
Neuropsychologia 155 (2021) 107821

Available online 5 March 2021
0028-3932/© 2021 Elsevier Ltd. All rights reserved.

Brain-behavior relationships in the perceptual decision-making process 
through cognitive processing stages 

Elaheh Imani a, Ahad Harati a, Hamidreza Pourreza a,*, Morteza Moazami Goudarzi b,** 

a Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 
b The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA   

A R T I C L E  I N F O   

Keywords: 
Perceptual decision making 
Neural and behavioral characterizations 
Cognitive processing stages 

A B S T R A C T   

Perceptual decision making – the process of detecting and categorizing information – has been studied exten
sively over the last two decades. In this study, we aim to bridge the gap between neural and behavioral repre
sentations of the perceptual decision-making process. The neural characterization of decision-making was 
investigated by evaluating the duration and neural signature of the information processing stages. We further 
evaluated the processing stages of the decision-making process at the behavioral level by estimating the drift rate 
and non-decision time parameters. We asked whether the neural and behavioral characterizations of the 
decision-making process provided consistent results under different stimulus coherency levels and spatial 
attention. Our statistical analysis revealed that, at both representational levels, decision-making was affected 
more by the coherency factor. We further found that among different information processing stages, the decision 
stage had the highest role in the performance of the decision-making process. Such that, the shorter decision 
stage duration at the neural level and higher drift rate at the behavioral level lead to faster decision-making. 
Through our consistent neural and behavioral results, we have shown that the decision-making components at 
these two representational levels were significantly associated. Moreover, the neural signature of the processing 
stages gave information about the regions that contributed more to the decision-making process. Our overall 
results demonstrate that uncovering the cognitive processing stages provided more insights into the decision- 
making process.   

1. Introduction 

In daily work, people often encounter scenarios in which they must 
select an action based on noisy sensory inputs. The process of choosing 
an action based on noisy sensory information is called perceptual 
decision-making. Different processing stages are needed to receive 
sensory information, accumulate perceptual evidence, and map sensory 
inputs to motor actions to accomplish the decision-making process in the 
brain (Sterzer, 2016; Siegel et al., 2011). Various computational models 
have been proposed to describe the decision-making process at the 
behavioral level based on reaction time (RT) and response accuracy 
(Ratcliff and Smith, 2004; Smith and Ratcliff, 2004; Usher and McClel
land, 2001; Brown and Heathcote, 2008/11). Accumulating the noisy 
perceptual evidence overtime to reach the decision boundary before the 
response execution is the common idea across these models. Since this 
process is inherently noisy, the decision-making system needs time to 

collect enough evidence to make a decision (Ratcliff and McKoon, 
2008). Several researchers have investigated the neural underpinnings 
of this evidence accumulation process. Initial analysis using single cell 
recordings in non-human primates (NHP) trained to perform visual 
decision-making tasks have suggested that individual neurons are 
implicated in this evidence accumulation process (Roitman and Shadlen, 
2002; Gold and Shadlen, 2001; Gold and Shadlen, 2000/03). Notably, 
experiments on monkeys have revealed that neurons in the lateral 
intraparietal (LIP) cortex (Roitman and Shadlen, 2002), frontal eye field 
(FEF) (Mante et al., 2013/11), striatum (Ding and Gold, 2010), and 
superior colliculus (Horwitz and Newsome, 1999) had a ramped up 
firing rate profile to reach the decision boundary. These neurons inte
grate the information received from sensory areas over time to reach the 
decision boundary. Moreover, the analysis of the single set recording in 
rodents uncovered that neurons in the posterior parietal cortex (PPC) 
and frontal orienting field (FOF) had a role in the evidence accumulation 
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process (Hanks et al., 2015; Scott et al., 2017). 
Later approaches described the decision-making process at both the 

behavioral and physiological levels on human subjects with more 
complex tasks. Non-invasive imaging of human subjects, such as func
tional magnetic resonance imaging (fMRI) and magneto/electroen
cephalography (M/EEG), gave researchers the ability to characterize the 
decision-making process at a whole-brain level (Hanks and Summer
field, 2017/01; Mulder et al., 2014). The studies in this area investigated 
the association between decision-making parameters with fMRI and EEG 
data. The fMRI data with its high spatial resolution was employed to 
discover the brain regions that were functionally involved in the 
decision-making process (Heekeren et al., 2004/10; Philiastides and 
Sajda, 2007; Binder et al., 2004/03; Liu and Pleskac, 2011; Grinband 
et al., 2006/03; Ho et al., 2009; Whiteet al., 2014; Pedersen et al., 2015; 
Pisauro et al., 2017; Veen et al., 2008; van Maanenet al., 2011; 
Forstmannet al., 2008; Winkelet al., 2012-). In contrast, EEG data with 
higher temporal resolution characterized this process with millisecond 
precision (Pisauro et al., 2017; O’Connell et al., 1729; van Vugt et al., 
1715; Kelly and O’Connell, 2013; Tagliabue et al., 2019; van Vugt et al., 
2012; Donner et al., 1581; Cavanaghet al., 1462; Herz et al., 2016). The 
research on the fMRI data reported the involvement of regions, such as 
the left dorsolateral prefrontal cortex (Heekeren et al., 2004/10), lateral 
occipital cortex (Philiastides and Sajda, 2007), anterior Insula (Binder 
et al., 2004/03; Liu and Pleskac, 2011; Grinband et al., 2006/03), 
inferior frontal sulcus (Liu and Pleskac, 2011), right Insula (Ho et al., 
2009), right inferior frontal gyrus (Whiteet al., 2014; Pedersen et al., 
2015), medial frontal gyrus (Whiteet al., 2014), posterior-medial frontal 
cortex (Pisauro et al., 2017), and dorsomedial prefrontal cortex (Ped
ersen et al., 2015), responsible for evidence accumulation. Other studies 
reported the neural correlate of the decision boundary by changing the 
speed-accuracy tradeoff. They found that regions including the pre
motor area (Veen et al., 2008; Forstmannet al., 2008; Winkelet al., 
2012-), striatum (Forstmannet al., 2008; Winkelet al., 2012-), basal 
ganglia, thalamus, dorsolateral prefrontal (Veen et al., 2008), and dorsal 
anterior cingulate (van Maanenet al., 2011) had higher activations when 
preparing for fast rather than accurate decisions. 

On the other hand, studies on the EEG data discovered the centro- 
parietal positivity (CPP) (O’Connell et al., 1729; van Vugt et al., 1715; 
Kelly and O’Connell, 2013; Tagliabue et al., 2019) and posterior parietal 
positivity (Pisauro et al., 2017) gradually growing until response 
execution as the sensory accumulation process. Also, parietal theta (van 
Vugt et al., 2012) and the motor cortex’ beta oscillation powers (Donner 
et al., 1581) were related to the evidence accumulation. The studies of 
the neural basis of the decision boundary revealed an association be
tween the power activity of the medial prefrontal cortex at theta fre
quency band and the value of decision boundary (Cavanaghet al., 1462; 
Herz et al., 2016). 

Previous analysis of rodents’ physiological and calcium imaging data 
revealed that perceptual decision-making was a distributed process 
(Steinmetz et al., 2019/12; Zatka-Haas et al., 2018). These studies 
showed that several brain areas contributed to the decision-making 
process, which was activated sequentially from visual to frontal re
gions. While the decision-making process consists of multiple processing 
stages, the previous research on the neural correlates of decision-making 
only described part of this process. Recently some mathematical models 
were introduced to decompose cognitive processes to small processing 
stages. These methods employed an unsupervised approach such as the 
hidden Markov model (HMM) to separate different processing stages by 
using brain activity (Borst and Anderson, 2015; Anderson et al., 2016), 
brain network (Vidaurreet al., 2018/07; Vidaurre et al., 2016; 
Stevneret al., 2019/03), or stimulus decoding models (Vidaurre et al., 
2019). Such approaches provided the possibility to describe the recov
ered stages in terms of specific signatures. Borst and Anderson (Borst and 
Anderson, 2015; Anderson et al., 2016) utilized the HMM and EEG 
amplitude to uncover the memory retrieval processing stages. HMM’s 
recovered states were assessed based on signature and duration to assign 

to each cognitive stage of the process. Vidaurre et al. (2019) employed a 
variable functional decoding model that characterized the relation be
tween stimulus and EEG activity. They argued that there was no 
consistent timing of the processing stages across trials and utilized the 
HMM to extract each decoding model’s timing. Other studies decom
posed the resting brain state to the short-lived states with a distinct 
oscillatory pattern using MEG data and HMM (Vidaurreet al., 2018/07). 
Such frameworks provide a mechanism to characterize the processing 
stages of the cognitive processes at the physiological layer. However, for 
a more complete explanation of the cognitive process, it would be better 
to combine both physiological and behavioral information. 

In this study, we employed a new approach to bridge this gap by 
discovering the association between physiological data and behavioral 
components, such as evidence accumulation. Accordingly, the decision- 
making process was decomposed into different cognitive processing 
stages similar to (Borst and Anderson, 2015) at the physiological level. 
The behavioral components of the decision-making were similarly esti
mated using the drift-diffusion model (DDM). We then clarified the as
sociation between neural and behavioral characterizations of the 
decision-making process. Using this approach, we assessed the effect 
of the internal subject state (spatial prioritization) and external world 
state (stimulus coherency) on the whole process of decision-making. To 
evaluate this approach, we utilized a recently published dataset of a 
perceptual decision-making (Georgie et al., 2018). 

2. Materials and methods 

2.1. Experimental design 

We employed a recently published decision-making dataset (Georgie 
et al., 2018), which included both the physiological (EEG and fMRI) and 
behavioral (RT and response correctness) data from seventeen members 
(8 females, 2 left-handed) of healthy adults aged 20–33 years at the 
University of Birmingham campus (Georgie et al., 2018). Participants 
categorized objects in a 2 × 2 factorial design task with the internal 
subject state (spatial prioritization) and external world state (stimulus 
coherency) factors (Fig. 1). At each trial, the scrambled image of a car or 
a face was presented on the right or left visual hemifield for 200 ms. 
Participants were asked to categorize objects as quickly and as accu
rately as possible by pressing their right or middle finger for selection in 
each category. For the first factor of the task design, the visual infor
mativeness of the stimulus was manipulated by altering the phase of the 
images at the low and high coherency levels. For the spatial prioritiza
tion factor, a cueing arrow indicating the stimulus’ visual hemifield was 
shown for 1000 ms before the stimulus presentation on half of the trials. 
In the other half of the trials, a two-sided cueing arrow was presented for 
1000 ms. After the disappearance of the cueing arrow, the stimulus was 
presented randomly on each visual hemifield. These two factors created 
four different conditions: high coherency – prioritized (HCP), high co
herency – not prioritized (HCNP), low coherency – prioritized (LCP), 
and low coherency – not prioritized (LCNP). For more information, refer 
to (Georgie et al., 2018). 

2.2. Data acquisition 

The data acquisition with the magnetic resonance (MR) scanner and 
simultaneous recording of EEG and fMRI included 90 trials for each 
condition with an intertrial interval of 10–12 s. These 90 trials were split 
into five separate experimental sessions. All EEG data were acquired 
with a 64-channel MR compatible EEG system. The scalp electrodes on 
the EEG cap followed the 10–20 system in naming and placement, 
including two additional channels, one for recording the electrocardio
gram (ECG) and the other for recording the electrooculography (EOG). 
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2.3. Data preprocessing 

We employed the re-referenced and MR-related artifact-free version 
of EEG data, which was provided by the owners. The EEG data were 
downsampled to 500Hz. Further data preprocessing was performed in 
this study using the Fieldtrip toolbox (Oostenveld et al., 2011). EEG data 
were bandpass filtered (a zero-phase, two-pass, and fourth-order But
terworth filter) from 1Hz to 70Hz, followed by band-stop filtering (a 
zero-phase, two-pass, and fourth-order Butterworth filter) from 48Hz to 
52Hz. The significant artifactual EEG sections were selected visually and 
were ignored before further analysis. The eye movement and muscle 
artifacts were removed using independent component analysis (ICA). 
Accordingly, the artifactual components were selected visually and 
rejected from the components set, and the artifact-free data were ob
tained by reconstructing the refined ICA components. The stimulus-lock 
epochs with the length of RT were extracted from EEG data and were 
baseline corrected using the 200 ms pre-cue baseline (the time interval 
between 1200 ms and 1000 ms pre-stimulus). Of the initial total of 16 
participants (one subject did not have behavioral data) with five sessions 
for each subject, five subjects were removed from further analysis 
because of the significantly poor EEG data quality. From the remaining 
sessions corresponding to the 11 subjects, a total of 13 sessions were 
rejected as well. Further analysis of both behavioral and physiological 
levels was applied to the remaining 43 sessions. 

2.4. Behavioral data analysis 

The drift-diffusion model (DDM) – a most discussed model for the 
evidence accumulation process – was employed to analyze the decision- 
making process at the behavioral level. The DDM views decision-making 
as a process of noisy accumulation of evidence over time (Fig. 2), which 
is commonly parameterized by a set of three parameters, i.e., drift rate, 
decision boundary, and bias. The average rate of accumulating the noisy 
evidence is called drift rate, v, which models the efficiency of the evi
dence accumulation. As such, more efficient evidence accumulation 
leads to higher drift rates (Beste et al., 2018). The higher drift rate is also 
associated with a faster decision-making process (Ratcliff and McKoon, 
2008). In this model, the sensory evidence from perception accumulates 
over time until it reaches a decision boundary, a, for each choice. Models 
sometimes include a bias parameter, z, when there is some prior 
knowledge about the task. This model can separate the decision 
component from the non-decision ones, such as stimulus encoding and 
response execution (Ratcliff and McKoon, 2008; Ratcliff et al., 2016). 
These non-decision components together have a mean-time, ter, which is 
called non-decision time. The decision component is also characterized 
by the drift rate parameter. 

In this study, we evaluated the decision-making performance under 

different conditions. The hierarchical DDM (HDDM) (Wiecki et al., 
2013) was employed to estimate model parameters v, a and ter. Markov 
chain Monte Carlo (MCMC) sampling was employed to approximate the 
posterior probability of the model parameters at the individual and 
group levels. We initialized the HDDM with 10000 posterior samples 
and discarded the first 1000 samples as burn-in. The parameters of the 
HDDM were estimated separately for different conditions (HCP, HCNP, 
LCP, and LCNP) to show the effect of the coherency and spatial priori
tization on decision-making performance. A two-way repeated measure 
analysis of variance (ANOVA) was then employed to test the effect of 
stimulus coherency and spatial prioritization on the decision and 
non-decision components of the DDM. 

2.5. EEG data analysis 

As mentioned before, the decision-making process consists of some 
processing stages, i.e., encoding, decision-making, and response execu
tion. At the behavioral level, the encoding and response execution were 
considered a single non-decision component, characterized by the non- 
decision time parameter. The decision stage was also viewed as an ev
idence accumulation process described by the drift rate parameter. 
Uncovering the timing and the neural basis of these processing stages 
provides more insight into this process. In this study, we characterized 
the decision-making building blocks by employing the HSMM-EEG 
method (Borst and Anderson, 2015) at the physiological level. This 

Fig. 1. Task protocol overview. A 2 × 2 factorial 
design task with spatial prioritization and stimulus 
coherency factors. At each trial, the scrambled image 
of a car or a face was presented on the right or left 
visual hemifield for 200 ms. For the coherency factor, 
the visual informativeness of the stimulus was 
manipulated by altering the phase of the images at 
low and high coherency levels. For the prioritization 
factor, a cueing arrow indicating the visual hemifield 
of the stimulus was shown for 1000 ms before the 
stimulus presentation on half of the trials.   

Fig. 2. The diffusion decision model. Noisy evidence is accumulated from the 
starting point, z, over time (during td ms) with the average drift rate, v, until it 
reaches the decision boundary, a. The non-decision components such as 
encoding and response output have a mean time called non-decision time, ter. 
Thus, total RT includes non-decision time, ter , and decision time, td. 
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method is based on a hidden semi-Markov model that assigns each 
sample to one stage and determines the transition between the stages 
(Fig. 3). Using this method, we characterized each stage by duration and 
signature parameters. We used the windowed EEG signal naming 
snapshot instead of EEG samples to reduce the model complexity and 
represent the EEG data’s temporal profile to the HSMM. 

According to this method, each preprocessed trial was partitioned 
into equal-size snapshots. Each snapshot vector was created by concat
enating the channel vectors of the EEG samples inside the window. 
These snapshots provided information about the average activity and 
the EEG data’s temporal profile inside the window. A dimensionality 
reduction procedure was then performed by principal component 
analysis (PCA) of the combined snapshots (Fig. 3). We employed the first 
K components, which accommodated 98% of the variance of the data. 
Finally, the HSMM-EEG was fitted using the denoised low dimensional 
representation of the snapshots. For more details about the theoretical 
concept of the HSMM-EEG, please refer to (Borst and Anderson, 2015). 

Using a snapshot length of 160 ms with 101 PCA components, which 
accounted for 98% of the total data variance, the data were analyzed to 
uncover three stages of the decision-making process. The two-way 
repeated measure ANOVA was then employed to test the association 
between coherency and prioritization factors and the duration of the 
stages. Relationships between behavioral and neural levels were also 
investigated using Pearson’s correlation analysis. 

3. Results 

3.1. Decision-making characterization at the behavioral level 

The coherency of the stimulus was changed at two different levels to 
influence the amount of sensory evidence. The spatial prioritization 
factor was also applied to change the attentional subject state. The 
participants were asked to categorize cars versus faces under the com
bination of these factors. The response time and response accuracy were 
analyzed to check the influence of these two factors on decision-making 
performance. The results of the two-way repeated measure ANOVA 
revealed the significant main effect of the coherency factor on the 

response time (F(1,10)= 92.12, p < 0.001) and response accuracy (F(1,10)=

254.02, p < 0.001). Thus, increasing the coherency level of the stimulus 
provided faster and more accurate responses (Fig. 4). The spatial pri
oritization also had a significant main effect on the response time 
(F(1,10)= 12.13, p = 0.006), and the response accuracy (F(1,10)= 7.65, p =
0.02). There were no significant interactions between coherency and 
spatial prioritization factors on reaction time (F(1,10)= 0.1, p = 0.76) and 
response accuracy (F(1,10)= 3.1, p = 0.11). 

To further characterize the influence of the coherency and spatial 
prioritization on the decision-making process, the decision and non- 
decision components of this process were estimated using DDM. We 
hypothesized that the decision component of the process was the only 
processing stage associated with stimulus coherency and spatial priori
tization factors. We also showed that the coherency factor had a stronger 

Fig. 3. Information processing stages extraction using HSMM-EEG analysis. a. Shows windowing EEG signals to create snapshots. b. The snapshots are pre
processed to reduce dimensionality. The preprocessed snapshots are fed to the HSMM-EEG to separate decision-making stages. The results of the HSMM-EEG on the 
snapshots are shown with three colors for encoding (green), decision (blue), and response (red). c. Illustration of the HSMM-EEG stage transition with encoding, 
decision, and response stages. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Mean response time and response accuracy across subjects. a. 
demonstrates the mean response time across subjects for each condition. The 
two-way repeated measure ANOVA revealed the significant main effect of the 
coherency (F(1,10) = 92.12, p < 0.001) and spatial prioritization (F(1,10) =

12.13, p = 0.006) factors on the response time. b. illustrates the mean 
response correctness across subjects for each condition. The results show a 
significant main effect of coherency (F(1,10) = 254.02, p < 0.001) and spatial 
prioritization (F(1,10) = 7.65, p = 0.02) on the response accuracy. The signs 
‘***’, ‘**’ and ‘*’ symbolize p-value < 0.001, p-value < 0.01, and p-value <
0.05 respectively. 
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relationship with evidence accumulation than the prioritization factor. 
To test this hypothesis at the behavioral level, the drift rate and non- 

decision time parameters of the DDM were estimated for each condition 
(HCP, HCNP, LCP, and LCNP). These two parameters characterized the 
decision and non-decision components of the process, respectively. The 
results of the statistical test demonstrated that coherency and spatial 
prioritization significantly affected the drift rate parameter, as deter
mined by two-way repeated measure ANOVA (F(1,10)= 496.79, p <
0.001) (Fig. 5). Moreover, we found a significant effect of the prioriti
zation factor on the drift rate (F(1,10) = 6.9, p = 0.03). As expected, the 
results revealed the major impact of the coherency and spatial prioriti
zation factors on the efficiency of evidence accumulation rather than the 
spatial prioritization factor. The analysis showed no significant inter
action (F(1,10) = 0.03, p = 0.88) between coherency and spatial priori
tization on the drift rate. Additionally, we checked whether the 
coherency and spatial prioritization were associated with the non- 
decision component. As depicted in Fig. 5, the two-way repeated mea
sure ANOVA disclosed no significant main effect of the stimulus co
herency (F(1,10)= 0.39, p = 0.55) and spatial prioritization (F(1,10) = 0.05, 
p = 0.83) factors on the non-decision time parameter. There was also no 
significant interaction (F(1,10) = 0.9, p = 0.37) between these two factors 
on the non-decision time. 

Overall, the results demonstrated that only evidence accumulation is 
related to stimulus coherency and spatial prioritization among the 
different processing stages of decision-making. Since the non-decision 
component was not associated with factors of interest, the efficiency 
of the decision-making process was more dependent on the evidence 
accumulation stage. 

3.2. Decision-making characterization at the neural level 

Next, we investigated whether we could characterize the decision- 
making process in more detail by estimating the timing and neural 
signature of the individual processing stage. With the benefit of EEG 
data with millisecond temporal resolution and the use of the HSMM-EEG 
method, we extracted the timing of each processing stage for each 
condition, i.e., HCP, HCNP, LCP, and LCNP (Fig. 6). Since the sequences 
of the stages were the same for all conditions, the conditions were 
analyzed jointly with HSMM-EEG. Using the duration of the processing 
stages, we tested the previous hypothesis and checked whether co
herency and spatial prioritization were associated with the duration of 

the cognitive stages. As shown in Fig. 6, the two-way repeated measure 
ANOVA found no significant main effect of stimulus coherency (F(1,10) =

0.37, p = 0.56) and spatial prioritization (F(1,10) = 0.55, p = 0.48) factors 
on the encoding stage duration. The results also revealed no significant 
interaction (F(1,10) = 2.03, p = 0.18) between coherency and spatial 
prioritization on the encoding state duration. As expected, the co
herency had a significant main effect on the duration of the decision 
stage as determined by two-way repeated measure ANOVA (F(1,10) =

31.85, p = 0.002). However, this analysis disclosed no significant effect 
of spatial prioritization (F(1,10) = 3.25, p = 0.1) on the duration of the 
decision stage. Additionally, the coherency and spatial prioritization did 
not have any significant interaction on this stage (F(1,10) = 0.14, p =
0.72). The response execution stage was also analyzed by the two-way 
repeated measure ANOVA to find the impacts of coherency and priori
tization factors on the duration of this stage. The results of the statistical 
test revealed that there was a significant main effect of coherency (F(1,10)

= 6.22, p = 0.03) on response duration. However, this analysis found 
that the spatial prioritization did not have a significant impact (F(1,10) =

0.01, p = 0.94) on this stage. Furthermore, there was no significant 
interaction (F(1,10) = 1.44, p = 0.26) between these two factors on the 
response duration. As expected, the overall results demonstrated that 
decision-making was more affected by the coherency factor than spatial 
prioritization. This strong association was more visible in the decision 
stage duration because reducing the coherency level increased the 
required time to accumulate evidence to reach the decision boundary. 

To further characterize the decision-making process, the signatures 
of the processing stages were computed by taking the weighted average 
of the snapshots across trials. Each snapshot’s weight was the proba
bility of belonging to that snapshot to each state estimated by the 
HSMM-EEG. The resulting signatures are illustrated in Fig. 7. As shown 
in this figure, the occipital negativity was observed at the encoding 
stage. It was consistent with previous findings that the posterior visual 
N200 component of the event-related potential (ERP) was associated 
with the sensory processing (Patel and Azzam, 2005; Portellaet al., 
2012; Nunez et al., 2019). At the next two stages, the encoded evidence 
accumulated over time to reach the decision boundary and finalize the 
response execution. The signature of the decision and response stages 
revealed the CPP’s increase at the decision and response execution 
stages. Previous research also disclosed the increase of the CPP with 
incoming evidence that peaked at response execution time (O’Connell 
et al., 1729; Tagliabue et al., 2019). The neural basis of response 
execution clarified the positivity of the left motor cortex as well. It might 
be because as most of the subjects were right-handed (9 of 11 subjects), 
the left motor cortex’ activity was increased at the response execution 
stage. 

3.3. Brain-behavior relationships 

We investigated the association between behavioral and neural 
representations of the decision-making process. At the behavioral level, 
the DDM considers the drift rate and non-decision time parameters to 
describe the decision and non-decision stages of the process. Addition
ally, the HSSM-EEG method decomposes the decision-making process 
into its components at the physiological level by estimating each pro
cessing stage’s timing. We examined the association between DDM pa
rameters and the duration of the information processing stages to probe 
the relationships between decision-making characterization at the 
physiological and behavioral levels. 

As reported with previous research, faster decisions were associated 
with a higher drift rate (Ratcliff and McKoon, 2008). Thus, we investi
gated whether the drift rate parameter had a negative interaction with 
the duration of the decision stage at the physiological level. Fig. 9a in
dicates the estimated drift rate and duration of the decision stage for 
each condition. A significant negative correlation (r = − 0.47, p = 0.001, 
Pearson’s correlation) was found between the decision stage’s 

Fig. 5. The predicted drift rate and non-decision time. a. Illustration of the 
mean of the drift rate parameter across subjects for different conditions (HCP, 
HCNP, LCP, and LCNP). The significant main effect of the coherency factor was 
reported by two-way repeated measure ANOVA (F(1,10) = 496.79, p <

0.001). Moreover, a significant difference was found by the prioritization 
factor by two-way repeated measure ANOVA (F(1,10) = 6.9, p = 0.03). b. 
Presentation of the mean of the non-decision time parameter across subjects for 
each condition. There was no significant main effect of coherency (F(1,10) =

0.39, p = 0.55) and prioritization factors (F(1,10) = 0.05, p = 0.83) on this 
parameter as reported by two-way repeated measure ANOVA. Error bars 
represent the standard error of the mean. The signs ‘***’ and ‘*’ symbolize p- 
value < 0.001 and p-value < 0.05 respectively. 
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physiological and behavioral characterizations, which was consistent 
with the previous findings (Ratcliff and McKoon, 2008). Additionally, 
we checked whether the non-decision parts of the decision process had 
any interaction between brain and behavior representations. Fig. 9b 
shows the non-decision time parameter estimated by the DDM. The sum 
of the duration of encoding and response stages resulted from the 
HSSM-EEG model for each condition. The results demonstrated a sig
nificant positive interaction (r = 0.78, p < 0.001, Pearson’s correlation) 
between behavioral and physiological representations of the 
non-decision component. 

We further examined the relationships between physiological rep
resentation of the decision-making process and the RT. We hypothesized 
that the entire decision-making process’ duration depended more on the 
decision stage rather than the non-decision stages. To test this hypoth
esis, the interaction between each stage duration with the RT was esti
mated using Pearson’s correlation across subjects and conditions 
(Fig. 9). A significant interaction was found between the duration of the 
decision stage and RT (r = 0.99, p < 0.001, Pearson’s correlation). The 
correlation analysis revealed no significant interactions between RT and 
duration of the encoding (r = 0.25, p = 0.11, Pearson’s correlation) and 
response (r = 0.29, p = 0.06, Pearson’s correlation) stages. The results 
disclosed that the most important factor in RT is the duration of the 
evidence accumulation process. Such that the faster accumulation pro
cess led to shorter reaction times. 

4. Discussion 

The classical model of the decision-making process encompasses 
three distinct processing stages, i.e., encoding, decision, and response 
execution. Our analysis shed light on the decision-making process by 
characterizing/linking this process at both neural and behavioral levels. 
At the neural level with the aim of EEG data with a high temporal res
olution, the timing and neural signature of the processing stages of the 
decision-making process (encoding, decision, and response execution) 
were estimated. Taken together, the relationship between the behavioral 
data and different stages of the decision-making process on EEG pro
vides insights into the underlying process. Using the HSMM-EEG model, 
the decision-making process stages were extracted associated with the 
duration and neural signature parameters (Figs. 6 and 7). The encoding 
stage’s duration, depicted in Fig. 6a, revealed that the time needed for 
sensory inputs to be encoded was nearly 190 ms. This is consistent with 
the previous study, which clarified that the latency of the N200 
component of the ERP reflected the time of sensory encoding (Nunez 
et al., 2019). The previous animal studies also revealed that the LIP 
neurons started to accumulate the perceptual evidence about 200 ms 
after stimulus presentation (Roitman and Shadlen, 2002). During the 
encoding stage, the occipital negativity was observed in the visual area 
(Fig. 7a). As reported by recent studies (Patel and Azzam, 2005; 
Portellaet al., 2012; Nunez et al., 2019), the N200 component at the 
visual area was associated with perceptual processing, which is in line 

Fig. 6. Estimated processing stages duration. Illustration of the mean timing of decision-making stages, i.e., encoding, decision, and response for individual 
conditions (HCP, HCNP, LCNP, and LCNP). The two-way repeated measure ANOVA found no significant main effect of coherency (F(1,10) = 0.37, p = 0.56) and 
spatial prioritization (F(1,10) = 0.55, p = 0.48) on the duration of the encoding stage. The significant effect of the coherency was found by the two-way repeated 
measure ANOVA on the decision stage duration (F(1,10) = 31.85, p = 0.002). However, there was no significant association between the decision stage and the 
prioritization factor (F(1,10) = 3.25, p = 0.1), as determined by ANOVA. Finally, the statistical analysis found a significant effect of coherency (F(1,10) = 6.22,
p = 0.03) on the response duration. While, the prioritization did not have a significant main effect (F(1,10) = 0.01, p = 0.94) on this state. Error bars represent 
standard error of the mean. The signs ‘**’ and ‘*’ symbolize p-value < 0.01 and p-value < 0.05. 

Fig. 7. Signature of the processing stages. The signatures were created by taking the weighted average of the snapshots across trials. a. The signature of the 
encoding stage disclosed the negativity of the visual areas. b and c illustrate the decision and response stages, respectively. The signature of these two stages 
demonstrated the increase of CPP until response execution. The positivity of the left motor cortex was also depicted at the response execution stage. 
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with our result. The MEG study on the frequency domain also disclosed 
the gamma band activity on the visual cortex as the stimulus encoding 
(Siegel et al., 2011). At the decision stage, the encoded sensory inputs 
were accumulated to reach the decision boundary. The decision stage’s 
neural signature revealed the increase of the CPP in the decision and 
response stages (Fig. 7b and c). 

Similarly, previous studies found that CPP was associated with the 
evidence accumulation process with a pick at the response execution 
time (O’Connell et al., 1729; van Vugt et al., 1715; Kelly and O’Connell, 
2013; Tagliabue et al., 2019), which confirms the resultant signatures. 
When the accumulated perceptual evidence reached the decision 
boundary, the motor execution was initiated. As shown in the signature 
of the response stage (Fig. 7c), besides increasing the CPP, the left motor 
cortex’ positivity was observed as well. It was because most of the 
participants were right-handed (9 of 11 subjects). The processing at the 
motor execution stage, on average, lasted about 190 ms, as depicted in 
Fig. 6c. The MEG study revealed that event-related desynchronization 
(ERD) peaked about 170 ms before response execution over the senso
rimotor area contralateral to the response side (Kaiser et al., 2006). 

Further analyses were applied to check whether the coherency and 
spatial prioritization were associated with the decision-making compo
nents at both behavioral and physiological levels. Statistical analysis at 
the behavioral level revealed that the reaction time and response ac
curacy were more associated with the coherency factor. Such that con
ditions with higher stimulus coherency had more accurate and faster 
reaction times. These findings align with the studies’ results on the 
decision-making process (Roitman and Shadlen, 2002; Gold and Shad
len, 2000/03; Liu and Pleskac, 2011; Pedersen et al., 2015). The spatial 
prioritization factor also had an impact on the performance of the 
decision-making process. Accordingly, trials with spatial prioritization 
had faster reaction times and more accurate responses. In line with our 
results, recent studies demonstrated that attentional cues led to higher 
accuracy and faster responses (van Ede et al., 2012; Mulder and van 
Maaneneng, 2013). Other analyses in our research that were performed 
with DDM at the behavioral level also revealed the impact of these 
factors on the decision-making process. Our findings indicated that the 
drift rate was associated with the coherency factor. The effect of the 
stimulus coherency on the drift rate confirmed this parameter’s role as a 
perceptual input quality measure, as explained by the DDM (Ratcliff, 
2014). The analysis of the single set recordings also supported this 
finding; it showed that faster responses were associated with the rapid 
build-up of activity of the LIP (Roitman and Shadlen, 2002), FEF (Mante 
et al., 2013/11), striatum (Ding and Gold, 2010), and superior colliculus 
(Horwitz and Newsome, 1999) neurons. 

Similar analyses were applied to the duration of the cognitive stages 
at the physiological level. As expected from the behavioral analysis 
findings, the coherency was more associated with the decision stage 
course than others. The investigation of the decision-making process at 
the physiological level also confirmed the findings of behavioral anal
ysis. The results demonstrated that decision-making is affected by the 
coherency factor rather than spatial prioritization. Changing the co
herency level of the stimulus had only an association with the decision 
stage duration. It might be because stimulus coherency affected the 
input sensory evidence quality. Therefore, lower stimulus coherency 
needed more time to reach the decision boundary characterized by the 
evidence accumulation process. The findings from both behavioral and 
physiological levels also disclosed that the decision-making process was 
more dependent on the decision stage than non-decision ones. To sup
port this hypothesis, we also analyzed the relationships between the 
duration of processing stages and RT, as depicted in Fig. 9. As expected, 
the results revealed that RT was more associated with the decision 
stage’s duration than others. This relationship also demonstrated the 
importance of this stage at the speed of the decision-making process. 

According to the similar operation of the decision-making process’ 
neural and behavioral representations under task conditions, we tested 
whether there was a relationship between these two levels (Fig. 8). 
Consequently, we hypothesized that the drift rate parameter that char
acterized the efficiency of the evidence accumulation process had an 
interaction with the decision stage’s duration at the physiological level. 
As such, higher drift rates provided shorter decision stages. Similarly, we 
tested whether the duration of the combination of the encoding and 
response stages had any interaction with the non-decision time of the 
DDM. To test these hypotheses, Pearson’s correlation was conducted, 
and the results confirmed the significant association between physio
logical and behavioral levels. Our findings were consistent with the 
studies on the evidence accumulation process, as mentioned earlier 
(Ratcliff and McKoon, 2008; Roitman and Shadlen, 2002; Mante et al., 
2013/11; Horwitz and Newsome, 1999). According to these studies, 
more coherent evidence was accumulated faster to reach the decision 
boundary. So, higher drift rates were associated with the shorter deci
sion duration. 

5. Conclusion 

In this study, we sought to bridge the gap between neural and 
behavioral representations of the decision-making process. Neural 
characterization of the decision-making process was uncovered through 
information processing stages. We showed that these two 

Fig. 8. Association between behavioral and physiological representations of the decision-making process. a. Shows the interaction between the drift rate 
parameter of the DDM and the decision stage duration of the HSMM-EEG model for each condition. The significant negative interaction (r = − 0.47, p = 0.001, 
Pearson’s correlation) was found between these parameters. b. Illustrates the non-decision time and sum of encoding and response stages duration for each condition. 
The results clarified a significant positive correlation (r = 0.78, p < 0.001, Pearson’s correlation) between these parameters. 
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representations had a similar manner under different stimulus co
herency levels. Additionally, the results at both neural and behavioral 
levels revealed the importance of the decision stage on the efficiency of 
the whole decision-making process. The significant association between 
processing components at both neural and behavioral levels was also a 
validation for the neural characterization of the decision-making pro
cess. Overall, our results demonstrated that this representation provided 
more insight into the decision-making process by providing both the 
cognitive stages’ duration and neural signature. We showed that at each 
processing stage, several brain areas activated for encoding, accumu
lating the evidence, and response execution. Using the brain area ac
tivity at each processing stage, one can extract the information flow 
between areas at each stage. It is also possible to decompose the whole 
cognitive process to multiple states with a specific synchronization 
pattern (Vidaurreet al., 2018/07). Since decision-making is a distributed 
process with interactions among multiple brain areas despite the ca
nonical model of decision-making, incorporating the area synchroniza
tion and communication at the modeling of the decision-making process 
will provide a better understanding of this process. 
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