assume that total load of the network and the aggregate pro-
duction quantity of renewable sources are predictable for short-
time periods and the strategic players adopt their bid based on
the remaining load which is the difference between total load of
the network and the aggregate production quantity of renewable
sources. In this paper, a two-stage ANN-based approach which
consists of four steps are designed: (i) Equivalent market devel-
opment. (ii) Bid estimation: Estimation of the bids of DER units
for previous market runs. (iii) Bid prediction: Revealing the bid-
ding strategy of each unit of the DER and predict the next bid
of them. (iv) Bid optimization: Determining of the optimal bid
of the LA based on obtained data of step 3. Figure 1 presents
a holistic viewpoint of the proposed approach. The details are
provided in the upcoming sections.

2.2 Notation

LMPlh is Local Marginal Price (LMP) of bus l at the hour
h. LMPh is LMP vector at the hour h. LMP

′′

lh
is LMP of buslat

the hour h in equivalent market (estimation of LMPlh), H is the
hour in which the LA decides about bid offering, Pgih is active
power produced by generation unit i at the hour h in real mar-
ket. Pdjh is active power consumed by demand unit j at the hour

h in real market. P
′

gxh
is active power produced by xth genera-

tion unit of DER at the hour h in the equivalent market. P
′

dxh
is active power consumed by xth demand unit of DER at the
hour h in equivalent market. P

′′

dkh
is active power consumed by

demand unit k at the hour h in the equivalent market (estimation
of Pdkh). 𝛼i is the slope of marginal cost function of generation
unit i. 𝛽i is intercept of marginal cost function of generation
unit i. 𝛾 j is the slope of marginal cost function of demand unit
j. 𝜂 j is the intercept of marginal cost function of demand unit j.
aih is the slope of bid function of generation unit i at the hour
h. bih is the intercept of bid function of generation unit i at the
hour h. c jh is the slope of bid function of demand unit j at the
hour h.

d jh is the intercept of bid function of demand unit j at the

hour h. a
′

xh
is the slope of bid function of xth generation unit

of DER at the hour h. b
′

xh
is the intercept of bid function of

xth generation unit of DER at the hour h. c
′

xh
is the slope of

bid function of xth demand unit of DER at the hour h. d
′

xh
is

the intercept of bid function of xth demand unit of DER at the
hour h. PGlh is the total generated power in bus l at the hour
h. PDlh is total consumed power in bus l at the hour h. P

′

Glh
is

total generated power in bus l at the hour h in the equivalent
market. P

′

Dlh
is total consumed power in bus l at the hour h in

the equivalent market. 𝜃lh is voltage angle of bus l at the hour
h. 𝜃

′

lh
is voltage angle of bus l at the hour h in equivalent mar-

ket. xlz is the inductive reactance of the line connecting buses
l and z. Pmax

lz
is thermal/stability active power limit of the line

connecting bus l and z. P
min∕max

g∕di
is Minimum/ Maximum active

FIGURE 1 Flowchart diagram of proposed approach
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power limit of generation/demand unit i. P
′min∕max

g∕di
is minimum/

maximum active power limit of xth generation/ demand unit
of DER in equivalent market. Pmax

Dag
is maximum of aggregate

power consumption in the market. Pgrnh is total power genera-
tion of renewable resources at the hour h. PTh is total load of
the network at the hour h. MAPE is mean absolute percentage
error.

3 EQUIVALENT MARKET
DEVELOPMENT

Assume n producers and m consumers participate in the real
market that is related to a power system with L buses. With-
out loss of generality an hour ahead market is considered. Each
player (generation/demand unit) has a cost function, marginal
cost function and bid function as shown in Equations (1)–(3),
respectively.

Cgi

(
Pgih

)
=

1
2
𝛼iP

2
gih
+ 𝛽iPgih (1a)

Cdj

(
Pdjh

)
=

1
2
𝛾 j P

2
djh
+ 𝜂 j Pdj h (1b)

C
marg

gi

(
Pgih

)
= 𝛼i Pgih + 𝛽i (2a)

C
marg

dj

(
Pdjh

)
= 𝛾 j Pdjh + 𝜂 j (2b)

Bgi

(
Pgih

)
= bih + aihPgih (3a)

Bdj

(
Pdjh

)
= d jh + c jh Pdjh (3b)

In Equation (1a), Cgi (Pgih ) is the cost function of producer i

and shows the cost of generating power Pg for producer i at the
hour h. In Equation (1b), Cdj (Pdjh ) is the cost function of jth LA
and shows the cost of consumption power Pd for LA j at the
hour h. Equation (2) shows the marginal cost function of each
player which is the derivation of the cost function. Equation
(3) shows the bid function of players. In a competitive market,
players increase their profit by adopting a strategic bid func-
tion. Each player according to the cost function and the bid
function, submits the bid parameters (ai , bi and c j , d j ) to the
independent system operator (ISO). ISO solves an optimization
problem to maximize social welfare with respect to the opera-
tional constraints. The market-clearing procedure is performed
by solving the following optimization problem:

max
Pdjh, ∀j; Pgih, ∀i

{
m∑

j = 1

(
c jhP2

djh
+ d jhPdjh

)
−

n∑
i=1

(
aihP2

gih
+ bihPgih

)}
(4)

s.t

PGzh − PDzh =

L∑
l=1

(
𝜃zh − 𝜃lh

xlz

)
∀z ∈ {1, 2,… , L} (5)

|||||
𝜃lh − 𝜃zh

xlz

||||| ≤ Pmax
lz

∀l, z ∈ {1, 2,… , L} (6)

Pmin
gi

≤ Pgih ≤ Pmax
gi

∀ i ∈ {1, 2, … , n} , ∀h (7)

Pmin
dj

≤ Pdjh ≤ Pmax
dj

∀ j ∈ {1, 2, … , m} , ∀h (8)

Equation (4) indicates social welfare which is to be max-
imized by ISO. The constraint of Equation (5) ensures the
balance between generated and consumed active power in each
bus. The constraint of Equation (6) limits active power of each
line within its limits. Equations (7) and (8) ensure the power
generation and consumption limits of each player are satisfied.
The ISO determines the power allocated to each player by
solving the DC optimal power flow model shown in Equa-
tions (4)–(8) and based on Lagrange coefficients of equality
constraints calculates the locational marginal prices (LMP).

The first step of the proposed approach is development
an equivalent market which its outcomes are approximately
equal to those of the real market. The number of buses (L),
the topology of the power network, and transmission network
constraints are exactly the same in both real and equivalent
markets. There are n + m players in the real market which are
located on different buses: n producers and m consumers. Two
players are considered in the equivalent market: the LA and the
DER whose corresponding actions in the equivalent market
reflect the aggregation of all individual competitors’ behavior
in the real market. The DER has L production units and L

demand units: one production unit and one demand unit in
each bus. Therefore, there are 2 players with 2L + 1 units in the
equivalent market. In the real market, the LA does not have any
information about the maximum and minimum limits of
competitors’ power generation and consumption. In the equiv-
alent market, the LA is aware of rivals’ limitations because
we determine the limitations of DER units in a way that the
market-clearing model of the equivalent market is feasible in
any condition. For this purpose, the minimum active power
limit of all generation and demand units is considered zero
which is the minimum possible value. The maximum active
power limit of each generation and demand unit is an arbitrary
value higher than the maximum expected load in the real
market. In this regard, the lower and upper bounds of power
produced/consumed by generation/demand units in equivalent
market are set as follows:

P
′min

g j = P
′min

dj
= 0 ∀ j ∈ {1, 2,… , L} (9a)

P
′max

g j = P
′max

dj
> Pmax

Dag
∀ j ∈ {1, 2,… , L} (9b)
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Since P
′max

dj
> Pmax

Dag
, each demand unit of DER can model all

consumers of the real market singly. Also, since P
′max

g j > Pmax
Dag

,
each generation unit of DER can model all producers of real
market singly. These considerations give the equivalent market’s
generation and demand units this flexibility to be able to model
producers and consumers of the real market for any possible
operational conditions.

Assuming the LA is determined by the index k and it is
located in bus T, the equivalent of Equations (4)–(8) for the real
market are Equations (10)–(15) for the equivalent market:

max
P′

djh
, P′

g jh
, ∀j;P

′′

dkh

{
Z∑

j = 1

[(
c′

jh
P
′2

djh
+ d ′

jh
P′

djh

)
− (a′

jh
P
′2

g jh
+ b′

jh
P′

g jh

)]

+ ckhP
′′2

dkh
+ dkhP

′′

dkh

}
(10)

s.t

P
′

Gzh
− P

′

Dzh
=

L∑
l=1

⎛⎜⎜⎝
𝜃
′

zh
− 𝜃

′

lh

xlz

⎞⎟⎟⎠ ∀z ∈ {1, 2,… , L} (11)

||||||
𝜃
′

lh
− 𝜃

′

zh

xlz

|||||| ≤ Pmax
lz

∀l, z ∈ {1, 2,… , L} (12)

P
′min

g j
≤ P

′

g jh
≤ P

′max
g j

∀ j ∈ {1, 2, … , L} , ∀h (13)

P
′min

dj
≤ P

′

djh
≤ P

′max
dj

∀ j ∈ {1, 2, … , L} , ∀h (14)

Pmin
dk

≤ P
′′

dkh
≤ Pmax

dk
∀h (15)

Equations (10)–(15) are DC optimal power flow model
expanded for the equivalent market. The solution of this opti-
mization should be approximately equal to that of DC optimal
power flow model expanded for the real market from the LA
point of view. The power allocated to the LA and LMP of all
buses should be approximately equal in both solutions:

P
′′

dkh
≈ Pdkh ∀h (16a)

LMP
′′

lh
≈ LMPlh ∀h, ∀l (16b)

Therefore, we should find appropriate bid parameters for
DER units (a′

jh
, b′

jh
, c′

jh
, d ′

jh
∀h) to reach this goal. In the

next section, we propose a two-stage ANN-based method to
find appropriate bid parameters for DER units knowing the
power allocated to the LA and LMP of all buses in the real
market.

FIGURE 2 conceptual diagram of the proposed approach

4 DECENTRALIZED EQUIVALENT
RIVAL’S BID REVEALING

In this section, the two-stage ANN-based procedure is devised
to reveal the bid parameters of DER units. The data obtained
from the first stage (bid estimation) is used to train the bid
predictor in the second stage. Figure 2 shows the conceptual
diagram of these stages. Before presenting these two stages in
subsections B and C, we introduced the data fitting via ANN
very concisely in subsection A:
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4.1 ANN and data fitting

Artificial Neural networks are used to solve complex problems
such as fitting problem. In fitting problem, a neural network
is required to map between a data set of numeric inputs and a
set of numeric targets. To solve a fitting problem using neural
networks, first of all, a set of training data should be collected
or generated. This set consists of a number of network inputs
and corresponding outputs which are called input and target set
respectively. Then, the network architecture is chosen. Several
neural networks have been introduced for different applications
where each of them has its own advantages and disadvantages.
Perceptron, backpropagation, competitive, Grasberg, and Hop-
field networks are some of the most popular types of them. It
can be shown that a two-layer network with sigmoid transfer
function in the hidden layer and linear transfer functions in the
output layer, is able to fit multi-dimensional mapping problems
arbitrarily accurate, given consistent data and enough neurons in
its hidden layer [22]. We will use such a network in this paper. In
the next step, the number of neurons in the hidden layers should
be specified which is chosen according to the complexity of the
problem and desired accuracy. After that, training the network
with a training algorithm is begun. The training algorithm mod-
ifies the weights and biases in different layers in order to map
between inputs and targets by minimizing a specific criterion.

4.2 The first stage: Bid estimation

This stage aims to estimate the slope and intercept of the bid
function of DER units for previous hours (h < H ) in a way
that the equivalent market becomes the equivalent of the real
market (i.e., Equation (16) be satisfied). To reach this goal,
we should find appropriate bid parameters for DER units
(a′

jh
, b′

jh
, c′

jh
, , d ′

jh
∀h,∀ j ∈ {1, 2,… , L}). It should be done based

on practically available data for the LA which are: the power
allocated to the LA and the LMP of all buses in the real market.
Knowing these data and based on Equation (16), the power
allocated to the LA and the LMP of all buses in the equivalent
market are known also. Based on Equation (9), the produc-
tion/consumption limits of all players of the equivalent market
are known. On the other hand, as mentioned in section III, it is
assumed that the topology of the power system and transmis-
sion network constraints are known. Therefore, Equations (11)–
(15) are completely known for the LA. Through using this infor-
mation and a well-designed ANN, we estimate appropriate bid
parameters of DER units in a way that the equivalent market-
clearing results of Equations (11)–(15) satisfy Equation (16). To
this purpose, we should design an ANN which takes bid param-
eters of the LA (ckh, dkh), power allocated to the LA (P

′′

dkh
≈ Pdkh)

and LMP of all buses (LMP
′′

lh
≈ LMPlh ∀l ∈ {1, 2,… , L}) as

the input and gives appropriate bid parameters for DER units
(a′

jh
, b′

jh
, c′

jh
, d ′

jh
∀h,∀ j ∈ {1, 2,… , L}) as the output. Figure 3

shows the input–output diagram of this ANN which is named
bid estimator. To design the bid estimator, after determin-
ing a suitable topology of the neural network (a two-layer

FIGURE 3 The input–output diagram of ANN1 at time h

FIGURE 4 The input–output diagram of ANN2 at time H

feed-forward perceptron with sigmoid transfer function in the
hidden layer and linear transfer function in the output layer is
a good choice for this purpose), the ANN should be trained
with appropriate training data. To provide the training data, we
solve the DC optimal power flow model of equivalent market
(Equations (10)–(15)) for an arbitrary number of random bid
sets (a′

jh
, b′

jh
, c′

jh
, d ′

jh
, ckh, dkh ∀ j ∈ {1, 2,… , L}) and classify the

results with corresponding bid sets in the form of input –
output data for the bid estimator as shown in Figure 3. The data
are used to train the bid estimator. After training procedure, for
all previous hours, knowing LMPs and the LA’s bid parameters
and power allocated to it, we can estimate the bid parameters of
DER units using the bid estimator. Therefore, we can estimate
the bidding history of DER units. Using the detected bidding
history, in Section 4.3, another ANN is designed to be used for
predicting the bid parameters of DER units for next hour.

4.3 The second stage: Bid Prediction

This stage aims to design an ANN to predict the slope and
intercept of the bid function of DER units at hour H. With-
out loss of generality, in this paper, we assume that the bidding
strategy of each player is a function of remaining load which is
the difference of total load of the network and the aggregate
production quantity of renewable sources (PTh − Pgrnh). Since
DER’s behavior is equal to the competitors’ behavior in the
real market, we can assume that the DER’s units’ bidding strate-
gies are functions of remaining load too. Therefore, prediction
of their next hour bids is possible by discovering their bidding
strategies. Since there is no information about the bidding func-
tions, a black-box model can be considered for each function.
Then, an ANN can be used to estimate the functions if a num-
ber of input-output samples are available. Figure 4 shows the
input-output diagram of such ANN which is called bid pre-
dictor. In order to design the bid predictor, after determining
a suitable topology of the network (a two-layer feed-forward
perceptron with sigmoid transfer function in the hidden layer
and linear transfer function in the output layer is a good choice
for this purpose), the ANN should be trained with appropriate
data that are a number of input samples and their correspond-
ing outputs. Assuming that the total load of the network and
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aggregate production quantity of renewable sources for previ-
ous hours (PTh, Pgrnh ∀h < H ) are known, we need the corre-
sponding bid parameters of DER units to train the bid predic-
tor, i.e., a′

jh
, b′

jh
, c′

jh
, d ′

jh
∀h < H . To this purpose, we use the bid

estimator designed in Section 4.2 to estimate the bid parameters
of DER units for previous hours. Therefore, training data for
the bid predictor will be available.

5 BID OPTIMIZATION

Using the bid predictor designed in section IV-C, the LA is able
to predict the bids of DER units for any value of the remaining
load (PTh − Pgrnh). After predicting the bids of DER units at hour
H, the following bi-level optimization model is solved to obtain
the optimal bid of the LA in the equivalent market which will be
optimal in the real market too:

max
ckh,dkh

P
′′

dkH
LMP

′′

T
− Cdk

(
P
′′

dkH

)
(17)

s.t (10) − (15)

Note that generally, a bi-level optimization problem is not
easy to solve. However, the most important feature of the pro-
posed approach is modelling the rivals’ behaviour in the form of
the DER, and providing the possibility of predicting the market
results with appropriate precision in the form of the equivalent
market. Due to this feature, solving the optimization problem
and finding the optimal bid will be very simple. To explain how
to find the optimal bid, we consider two states:

(i) In a stepwise pricing market, as the players have to choose
their bid from one of the predetermined bids, each player
has a limited number of bid options. In this case, at first,
we predict the bids of the equivalent rival’s units for the
next hour using the bid predictor. Afterwards, at the first
level of optimization, we clear the equivalent market for
all permitted options of the intended LA and obtain the
results (power allocated to the intended LA and LMP in the
Respective bus) which are actually a prediction of the real
market results. Then, in the second level of optimization, we
compute the profit resulting from all of the above options
based on predicted values in the previous step. Finally, the
bid which leads to the highest profit is offered in the real
market.

(ii) In a non-stepwise market in which the players are allowed
to offer any arbitrary bid in a reasonable range, we discretize
the intended range to a set of arbitrary number of steps. As
an example, the range of 20 to 60 $/MWh can be divided
into 41 steps with a step length of 1 $/MWh or 401 steps
with a step length of 0.1 $ / MWh. Through this process, we
have a limited number of options for the intended LA and
we can act exactly like what we said for a stepwise market
to find the optimal bid. As the market-clearing for different
bid options is done in the equivalent market (not in the real
market), there are no limitations on the number of market-
clearing iterations, and the equivalent market can be cleared

for an arbitrary number of different bids before offering in
the real market. Note that, increasing the number of mar-
ket players does not affect the dimensions of our problem,
because regardless of the number of players in the real mar-
ket, the equivalent market will always include only two play-
ers: the intended player and the DER. Therefore, the num-
ber of bid options of the intended LA is the only effective
parameter on the dimensions of the problem. Since through
this approach all the search space is scanned, falling into a
local optimum is avoided, and the obtained optimal bid is
the global optimum.

According to Figure 1, to ensure that the proposed approach
is adaptive in terms of the changes in the competitors’
behaviour, the algorithm compares the predicted values with
the real market results announced by the ISO at the end of a
user-defined period by calculating the MAPE index. If the value
of MAPE exceeds a threshold set by the user, the change in
the competitors’ behaviour will be indicated. In such a case, the
obtained model is invalid. Afterward, as shown in Figure 1, the
algorithm returns to estimate the bids of DER units, and all the
steps of estimating and predicting the competitors’ behaviour
are repeated. Afterward, the new behaviour of competitors is
modelled based on the latest information about their partic-
ipation in the real market. Note that the number of samples
required to model and predict the competitors’ behaviour
depends on the complexity of their behaviour, and modelling
should be done with the least possible number of samples that
provide the required accuracy. If a long time has passed since the
presence of the players in the market, many samples are avail-
able and can be used. In the absence of sufficient samples for
any reason, the proposed solution is to model the competitors’
behaviour with the existing samples and increase the accuracy
of modelling and predicting with the passage of time and
acquisition of the new samples, by continuously adding the new
samples to the training data and retraining the bid predictor, and
continue this process until the required accuracy is achieved.

Note that our proposed approach is flexible enough to con-
sider any factors such as demand, fuel price, weather conditions,
renewable sources production which affect bidding strategy. To
consider these factors, the bid estimator does not need any
change because it does not depend on competitors’ behaviour,
and it just depends on the market clearing mechanism. For the
bid predictor, all of these effective factors considered as the
inputs of the ANN and the historical data of these parameters
are used in the bid predictor’s training data. Since in the pro-
posed approach we used the neural networks to reveal the com-
petitors’ behaviour and because of the high efficiency of neural
networks in estimating the multi-input multi-output functions,
adding additional effective factors just increase the number of
neural network inputs and does not impose any limitation on
the effectiveness of the proposed approach.

The presented revealing procedure is summarized as fol-
lows:

(i) Step 1: Developing an equivalent market which its num-
ber of buses, power system topology and line constraints
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are exactly same as the real market but there are two play-
ers in this market: The LA (LA k in this paper) and an
Decentralized equivalent rival (DER) which has one pro-
duction unit and one demand unit in each bus. Consider
actual constraints for the LA, and minimum and maxi-
mum production/consumption limits of the DER units
as Equation (9).

(ii) Step 2: Generating training data for bid estimator
by applying an arbitrary number of random bid sets
(a
′

jh
, b

′

jh
, c
′

jh
, d

′

jh
, ckh, dkh ∀ j ∈ {1, 2,… , L}) to DC optimal

power flow model expanded for the equivalent market
(Equations (10)–(15)) and recording these bids with cor-
responding outputs (P

′′

dkh
, and LMP

′′

lh
∀l ∈ {1, 2,… , L}).

To generate random intercepts (d
′

jh
, b

′

jh
), we have used

a Gaussian probability density function with the mean∑L

l = 1 LMPl

L
and the variance

∑L

l = 1 LMPl

4L
, where L is the

number of buses. To generate reasonable random slops
(c
′

jh
, a

′

jh
), we have used a Gaussian probability density func-

tion with the mean equals the respective slope of the
intended player and the variance equals one-fourth of the
respective slope of the intended player.

(iii) Step 3: Designing an ANN with appropriate topology
and the inputs and outputs shown in Figure 3 and train
it with the training data generated in step 2 as the bid
estimator.

(iv) Step 4: Estimating the bids of DER units for previous
hours using the bid estimator and collecting these data as
training and test data for the bid predictor.

(v) Step 5: Designing an ANN with the inputs and outputs
shown in Figure 4 with the appropriate topology and train
it with the data generated in step 4 as the bid predictor.

(vi) Step 6: Predicting the bids for the test data recorded in
step 4 and retraining the bid predictor if it is needed.

(vii) Step 7: Predicting the bids of DER units for the next hour.
(viii) Step 8: Optimize the bid of the LA solving bi-level opti-

mization model (Equation 17) in the equivalent market.
(ix) Step 9: Submitting the optimal bid obtained in step 8 to

the real market ISO and compare the actual results with
the predicted results.

(x) Step 10: Return to Step 4 and repeat the procedure using
the last 24 h data if the result of comparison in step 9 is
not acceptable.

6 TEST AND RESULTS

The proposed approach is examined on an illustrative example
and the IEEE 30-bus test system.

6.1 Illustrative example

In this section, to characterize the process of estimating and
modelling the competitors’ behaviour, we propose a simple
illustrative example. Figure 5 shows a 5-bus power network
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FIGURE 5 5-bus power system with (a) real players, (b) corresponding
equivalent players, (c) real market-clearing results, (d) equivalent market-clearing
results
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with seven players, including 4 producers (players 1 to 4) and 3
consumers (players 5 to 7). Without loss of generality, assume
that the bidding strategy of players is just a function of network
total load. Assume that we are going to model the behaviour
of players (competitors) from the perspective of player 5 (the
consumer in bus 2). The equivalent market from the perspective
of player 5 is modelled. The 5-bus test system with a relevant
equivalent market is shown in Figure 5(b). As observed from
this figure, the structure and parameters of the power system
(number of buses, transmission lines between buses and lines
capacity) are exactly the same in both real and equivalent
markets. However, in the equivalent market, among the market
players, only the intended player is present (player 5 in this
example). In the equivalent market, player 5 competes with a
decentralized equivalent rival (DER) which has a generation
unit Gu i, i = 1,… , 5 and a demand unit Du i, i = 1,… , 5
in each bus. Hence, DER = {Gu1,… , Gu5, Du1,… , Du5}.
Suppose that the real market has been cleared for a certain
hour and the values, which the corresponding market-clearing
results, i.e., the power allocated to each player and the LMP of
each bus in that hour are written in purple font in Figure 5(c).
Player 5, who intends to model the behaviour of other players
in the form of a DER, only knows the network total load, the
bid provided by itself, the amount of power allocated to itself,
and the LMP of the buses in the discussed hour. The bids of
DER units must be determined in such a way that for the same
total load and the same bid for player 5, the power allocated
to player5 and the LMPs of all buses are approximately equal
in both equivalent and real market. However, in the case of
other parameters equality in the two markets is not necessary.
Obtaining the DER bids based on the information available
in the real market (i.e. network total load, the bid of player 5,
power allocated to player 5 and LMP of network buses) in such
a way that the stated condition is met is what is done by the bid
estimator. In this paper, for training the bid estimator, we solve
the DC optimal power flow model of the equivalent market
for an arbitrary number of network total load and random
bids.

The network total load, bid of player 5, and LMP of network
buses are considered as the inputs, and the bids of the DER
units are considered as the outputs of the bid estimator for
training purposes. Using this method, we have no restrictions
for the generation of training data in terms of the number of
samples and the method of sample generation. The artificial
neural network trained via this method will be able to determine
the bids of the DER units in a way that the LMP at different
buses and the power allocated to player 5 be the same as the
values determined at the input. Now, assume that for a given
hour, player 5 knows the network total load, the bid of itself,
power allocated to itself, and LMP of all network buses in
the real market. Note that this assumption is valid for all the
previous hours that the real market has been cleared and the
results have been announced. By giving this information to
the designed bid estimator, player 5 obtains the bids for DER
units for which the power allocated to player 5 and the LMP
of all buses are approximately equal to the corresponding
values in the real market. Figure 5(d) shows the equivalent

TABLE 1 Characteristics of the producers

i bus 𝜷i [$∕MWh] 𝜶i [S∕MW2h] Pmin
gi

[MW] Pmax
gi

[MW]

1 1 20 0.20 16.7 80

2 2 17.5 0.175 0 80

3 13 30 0.25 2.6 40

4 22 10 0.625 17.8 50

5 23 30 0.25 25 30

6 27 32.5 0.0834 5.6 55

market-clearing results. Comparing Figures 5(c) and 5(d) shows
that the equivalent market-clearing results are close to the
corresponding results of the real market. Therefore, it can be
concluded that from the perspective of player 5, the behaviour
of the DER in the equivalent market is the equivalent of the
behaviour of competitors in the real market, because player 5
has won approximately the same power at the same price in
both markets by offering the exact same bids. By repeating
this process for several hours with various network total loads
the corresponding bid samples of DER units are obtained. By
analysing these data, the bidding pattern of the DER units can
be discovered and modelled. To do this, we use the samples of
the network total load as training input and the corresponding
samples of the bids of the DER units as training output (target).
Accordingly, an ANN is trained which will be able to predict
the behaviour of the DER based on its past behaviour. Note
that we do not have any limitation in terms of the number of
training samples, because for all previous hours that the real
market has been cleared and the results have been announced,
the required data (i.e., network total load, player 5 bid, power
allocated to player 5 and LMP of network buses) are available
and can be used by the bid estimator. Also, the corresponding
bids of the DER units can be obtained and used for training
the bid predictor. Using the bid predictor, player 5 can pre-
dict the bids of the DER units for the next hours knowing
the network total load. So, the best bid among the possible
options can be easily obtained and it can be offered in the real
market.

6.2 IEEE 30-bus test system

As the second case study, IEEE 30-bus test system is consid-
ered. We consider 6 fossil fuel generation units (producers), one
wind power generation unit which is located in bus 1 and 20
elastic loads (LA) which are participating in an hour ahead elec-
tricity market [23]. The technical characteristic of producers and
elastic loads are given in Tables 1 and 2, respectively. These
data are obtained from [23] with some changes in the maximum
power consumption of LAs.

Assume the total load varies between 300 to 340 MW and the
quantity of wind power production varies between 50 to 150
MW and these are predictable for the next hour (remaining load
varies between 150 to 290 MW). We assume all producers and
the loads in buses 7 and 14 are strategic players. Without loss
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TABLE 2 Characteristics of LAs

j bus 𝜼 j [$∕MWh] 𝜸 j [S∕MW2h] Pmin
dj

[MW] Pmax
dj

[MW]

1 2 50 −0.5 16.7 46.7

2 3 45 −0.5 0 27.4

3 4 48 −0.5 2.6 32.6

4 7 55 −0.5 17.8 47.8

5 8 40 –0.5 25 55

6 10 45 –0.5 0.8 30.8

7 12 60 –0.5 6.2 36.2

8 14 50 –0.5 1.2 31.2

9 15 52 –0.5 3.2 33.2

10 16 40 –0.5 0 28.5

11 17 53 –0.5 4 34

12 18 45 –0.5 0 28.2

13 19 44 –0.5 4.5 34.5

14 20 60 –0.5 0 27.2

15 21 45 –0.5 12.5 42.5

16 23 35 –0.5 0 28.2

17 24 42 –0.5 3.7 33.7

18 26 57 –0.5 0 28.5

19 29 44 –0.5 0 27.4

20 30 50 –0.5 5.6 35.6

of generality it is assumed that for each non-strategic player, the
bid function is equal to the cost function. Also, for the strategic
players, the slope of bid function is equal to the slope of cost
function. The players offer the intercept of bid function strate-
gically:

c jh = 𝛾 j ∀h,∀ j ∈ {1, 2,… , 20} (18)

d jh = 𝜂 j ∀h,∀ j ∈ {1, 2,… , 20} − {4, 8} (19)

aih = 𝛼i ∀h,∀i ∈ {1, 2,… , 6} (20)

To illustrate the effectiveness of the proposed ANN-based
bidding strategy, it is compared with a Q-learning based bid-
ding approach. With the learning and exploration rate of
0.1, all strategic players reach an optimal bidding strategy in
a learning process with 3000 iterations using the Q-learning
approach.

Figure 6 shows the LMP of bus1, bus7, bus19, bus26, bus
29, and the profit of player 2 (producer 2), player 5 (producer
5), player10 (LA4 and player13 (LA7), for a 48-hours period as
example. The LMP difference between two buses of a transmis-
sion line shows that congestion has occurred.

LA4 (j = 4, bus = 7), which the corresponding details have
been brought in Table 2, adopts the proposed ANN-based

bidding strategy. The equivalent market from LA4 viewpoint
is developed which is a market with 30 generation units and
30+1 demand units. In the equivalent market, the DER has one
consumption and one production unit in each bus and LA4 is
located in bus 7 as like as the real market. For this case study,
Equations (10)–(15) are formed as:

max
P
′

djh
, P

′

g jh
, ∀j;P

′′

d 4h

{
30∑

j = 1

[(
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(21)

s.t

P′
Gzh

− P′
Dzh

=

30∑
l=1

(
𝜃zh − 𝜃lh

xlz

)
∀z ∈ {1, 2,… , 30} (22)

|||||
𝜃lh − 𝜃zh

xlz

||||| ≤ Pmax
lz

∀z ∈ {1, 2,… , 30} (23)

0 ≤ P′
g jh

≤ 700 ∀ j ∈ ∀z ∈ {1, 2,… , 30} , ∀h (24)

0 ≤ P′
djh

≤ 700 ∀ j ∈ ∀z ∈ {1, 2,… , 30} , ∀h (25)

17.8 ≤ P
′′

d 4h
≤ 47.8 ∀h (26)

According to Equation 9, in Equations (24) and (25)
the maximum limits should be arbitrary values more than∑20

j = 1 Pmax
dj

= 689.2.
For designing the bid estimator, as described in Section 4.2,

a two-layer feed-forward perceptron with 12 neurons and sig-
moid transfer function in the hidden layer and linear transfer
function in the output layer is designed. To generate training
data, we apply 1000 random bid sets to Equations (21)–(26), and
the results with corresponding bid sets are saved. Afterward, we
organize these learning data in the form of input-output data
for the bid estimator as shown in Figure 3 then we have trained
the designed ANN with the Levenberg–Marquardt backpropa-
gation algorithm. To evaluate the performance of the bid esti-
mator, we estimate the bids of DER units for the discussed
48-hours period using the bid estimator and solve the equiva-
lent market-clearing model of Equations (21)–(26) with these
estimated bids, and compare the results with the results of the
real market-clearing model. Figure 7 shows the comparison of
power allocated to LA4 and LMP in the corresponding bus (bus
7) with the estimated values (the peer values in the equivalent
market). It is observed from Figure 7 that the results of the bid
estimator are approximately the same as those of the real mar-
ket.
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FIGURE 6 LMP of some network buses and Profits of some market players with the Q-learning approach

FIGURE 7 Comparison of LMP of bus 7 and power allocated to LA4 with estimated values of them

To measure the accuracy of the bid estimator, the Mean
Absolute Percentage Error (MAPE) is used. Equations (27) and
(28) show MAPE formulation for the power allocated to LA4
and LMP of bus 7 respectively.

MAPEPd 4
[%] =

1
48

48∑
h = 1

|||Pd 4h − P
′′

d 4h

|||
Pd 4h

(27)

MAPELMP7
[%] =

1
48

48∑
h = 1

|||LMP7h − LMP
′′

7h

|||
LMP7h

(28)

P
′′

d 4h
and LMP

′′

7h
are predicted values of Pd 4h and LMP7h

respectively. According to the simulation results, the MAPE
value for the power allocated to LA4 is 3.57%, and MAPE for
the LMP of bus 7 is 2.11%. These results corroborate the ability
of DER to modeling the competitors’ behavior, and the effec-
tiveness of the proposed approach.

To design the bid predictor, we consider a two-layer feed-
forward perceptron with 75 neurons and sigmoid transfer
function in the hidden layer and linear transfer function in the
output layer and train it with the estimated bids as the outputs
and the corresponding quantity of the remaining load as the
input of the bid predictor as shown in Figure 4. Training has
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FIGURE 8 Comparison of LMP of bus 7 and power allocated to LA4 with predicted values of them

FIGURE 9 LMP of some of the network buses and Profits of some market players: LA4 uses the proposed approach, other competitors use the Q-learning
approach

been performed using the Levenberg–Marquardt backpropaga-
tion algorithm. To illustrate the performance of the bid predic-
tor, by knowing the quantity of the remaining load for the next
hour, the bids of DER units are predicted. The predicted bids
of DER units are deployed to clear the equivalent market using
Equations (21)–(26). The obtained results from equivalent mar-
ket clearing process is a prediction of the results of real market.
The predicted results are compared with those of the real mar-
ket clearing results to evaluate the accuracy of the bid predictor.
Figure 8 shows the comparison for power allocated to LA4 and
LMP in the corresponding bus (bus 7) for a 24-h period. It is
observed from Figure 8 that the results are approximately simi-

lar that shows the accuracy of the prediction. To show the accu-
racy of prediction numerically, the MAPE index of Equations
(27) and (28) is used. Based on the simulation results the MAPE
value for the prediction of power allocated to LA4 is 4.92%,
and for the LMP of bus 7 is 2.79%. The results show the effec-
tiveness of the proposed approach in prediction of the market
results.

LA4 optimizes its bid bidding strategy using the estima-
tion and prediction procedure of the equivalent market by
solving bi-level optimization model of Equation (17). Fig-
ure 9 shows the results of the real market clearing when the
LA4 offers the optimal bid using the proposed ANN-based
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FIGURE 10 The LMP of bus 7, The power allocated to LA4, and The profit of LA4 for the 24-h period

TABLE 3 Comparison of market outcomes for the Q-learning based
bidding approach and the proposed approach for the 24-h period

The employed bidding

strategy Q-learning

The proposed

approach

LMP of bus 7 37.233 37.346

Power allocated to LA4 31.786 35.367

Profit of LA4 1079 1249

approach. The other competitors optimize the bidding strat-
egy using the Q-learning method. Comparison of Figures 9
and 6 shows that using the proposed method the LMP of bus
7 approximately does not change and the profit of LA4 has
increased.

Figure 10, compare the LMP of bus 7, amount of power allo-
cated to LA4, and profit of LA4 when it uses the method pro-
posed in this paper, and when it uses the optimal bidding strat-
egy using Q-learning for the 24-h. As seen from Figure 10, the
same value of LMP has been obtained for bus 7 through both
methods. However, the power allocated to LA4 and its corre-
sponding profit through the proposed ANN-based approach
is more than or equal to those of Q-learning based method
for all hours. In Table 3, the average values of the power allo-
cated to LA4, LMP of bus 7 and the profit of LA4 for these
two states are compared for the 24-h period. Based on these
data, the LMP of bus 7 is approximately equal in both cases,
power allocated to LA4 has increased by 11.27%, and profit of
LA4 has increased by 15.76 % using the proposed ANN-based
approach.

Note that the number of iterations via Q-learning based
method is 3000 iterations while the proposed strategy requires
only 48 iterations (hours) to provide training data for the
bid predictor. For the sake of more comparison, the average
profit resulted from applying the proposed approach has
been compared with the average profit resulted from applying

TABLE 4 Comparison of the performance of the Q-learning based
approaches with different iterations and the proposed approach, based on LA4
profit and the requirement time for learning in the 24-h period

The employed bidding strategy Profit [$]

Q-learning (1500 iterations equal to 62 days) 869

Q-learning (3000 iterations equal to 125 days) 1079

Q-learning (8000 iterations equal to 333 days) 1164

The Proposed approach (48 training samples equal to 2 days) 1249

the Q-learning based approach with 1500, 3000, and 8000
iterations for the 24 hours. The results are shown in Table 4.
To guarantee the fairness of the comparison, we keep all
conditions the same for both cases except the number of
iterations.

As seen in Table 4, the performance of the Q-learning based
bidding strategy has increased by increasing the number of
learning process iterations. However, the proposed ANN-based
bidding strategy with only 48 training samples provides higher
profits (about 6.8%) for LA4 in comparison with the Q-learning
with 8000 learning iterations. Therefore, one of the main advan-
tages of the proposed approach is that the number of training
data required to model the competitors’ behaviour is very low.
For example, in this paper, the proposed method has success-
fully modelled and predicted the competitors’ behaviour using
48 training data. It means LA4 has successfully modeled com-
petitors’ behavior and adopted an appropriate bidding strategy
after 48 h (2 days) of presence in the market. While in other
learning-based methods, the player spends a long time in the
market to find the optimal bidding strategy. This superiority has
brought two special advantages for the proposed method: First,
this method is very suitable for the players who recently entered
the market and do not require to spend a lot of time to learn the
optimal strategy. Second, if the competitors’ behaviour changes
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FIGURE 11 Adaptability analysis of the proposed method in terms of rivals’ behaviour variation

TABLE 5 The effect of wind power production prediction error on
prediction accuracy of proposed method

Error type A B C

MAPE index for LMP of bus 7% 2.79 3.14 3.41

MAPE index for Power allocated to LA 4% 4.92 5.31 6.07

for any reason, using the proposed method, the intended player
learns the new behavioural pattern quickly and adopts an
optimal bidding strategy based on the new conditions.

6.3 Robustness and adaptability analysis

To examine robustness of the proposed approach, we inves-
tigate the effect of the prediction error of the remaining load
quantity. For this purpose, in Table 5, we propose the MAPE
index for prediction of the LMP of bus 7 and power allocated
to LA4 in three states of prediction error of the remaining load
quantity: (i) without error, (ii) error with normal distribution
function with average of 5% and variance of 1.5 MW, (iii) error
with normal distribution function with average of 8% and
variance of 3%. As illustrated in Table 5, the accuracy of the
proposed method in prediction of the LMP of bus 7 and power
allocated to LA4 is decreased by increasing the prediction error
of the remaining load quantity. However, the accuracy of the
proposed method is still enough for bidding improvement
purpose. Based on simulation results, in case (iii), the profit
resulted from the proposed approach has increased by about
11.9% in comparison with the Q-learning approach.

In the following, the adaptability performance of the pro-
posed approach is numerically investigated in the case of rivals’
behaviour variation. To this purpose, LA4 uses the proposed
method to predict the results of the market in 30 days. At the

end of each 24 h, the MAPE index is calculated for predicted
values (LMP of bus 7 and power allocated to LA4) and com-
pared with the determined thresholds. If the MAPE is less than
the threshold values, the model is valid and can be used for the
sake of prediction in the upcoming days. If the behavior of rivals
changes, the MAPE index increases, and the algorithm notices
the change in the behaviour of rivals. In this case, the algorithm
uses the data of the last 24 h to retrain the bid predictor and
updates the model and uses it to predict the rivals’ behaviour
and the market results for the next day. At the end of the next
day, the MAPE index is recalculated and if the MAPE index
is not within the allowable range, the bid predictor is retrained
using the data of the last 48 h to obtain a new model. This pro-
cess is continued until the MAPE index lies within the allowable
range and the model reaches to an acceptable accuracy level.
The result of this evaluation has been shown in Figure 11. As
shown in Figure 11, until the sixth day, the MAPE index values
for both predicted parameters are less than the defined thresh-
old values (2.7% for LMP and 3.9% for allocated power). On
the seventh day, two of the seven rivals have changed their strat-
egy. The relevant MAPE index increases because of the non-
compliance of the new behaviour of the rivals with the model.
Using the data of the last 24 h of the market, the related bids of
the DER units have been estimated and the new model has been
obtained by repeating the bid predictor training process. For the
next 24 h, the new model has been used. As observed from
Figure 11, the use of the new model has reduced the MAPE
index on the eighth day. This observation shows that the new
model is closer to the new behaviour of the rivals. However,
the index is still higher than the threshold value, which indi-
cates that the model is not accurate enough due to the insuffi-
ciency of the training data. In this regard, the training process of
the bid predictor has been repeated using the new 24-hour data
and the previous 24-h data (in total, 48 h which are related to
the seventh and eighth days), and the model has been updated
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again. This time, the new model is more compatible with the
rivals’ behaviour and the MAPE index has entered the accept-
able range. After that, until the 21st day, the strategy of the rivals
has not been changed and the model is valid. On the 22nd day,
five of the seven rivals have changed their strategies. As can be
seen from Figure 11, the mentioned process of modifying the
model has repeated this time and after 2 days, the new model
has been obtained in accordance with the new behaviour of the
rivals.

7 CONCLUSION

This paper proposed an adaptive bidding strategy by revealing
and modelling the behaviour of market competitors from the
viewpoint of an intended LA in a two-side electricity market.
To reduce the complexity of competitors’ behaviour analysing
problem, this paper proposed a DER concept to equalize an
electricity market with different unknown players to an equiv-
alent market with two known players from the intended LA
point of view. A two-stage ANN-based procedure has designed
for determining DER’s units’ bidding strategies and reveal-
ing the competitors’ behaviour. The proposed approach has
been examined on an illustrative example and the IEEE 30-
bus test system with 6 fossil fuel power producer, one wind
power producer with variable power production quantity, and
20 elastic loads which participate in an hour ahead electricity
market. Simulation results showed the effectiveness of the pro-
posed approach in modelling the competitors’ behaviour and
predicting the power allocated to the LA and LMP of the cor-
responding bus. Also, simulations proved the high efficiency of
the proposed method in reaching the optimal bid. The results
show 15.84% of profit increase while the LA uses the proposed
approach in comparison with a Q-learning based approach. It
was also shown that the proposed approach expends a very
short time to reaches the optimum bidding strategy which is an
important advantage for the proposed approach especially for
players who are just about to enter the market. In the future
works, the approach can be developed for an LA engaging
demand response which is a demand response aggregator. The
effectiveness of the proposed bidding strategy approach can
be examined for the demand response aggregator in the joint
energy and reserve market. Also, the effect of adopting this
new bidding strategy by all players on market equilibrium can
be studied in the future.
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