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Abstract. Through Metric learning techniques, a metric function is
learned, which shows how similar/dissimilar two samples are. From the
perspective of feature selection, metric learning can be represented as
a transform function mapping each sample into a new point in the
new feature space. Geometric Mean Metric Learning (GMML) is one
of promising methods which achieve good performance in terms of accu-
racy and time complexity. In this paper, we propose the use of GMML
algorithm in a neural network to perform Riemannian computing on the
SPD matrices which improves accuracy and reduces time complexity. We
also use the eigenvalue rectification layer as a non-linear activation func-
tion to enhance the non-linearity of our model. Experimental evaluations
on several benchmark data sets demonstrate that the proposed method
improves accuracy in comparison with the state-of-the-art approaches.

Keywords: Metric learning · Geometric metric learning ·
Artificial Neural Network

1 Introduction

Metric Learning is a kind of data transform method, which makes similar
instances closer and dissimilar ones farther. The transformed data is later used
in learning algorithms (e.g., classification, regression, etc.). Metric learning can
be interpreted as a feature learning [17] which maps data to a new space hoping
that in the new feature space, data would be better represented (e.g., Maha-
lanobis distance metric). Metric learning which learns the similarity/distance
metric from the annotated data is of significant practical importance, which can
be considered as a pre-process of variety tasks, e.g., classification, clustering, fea-
ture extraction, feature matching, etc., [7,13,18,25]. Moreover, metric learning
approaches can overcome the challenges of extreme classification [8].

Currently, best metric learning approaches make use of state-of-the-art Artifi-
cial Neural Networks (ANN), which produces the best embedding by minimizing
a loss function (which is usually related to the similarity/ distance of the points)
[20,21]. However, most of these techniques learn a Mahalanobis distance in the
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Euclidean space, which can be interpreted as a linear mapping of the data. These
techniques have achieved an improvement in both modeling and the algorithm.

Most deep metric learning approaches learn a Euclidean metric in a mapped
space [2]. The mapped space is either a linear transform of the original space or
a non-linear one. Let x ∈ Rd be an instance in the origin space and φ(x) be the
corresponding instance in the mapped space, where φ(.) is either a linear function
represented by φ(x) = A×x or a non-linear function. The conventional Euclidean
distance ‖φ(x) − φ(y)‖ can be still used in the mapped space to estimate how dis-
similar two instances are [22,26]. More precisely, letting x,y denote two samples in
Rd space, we denote (x−y)M(x−y)T as the distance between those two samples
where M ∈ Rd×d is a Symmetric Positive Definite (SPD) matrix. The distance can
be interpreted as a Euclidean distance, ‖φ(x) − φ(y)‖, in the mapped space φ(.)
where φ(x) = M

1
2 x. Since the distance is positive, the matrix learned through the

metric learning ought to be an SPD matrix to confirm the positiveness of the dis-
tance. Some researchers make the learned matrix, symmetric-positive definite by
setting the negative eigenvalues to 0, which might lead to ambiguity. This ambigu-
ity can be prevented by making matrix space a Riemannian manifold.

In this paper, we revisit the structure of neural network and present a new
ANN architecture based on geometric learning algorithms. In our proposed
model, several metric learning layers are used. Each metric layer can be a new
representation of a metric learning algorithm having a closed-form optimization
on an SPD manifold. Through comprehensive experiments, we show the use of
SPD manifold improves the performance of a ANN by experimentally evaluation
on several benchmark datasets. Our main contribution is the use of geometric
learning algorithms as new mertic layers in a neural network. These new layers
include a Geometric Metric Mean Learning (GMML) as a transform function
followed by a ReEig layer [15] which transforms data into a new space.

The rest of this paper is organized as follows. An overview of related work is
briefly introduced in Sect. 2. We describe our proposed model in Sect. 3. Exper-
imental evaluations are illustrated in Sect. 4. Finally, Sect. 5 contains conclusion
with possible remarks for future works.

2 Related Works

In this section, we briefly review the promising deep distance metric learning
algorithms and then concentrate on the geometric learning.

2.1 Deep Metric Learning

Since 2014 deep metric learning have been attracted by many researchers
[9,10,14,19,22,24] and the idea of integrating metric learning into deep net-
works was first proposed in 1994 [6]. Faraki et al. combine geometrically dimen-
sion reduction and metric learning method and then integrate it into a deep
framework [11]. They use Riemannian manifolds in their optimization algorithm
[1] and achieve improvements.
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In paper [14], a nonlinear manifold of similar face images by applying distance
metric learning approaches into deep learning is learned. A joint loss function
containing a logistic loss and a regularization term of network weights and biases
are used. A new structure for feature embedding which learns full advantages of
batches through training phase was proposed in 2016 [18]. First, some positive
pairs are randomly selected and then the distances between those selected pairs
and all negative pairs are calculated using log − sum − exp formula.

An interesting metric learning approach which learns a map function transfer-
ring each sample to a new point in the mapped space was proposed in 2017 [22].
Some benefits of this work are as follows:- (1) A new loss is proposed which is
not based on pairs or triples; therefore, data are not needed to be pre-processed
to extract pairs or triples like other existing metric learning approaches. (2) Dur-
ing learning of embedding space, the network is encouraged to optimize a global
metric for clustering; this method uses the global structure of embedding space
to learn a quality metric for clustering.

An online deep metric learning framework was proposed in 2018 [16]. It
consists of several metric layers in a neural network and each metric layer is
actually an existing online metric learning algorithm which can be optimized in
a closed form. Each metric layer is followed by a nonlinear function like ReLu.
Let x0, x1 are the input and the output of the first metric layer respectively,
the output is calculated as x1 = Ltx0 while LtL = M and M is the metric
matrix which is calculated in a closed form optimization. The network is only
updated through the forward pass. In the next subsection, We briefly overview
some pioneer works that apply geometry to metric learning approaches.

2.2 Geometric Metric Learning

In 2016, a Mahalanobis-Based cost function named Geometric Mean Metric
Learning (GMML) was proposed [26]. They revisited the convenient Euclidean-
based optimization procedure and proposed a new geometric learning method
on SPD manifolds. They then reached a geometrical closed-form solution for the
Metric Learning problem, which significantly reduces the time complexity. In
[23] a new local method based on GMML named L-GMML was introduced and
applied to the task of ranking. Some local matrices and a corresponding anchor
document were first learned and then the anchors were weighted.

A new Riemannian network architecture for deep networks using SPD matri-
ces was proposed in [15]. They introduced some new geometric layers such as
bi-linear mapping layers (BiMap), eigenvalue rectification layers (ReEig), and
an eigenvalue logarithm layer (LogEig). In the following, these three layers are
briefly explained.

BitMap Layer. The BiMap layer transforms an input SPD matrix to a new
more compact matrix with higher ability to discriminate data. This layer uses a
bi-linear mapping function fb as follows

Xk = fb(Xk−1;W k) = W kXk−1W kT (1)
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where Xk−1 ∈ Sym+
dk−1

is the input matrix of k-th layer, W k ∈ R
dk×dk−1∗ , dk <

dk−1 is the connection weights and Xk ∈ Rdk×dk is the output of the layer.

ReEig Layer. The ReEig layer makes input SPD matrices far away from non-
positive ones and it is formulated as follows

Xk = f (k)
r (Xk−1) = Uk−1 max(εI,Σk−1)Uk−1T (2)

where Uk−1 and Σk−1 are the output of the eigenvalue decomposition and
Xk−1 = Uk−1Σk−1Uk−1T

. ε denotes as a rectification threshold, I is Identity
matrix and max(εI,Σk−1) is a diagonal matrix which is defined as follows:-

A(i, i) =

{
Σk−1(i, i) ,Σk−1(i, i) > ε

ε ,Σk−1(i, i) ≤ ε
(3)

LogEig Layer. The LogEig layer is defined as the following.

Xk = f
(k)
l (Xk−1) = log(Xk−1) = Uk−1 log(εI,Σk−1)Uk−1T (4)

where log(Xk−1) is the logarithm of diagonal elements. According to [3] this
metric layer (Log-Euclidean Riemannian metric) provide a lie group structure
to the Riemannian manifold of SPD matrices. As a result, the SPD manifold
is reduced to a flat space in which conventional Euclidean computations can
be simply conducted and there is no need to take the pain to do Riemannian
operations such as geodesic calculations.

Riemannian Manifold Metric Learning (RMML) aims to reduce the geodesic
distance of similar pairs while increasing the geometric distance of dissimilar
ones on nonlinear manifolds. RMML is extended for both SPD and Grassmann
manifolds, [27].

3 The Proposed Model

As discussed earlier, the aim of the metric learning approaches is to eventually
obtain a metric that gives “small” distance for similar points and “large” distance
for dissimilar ones. Different metric learning approaches are willing to fulfill this
guideline implicitly or explicitly. Figure 1 shows the impact of learning a metric
matrix M based on Mahalanobis distance.

In the Mahalanobis-based metric learning approaches, it is intended to find
a matrix M through training stage where distance between ith and jth samples
are defined as dM = (xi−xj)TM(xi−xj). Matrix M must be an SPD matrix, so
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Fig. 1. Mahalanobis-based metric learning

there is a matrix W such that WTW = M . We revisit the Mahalanobis distance
as follows

dM = (xi − xj)TWTW (xi − xj)

= (Wxi − Wxj)T (Wxi − Wxj)

= ‖Wxi − Wxj‖22.
(5)

We interpret Wxi as the transformed point of the original point xi and ‖Wxi −
Wxj‖22 as the Euclidean distance in the transformed space. So, using metric
learning algorithms, data are implicitly transformed to a new space, hoping that
the data would be more discriminated in the transformed space.

We propose incorporating metric learning algorithms into neural networks
by introducing a geometric layer. Let x(i) and x(i+1) = Wx(i) be the input
and the output of the ith metric layer respectively where M = W tW is the
metric matrix. Matrix M is an SPD matrix which is learned through a closed-
form optimization on the SPD manifold. We use a closed-form geometric metric
optimization algorithm (GMML) that has been proposed in [26]. In the following,
we explain the process that has been conducted in each metric layer.

In each metric layer, we wish to find a matrix M that decrease the sum of
distances over all similar points while M−1 increase the sum of distances over
dissimilar pairs simultaneously. We propose the use of the following objective
function like that was proposed by [26].

min
M�0

∑
(xi,xj)∈S

dM (xi,xj) +
∑

(xi,xj)∈D
dM−1(xi,xj) (6)

where S, D are sets of similar indices and dissimilar indices respectively.
dM (xi,xj) is the distance between xi and xj and defined as (xi − xj)M(xi −
xj)T .

In the Euclidean space, the gradient of dM (xi,xj) with respect to M is

(xi,xj)(xi,xj)T

while the gradient of dM−1(xi,xj) is

−M−1(xi,xj)(xi,xj)TM−1
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The inner product of those two gradients is negative, so, they are in the oppo-
site direction and an increase in the gradient of M cause a decrease in that of
M−1. Since the first and second terms of the cost function 6 are in the opposite
direction, the minimization of the cost function causes small distance for similar
pairs and large distance for dissimilar ones.

The Eq. 6 can be reformulated as follows:

min
M�0

∑

(xi,xj)∈S
tr

(
M(xi − xj)(xi − xj)

t)

+
∑

(xi,xj)∈D
tr

(
M−1(xi − xj)(xi − xj)

t) (7)

where tr(.) is the summation of diagonal elements. By considering

S :=
∑

(xi,xj)∈S
(xi − xj)(xi − xj)T ,

D :=
∑

(xi,xj)∈D
(xi − xj)(xi − xj)T

(8)

in which S and D are:

S := {(xi,xj)|xi and xj are in the same class},

D := {(xi,xj)|xi and xj are in different classes}.
(9)

The Eq. 7 is briefed as

min
M�0

tr(MS) + tr(M−1D). (10)

To achieve the optimal solution for Eq. (10), we set its derivative to zero. Deriva-
tive of Eq. (10) with respect to matrix M is as follows

S − M−1DM−1 = 0 ⇒ MSM = D. (11)

To obtain matrix M from the above equation, both D � 0 and S � 0 should
hold, and it results in a positive distance as described in the following:

S1/2MSMS1/2 = S1/2DS1/2 ⇒
(S1/2MSMS1/2)1/2 = (S1/2DS1/2)1/2 ⇒
(S1/2MS1/2S1/2MS1/2)1/2 = (S1/2DS1/2)1/2 ⇒
(S1/2MS1/2) = (S1/2DS1/2)1/2 ⇒
S−1/2(S1/2MS1/2)S−1/2 = S−1/2(S1/2DS1/2)1/2S−1/2 ⇒
M = S−1/2(S1/2DS1/2)1/2S−1/2

(12)

The last equation is indeed the midpoint of the geodesic joining S−1 to D [4].
Therefore, the obtained result automatically satisfies the constraint of M � 0.
Figure 2 shows the proposed architecture which is a conventional ANN extended
with several metric layers.
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Fig. 2. Our proposed architecture

3.1 The Proposed Geometric Network

We propose a Geometric network based on SPD manifolds. We put a GMML
layer as a metric layer followed by a ReEig layer. These successive layers are
repeated through the network. It is noted that GMML method is fast and lead
to accurate results and can be optimized in a closed-form way.

Typical neural networks apply a Stochastic Gradient Descent (SGD) algo-
rithm for backpropagation that uses the gradient of the loss function and a
learning rate to create a descent step [12], which ultimately reduces the value
of loss function. In the forward path, a predicted label is produced and then is
compared with the desired one to obtain the error. Afterward, the gradient of
the loss function flow back through the network and update all the weights in
the opposite direction of the gradient to reduce the loss value.

Alternatively, we propose to update the weights of the geometric metric layers
by a closed-form optimization in two steps as follows. We first obtain the optimal
matrix, M , by optimizing Eq. (7) which leads to Eq. (10). Then, as demonstrated
in Eq. (5), the optimal weights of the metric layers are obtained by W = M

1
2 .

By doing so, there is no more need to update metric layers’ weights through
back-propagation.

As it is shown in Eq. (5), each metric layer implicitly transforms data into
the new space, Xnew = WXold, hoping that the data in the new space would be
more discriminative. W is obtained by the decomposition of the metric matrix
M where M = WTW . Two matrices M and W have the same dimension. The
optimal value of M is obtained according to Eq. (12). We calculate the output
of a metric layer by xk+1 = Wxk where xk is the input of the layer. The process
is shown in Algorithm 1. If each metric layer is convex we will advance of using a
closed-form optimization to reach a simple and global optimal value. The prove
of convexity for GMML is straightforward, since it is the summation of two
convex function [5]. Note that other closed form metric learning algorithm can
be used instead of GMML.
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Algorithm 1. The GMML Layer
Input of first layer: S0: set of similar pairs, D0: set of dissimilar pairs
Input of kth layer: Xk−1: output of k − 1th layer
Output of kth layer: Xk = W kXk−1 where W k calculates as below

1: Calculate Sk−1 and Dk−1 according to

Sk−1 :=
∑

(xk−1
i ,xk−1

j )∈Sk−1

(xk−1
i − xk−1

j )(xk−1
i − xk−1

j )T ,

Dk−1 :=
∑

(xk−1
i ,xk−1

j )∈Dk−1

(xk−1
i − xk−1

j )(xk−1
i − xk−1

j )T
(13)

2: Compute Mk as:

Mk = (Sk−1)−1/2((Sk−1)1/2Dk−1(Sk−1)1/2)1/2(Sk−1)−1/2 (14)

3: Decompose matrix Mk = (W k)T (W k) to obtain W k

4: Compute the output of GMML layer as Xk = W kXk−1

The ReLU layer in typical neural networks includes max(0, x) non-linearity.
This layer is used to improve the non-linearity of the network. In the [15], the
ReLU layer is replaced by a new geometric layer called ReEig. This layer recti-
fies the small positive eigenvalues. We use ReEig layer instead of simple ReLu to
enhance the non-linearity of the network. This layer has been defined in Eqs. (2)
and (3). It prevents the input SPD matrices from having non-positive Eigenval-
ues. Our proposed GMML layer and ReEig layer has been implemented in the
Algorithm 1 and Algorithm 2 respectively.

Algorithm 2. The kth ReEig Layer
Input: Xk−1, ε: a rectification threshold
Output: Xk

1: Decompose Xk−1 as Xk−1 = U k−1Σk−1(Uk−1)T

2: Calculate Xk as Xk = f
(k)
r (Xk−1) = U k−1 max(εI , Σk−1)(Uk−1)T where

A(i, i) =

{
Σk−1(i, i) , Σk−1(i, i) > ε

ε , Σk−1(i, i) ≤ ε

In Fig. 2 we propose a back-propagation stage based on the SGD algorithm
that can accelerate the convergence speed. As the forward propagation in the
geometric layers can find new feature spaces through the close-form optimization,
the back-propagation for these layers can be omitted. In the experiments, we do
not use backpropagation for metric layers.
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4 Experiments

In this section, we evaluate how our proposed method works in a simple classifi-
cation problem. The proposed approach is evaluated on several small benchmark
datasets described in Table 1 with some statistics about each.

Table 1. Description about chosen datasets

Name # of input # of Classes Dimension

Breast-cancer 569 2 30

Wine 178 3 13

Iris 150 3 4

Vehicle 846 4 18

Vowel 990 11 14

German 1000 2 24

We have incorporated our proposed metric learning architecture into a Multi
Layers Perceptron (MLP) to learn a metric and then classify data in the new
learned space. We have first set up a network containing two metric learning
layers (GMML + ReEng layer) followed by a simple MLP. The employed MLP
is a network with two hidden layers including 20, 10 nodes respectively. The
gradient of the Cross-entropy loss function is used for error back-propagation.
In all experiments, we have used 10 fold cross validation for model selection.
It means that the original dataset is partitioned into 10 disjoint subsets where
9 subsets have been used for training and the remaining one for testing.

The data have been initially normalized. Table 2 shows the experimental
results on six benchmark datasets. We have compared our model with three
promising metric learning algorithms including GMML, LMNN, ITML. The
results show that our model performs better than others in all datasets. Results
for the other methods are based on the experiments reported by [26].

Table 2. Comparison with the state-of-the-art metric learning methods

Name GMML ITML LMNN OURS

Wine 0.96 0.92 0.94 0.96

Iris 0.97 0.974 0.95 0.98

Breast cancer 0.96 0.92 0.91 0.99

Vehicle 0.78 0.70 0.77 0.81

Vowel 0.57 0.56 0.53 0.6

German 0.72 0.705 0.71 0.78
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We also have explored how the number of constraints would affect the accu-
racy of the classification. We first picked 30% of data randomly and make similar
and dissimilar sets over the selected data. We gradually increase the number of
constraints and investigate the effect of increased constraints on the classifica-
tion. We first pick 30% of data to generate similar and dissimilar pairs over
them and explore how our proposed model work on this configuration. Figure 3
shows how an increase in the number of constraints affects the performance of
the classifier.

Fig. 3. Horizontal axis represents the percentage of data which are used for constraints
and the vertical axis represents the precision

5 Conclusion

In this paper, we have proposed a new neural network architecture based on met-
ric learning approaches which are updated on the SPD manifold. We focused on
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classification tasks and it is considered as an initial attempt to explore the use
of geometric learning on neural networks. Our proposed method has been imple-
mented and evaluated on several benchmark datasets which showed a significant
improvement in comparison with the state-of-the-art metric learning algorithms.
We also explored how the number of constraints affects the performance of the
classifier. As a future work, we aim to integrate this architecture into more
complicated deep networks. Also, we plan to incorporate more metric learning
algorithms into the proposed model.
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