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A B S T R A C T   

Natural Gas (NG) compressibility factor as important property at any NG industrial applications determined by 
utilizing an intelligent approach precisely. Three thermodynamic properties include pressure, temperature and 
Joule-Thomson (JT) coefficient are selected as input parameters. These properties are chosen due to the mea
surement capabilities of available sensors. Unlike the traditional approaches, the current approach does not 
require NG compositions as input. The current intelligent approach is developed based on an Artificial Neural 
Network (ANN) method. Real-time measurement capability and very low cost are two main advantages of the 
developed approach. Big data sets of NG thermodynamic properties are created considering 30,000 random 
compositions for training, testing and validating the ANN. The GERG-2008 is utilized (as the most recent 
equation of state) to calculate thermodynamic properties to train the ANN. Validation of the developed ANN 
method compared to experimental data shows the Average Absolute Percent Deviation (AAPD) is about 0.33%. 
To show the accuracy of the developed approach, four different NG compositions are selected as case studies. The 
compressibility factor and JT coefficient are computed for various pressure and temperature range using the 
traditional approach. Then, the compressibility factor is determined using the intelligent approach when only 
pressure, temperature and JT coefficient are known. The AAPD of NG compressibility factor calculations for 
various natural gases show 0.385% for pure methane, 0.45% for the Khangiran gas, 0.58% for the Kangan gas, 
0.78% for the Pars gas and is 1.12% for the Bidboland gas. The comparing results show that overall AAPD is less 
than 0.7% that shows the high accuracy of the intelligent approach.   

1. Introduction 

1.1. Motivation 

Natural Gas (NG) compressibility factor is widely used in NG in
dustries such as NG flow measurement stations (Hiismaeki, 1993; 
Smalling et al., 1989). The NG compressibility factor is especially 
required in flow metering stations for calculating NG mass flow rate 
(Froysa and Lunde, 2005, 2011). The compressibility factor is also the 
main input for calculating other thermodynamic properties. The 
compressibility factor is traditionally are calculated with low accuracy 
using empirical correlation and with high accuracy using Equations of 
States (EOS). 

1.2. Literature 

The most important and useful empirical correlations can be found in 
various researches (Hirschfelder et al., 1955), (Watson and White, 
1982), (Valdes and Cadet, 1991), (Dell’Isola et al., 1997), (Buonanno 
et al., 1998) and (Hammond, 2001). Due to the simplicity of empirical 
correlations, these equations are utilized frequently in the NG process 
simulation as well as the NG thermodynamic properties determination. 
In recent years, researchers have presented many empirical correlations 
with acceptable accuracy. The empirical correlations whose main 
objective is to compute the NG compressibility factor can be referred to 
(Azizi et al., 2010; Bahadori et al., 2007; Dranchuk and Abou-Kassem, 
1975; Elsharkawy, 2004; Hall and Holste, 1995; Heidaryan et al, 
2010a, 2010b). The most important recent studies in this field are: a set 
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of correlations for computing NG thermodynamic properties (i.e. 
compressibility factor) that presented by Farzaneh-Gord and Rahbari 
(2011). Fayazi et al. (2014) introduced the accurate model to predict 
sour and sweet NG Z-factor (i.e. compressibility factor). In their study, a 
new approach was proposed to predict the NG compressibility factor 
using a large database of 2000 samples. The results of their study show 
that their proposed model reported an error of 0.19%, as compared to 
other correlations. In all the empirical correlations mentioned above, for 
calculating the NG compressibility factor, it is necessary to know the 
temperature, pressure as well as NG compositions (i.e. NG molecular 
weight). It should be pointed out that, empirical correlations are not 
usually used in NG measurement processes because of their low 
accuracy. 

EOSs are widely used for calculating NG thermodynamic properties 
such as the compressibility factor. Two equations of AGA8 and GERG- 
2008 have developed especially for NG by NG industries. They show 
high accuracy and are accepted as standard methods for calculating the 
NG compressibility factor. Considering the high accuracy of these EOSs, 
the ISO20765-1 (ISO 20765-1, 2005) standard is developed based on 
AGA8 EOS (AGA8-DC92 EoS, 1992) and ISO20765-2 (ISO 20765-2, 
2015) based on GERG-2008 EOS (Kunz and Wagner, 2012). According 
to the description, these EOS utilized for computing NG flow at custody 
transfer points. In recent years, researches have been carried out to 
calculate the thermodynamic properties of natural gas based on these 
EOSs. Marić et al. (2005) calculated NG isentropic exponent based on 
AGA8 EOS. Also, the Joule-Thomson (JT) coefficient and the heat ca
pacity of NG were calculated using extended AGA8 EOS by Marić 
(Marić, 2005, 2007). Farzaneh-Gord et al. (2010) and Farzaneh-Gord 
and Rahbari (2012) developed AGA8 EOS and presented methods and 
procedures for computing other thermodynamics properties of NG such 
as the speed of sound, entropy, enthalpy and internal energy. Also, 
Farzaneh-Gord et al. (2018) were compared the sensitivity of AGA8 EOS 
and GERG-2008 EOS in the calculation of NG flow measurement. In their 
study, the NG compressibility factor was computed based on both these 
two EOSs. The results of their study were shown that the accuracy of 

GERG-2008 EOS is higher than AGA8 EOS. It should be pointed out that, 
to calculate the NG compressibility factor, using these two EOSs, the 
temperature, pressure and NG compositions should be known. 

Generally, NG temperature and pressure could be easily measured 
but the measurement of NG compositions is an expensive process and is 
a very difficult procedure. Therefore, real-time NG mixture composi
tions measurement are not usually carried out. For example, in Iran as 
the case study of this work, the composition measurements usually 
carried out yearly in metering stations. To overcome this issue, the re
searchers proposed methods for the NG molecular weight using three 
measurable NG thermodynamic properties. The first study, in this case, 
was presented by Farzaneh-Gord et al. (Farzaneh-Gord et al, 2015, 
2016) such that in these studies, the NG thermodynamic properties are 
calculated based on three measurable properties. Farzaneh-Gord et al. 
(2016) presented a novel correlation to calculate NG molecular weight 
based on three measurable properties including temperature, pressure 
and speed of sound. The results of their study were shown that the 
developed correlation is calculated NG molecular weight with accept
able accuracy. In addition, Farzaneh-Gord et al. (2015) developed a 
novel method to compute the NG density based on temperature, pres
sure and JT coefficient as three measurable thermodynamic properties. 
The results of their study were shown that the error in the density 
calculation is not more than 1.2%. Researchers have considered the 
calculation of the NG thermodynamic properties using three measurable 
properties in recent years. For example, Khosravi et al. (2018) utilized 
several artificial intelligence approaches to predict the density of NG 
based on temperature, pressure and JT while using AGA8 EOS to train 
network data. In one study, Liu et al. (2019) calculated the NG 
compressibility factor based on pressure, temperature and volume as 
three measurable properties. Their results were shown that the error in 
calculating the NG compressibility factor does not exceed 2.1%. 

Researchers for calculating the thermodynamic properties of NG in 
recent years proposed artificial Neural Network (ANN) methods. For 
example, Sanjari and Nemati (Sanjari and Lay, 2012) presented an ANN 
based on the back-propagation method to predict the NG compressibility 

Nomenclature 

f Activation function 
T Temperature(K) 
P Pressure(kPa)
J Jacobian matrix 
Z Z-factor 
X Mole fraction 
v Gas volume 
α Helmholtz free energy 
δ Reduced fluid mixture 
βv,ij, γT,ij,βT,ij, γT,ij Binary mixtures parameters of GERG-2008 EOS 
α0 Helmholtz free energy ideal part of the gas mixture 
α0

0i Ideal dimensionless Helmholtz free energy of component i 
of GERG2008 EOS 

nij,k,dij,k, tij,k,ηij,k, εij,k,βij,k, γij,k Parameters of GERG2008 EOS 
αr Reduced Helmholtz free energy residual part 
ρ Density 

τ Inverse reduced temperature
(

1
K

)

αr
or Generalized departure function 

ωi Acentric factor of component i 
a,b,ai,bi,aii,bii,aij,bij,kij,mi,αi Mixing rules parameters of cubic EOSs 
n Number of data points 
R Correlation Coefficient 
N Number of natural gas components, N = 21 

Pc,i Critical pressure for component i 
Tc,i Critical temperature for component i 

Ppc Pseudo critical pressure, Ppc =
∑N

i=1
Pc,i × Xi 

Tpc Pseudo critical temperatureTpc =
∑N

i=1
Tc,i × Xi 

Ppr Pseudo-reduced pressurePpr = P
Ppc 

Tpr Pseudo-reduced temperatureTpr = T
Tpc 

W Weights matrix 

Subscripts 
B Base condition 
C Critical point 
F Flow condition 
R Reduced 

Abbreviation 
AAPD Average Absolute Percent Deviation 
ANN Artificial Neural Network 
CF Correction Factor 
EOS Equations of State 
HFE Helmholtz Free Energy 
JT Joule-Thomson Coefficent 
NG Natural Gas 
MLP Multilayer perceptron 
RMSE Root Mean Squares of Error  
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factor. In their study, about 5500 compressibility factors experimental 
data were employed for training and testing of ANN. The results of their 
study were compared to Peng-Robinson EOS that their calculations had 
an error equivalent to 0.6%. Chamkalani et al. (2013) developed a 
machine learning method to calculate the NG compressibility factor. The 
least square support vector machine was utilized in their work and their 
results were shown a correlation coefficient of about 0.999 and MSE 
about 0.000014 compared to previous models. Ghiasi et al. (2014) 

developed a robust modeling approach to estimate the compressibility 
factor for gas condensates. Their model was compared to 120 previous 
models and the results were shown that the proposed model has high 
accuracy toward all the studied methods. Kamari et al. (2016) presented 
a corresponding states-based method to predict the NG compressibility 
factor. Their proposed model is more accurate compared to other 
models. Rebai et al. (2019) predicted the NG hydrates formation con
ditions using a combination of thermodynamic and ANN modeling. They 

Fig. 1. Procedure of NG compressibility factor calculation proposed in this study.  

Fig. 2. A typical pressure drop station along with flow metering instrument.  
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used a database of 4660 data points to validate the proposed model. 
Their results show that the proposed model predicts the hydrates for
mation conditions with high precision compared to previous models. In 
a recent study, Azizi et al. (2019) presented an intelligent approach to 
predict the NG compressibility factor based on ANN. Their model is 
optimized to achieve high precision. Their study shows their model is an 
accurate method for the calculation of the NG compressibility factor. 

1.3. Objective and novelty 

The current study presents an intelligent approach for calculating NG 
thermodynamic properties without any knowledge of its composition. 
Unlike the previous studies, the proposed method has been developed so 
that to calculate the compressibility factor with high accuracy. The 
current approach could be employed even for custody transfer purposes. 
To developed the approach, firstly, two thermodynamics properties (JT 
coefficient and compressibility factor) are calculated for wide temper
ature and pressure range for 30,000 random data sets of compositions 
using GERG-2008 EOS. Based on these data sets of four thermodynamics 
properties (temperature, pressure and JT coefficient and compressibility 
factor), an ANN is developed in a way to compute NG compressibility 
factor using the other three properties as input (pressure, temperature 
and JT coefficient). Due to the low cost of real-time measuring of these 

three properties, the current study presents a cost-effective method for 
real-time measuring of compressibility factor precisely. Fig. 1 illustrates 
how the proposed method operates. 

2. Methodology 

2.1. The developed approach sample application 

The developed approach could have enormous applications in NG 
industries especially in places where real-time properties are needed. In 
this section, a sample application is given. Fig. 2 represents a typical NG 
pressure drop and measuring station with flow metering instruments. As 
seen in Fig. 2, temperature, pressure and JT coefficient (i.e. NG prop
erties) could be measured in the metering station. 

At NG custody transfer points, the NG volume flow rate at the base 
condition is needed. This parameter can be calculated as follow 
(Mokhatab and Poe, 2012): 

Qb =CF × Qf (1) 

In which,CF is the correction factor, Qb is the volume flow rate in 
base condition and Qf is the volume flow rate in flow conditions 
(measured with a volume flow meter). The correction factor is calcu
lated by the following equation (Mokhatab and Poe, 2012): 

CF =

(
Tb

Tf

)(
Pf + Patm

Pb

)(
Zb

Zf

)

(2) 

In the above equation, T, P and Z are the temperature, pressure and 
compressibility factor of NG respectively. Also, the subscript f , b and atm 
refer to the flow condition, base conditions and ambient conditions 
respectively. As mentioned, the accurate calculation of the compress
ibility factor at the NG metering stations (particularly at big stations) is 
very important. Both ISO20765-1 and ISO20765-2 require NG compo
sitions as input to calculate the NG compressibility factor. The NG 
composition measurement needs additional and very expensive in
struments that are not feasible to install in all metering stations. 

The current approach eliminates the need for knowing NG compo
sition in these stations. As temperature and pressure could be measured 
easily across the throttling valve, consequently, the JT coefficient could 
be computed. By knowing three properties (pressure, temperature and 

Fig. 3. Structure of the proposed MLP ANN.  

Table 1 
The detailed report of the proposed MLP ANN.  

Parameter Value/Comment 

Number of inputs layer neurons 3 
Number of Hidden Layers 4 
Neurons’ number in each Hidden layers 19 
Activation function of hidden layers Tansig 
Activation function of Output layers Purelin 
Total data used in each ANN complex 29,871 
Train data percent 70% 
Validation data percent 15% 
Test data percent 15% 
Correlation coefficient of output [T] 0.99999 
Correlation coefficient output [Z] 0.99999 
Best validation performance at Epoch 600  
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JT coefficient) and utilizing the proposed intelligent approach, one 
could determine the compressibility factor and consequently CF. 

2.2. ANN approach 

The proposed ANN approach for calculating the NG compressibility 
factor is developed in this section. Firstly, a database of temperature, 
pressure and JT coefficient and compressibility factor for various NG 
composition is constructed. Due to limited experimental values, here, 
most data are obtained by solving a widely accepted EOS. Based on the 
information given by Farzaneh-Gord et al. (2018), the GREG-2008 EOS 
(Kunz and Wagner, 2012) has been selected as the EOS for calculating 
NG thermodynamics properties. For this purpose, 30,000 random 
datasets of NG compositions are selected based on the rage of NG 
component for pipeline gas quality (ISO 20765-2, 2015). A few available 
experimental combinations of these four properties are also added to the 
database. Finally, using the sub-model of Artificial Neural Network 
(here, multilayer perceptron), an ANN is trained and structured in a way 
to calculate the compressibility factor by three inputs (temperature, 
pressure and JT coefficient). 

2.3. Computing compressibility factor using GERG-2008 

Helmholtz’s free energy definition is the starting point for devel
oping GERG-2008 EOS. For a mixture, the Helmholtz free energy as a 
function of density, ρ, temperature, T and compositions,X, is defined as 
following (Kunz and Wagner, 2012): 

a
(

ρ,T,X
)
= a0

(
ρ, T,X

)
+ ar

(
ρ, T,X

)
(3)  

where, a0 and arare the ideal part and reduce part of the gas mixture 
respectively. Unlike most EOSs, the EOS takes density and temperature 
as the independent variables (not temperature and pressure). The 
pressure is calculated by an iterative technique. Assuming, = a

RT , the 
above equation could be rewritten as follow (Kunz and Wagner, 2012): 

α
(

δ, τ,X
)
=α0

(
ρ, T,X

)
+ αr

(
δ,T,X

)
(4) 

In which, δ and τ are reduced fluid mixture density and inverse 
reduced temperature respectively. 

Theδ and τ are expressed as δ =
ρ

ρr(xi)
and τ =

Tr(xi)
T where 

Tr(xi)and ρr(xi) are calculated as (Kunz and Wagner, 2012): 

1

ρr

(
X
)=

∑N

i=1

∑N

j=1
XiXjβv,ijγv,ij

Xi + Xj

β2
v,ijxi + xj

[
1
8

](
1

ρ1 /

3
c,i

+
1

ρ1 /

3
c,j

)3

(5)  

Tr

(
X
)
=
∑N

i=1

∑N

j=1
XiXjβT,ijγT,ij

Xi + Xj

β2
T,ijXi + Xi

(
Tc,i.Tc,j

)0.5 (6) 

In equation (5) and (6), ρr and Tr are a function of the NG compo
sitions. The detailed information for the parameters used in equation (5) 
and (6) could be found in ISO 20765–2 (Kunz and Wagner, 2012). 

The ideal part of Helmholtz free energy, in equation (4), could be 
defined by the following equation (Kunz and Wagner, 2012): 

Fig. 4. NG Compressibility factor ANN outputs versus target data for (a) train 
data, (b) validation data, (c) test data and (d) all of the used data. 

Table 2 
The mole fraction of Synthetic NG mixture (Nasrifar 
and Bolland, 2006).  

Component Mole fraction 

CH4 0.79942 
C2H6 0.05029 
C3H8 0.03 
N2 0.09939 
CO2 0.0209  
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α0
(

ρ, T,X
)
=
∑N

i=1
Xi
[
α0

0i(ρ,T)+ Ln(Xi)
]

(7) 

In which, α0
0i(ρ,T) and 

∑
XiLn(Xi) are the ideal dimensionless 

Helmholtz free energy and entropy production due to the mixing of 
component i, respectively. 

The residual part of Helmholtz free energy, in equation (4), could be 
calculated as below (Kunz and Wagner, 2012): 

αr
(

δ, τ,X
)
= αr

0

(
δ, τ,X

)
+ Δαr

(
δ, τ,X

)
(8)  

where, αr
0 is the generalized departure function and Δαr is the specific 

departure function. 
The generalized departure function, αr

or, stands for pure substances 
residual contribution and could be computed as (Kunz and Wagner, 
2012): 

αr
0

(
δ, τ,X

)
=
∑N

i=1
Xiαr

0i(δ, τ) (9) 

The Δαr is the specific departure function. This function is the double 
summation of all binary specific and generalized departure functions 
developed for the binary subsystems and could be defined as (Kunz and 
Wagner, 2012): 

Δαr
(

δ, τ,X
)
=
∑N− 1

i=1

∑N

j=i+1
Δαr

ij

(
δ, τ,X

)
(10)  

with: 

Δαr
ij

(
δ, τ,X

)
=XiXjFijαr

ij(δ, τ) (11) 

In the above equations, Fijis the EOS parameters and αr
ij(δ, τ) is tem

perature and density dependence of specific departure functions. αr
ij(δ, τ)

was developed either for a specific binary mixture (a binary specific 
departure function with binary specific coefficients and exponents) or 
for a group of binary mixtures generalized departure function with a 
uniform structure for the group of binary mixtures). It could be calcu
lated as below (Kunz and Wagner, 2012): 

Fig. 5. The error present of MLP ANN versus pressure on the constant temperature for pure methane and a Synthetic NG.  

Fig. 6. Output MLP ANN Z-factor versus target Z-factor from (Nasrifar and 
Bolland, 2006). 

Table 3 
The mole fraction of natural gases from Iran’s fields (“National Iran Gas Com
pany official website.“).  

Component Khangiran Kangan Pars Bidboland 

CH4 0.98548 0.8802 0.87 0.8501 
N2 0.005 0.0545 0.031 0.0044 
CO2 0 0 0.0171 0.0041 
C2H6 0.00647 0.0413 0.054 0.0938 
C3H8 0.00069 0.0129 0.017 0.0349 
i-C4H10 0.00018 0.0028 0.003 0.0034 
n- C4H10 0.00039 0.0038 0.0045 0.0065 
i- C5H12 0.00018 0.0016 0.0013 0.001 
n- C5H12 0.00021 0.001 0.0011 0.0009 
n-C6H14 0.0014 0.0019 0.0007 0.0009 
C7
+ 0 0 0.0003 0 

Molecular Weight 16.43 17.79 18.68 18.86  
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αr
ij(δ, τ)=

∑KPol,ij

k=1
nij,kδdij,k τtij,k +

∑KPol,ij+KExp,ij

K=KPol,ij+1
nij,kδdij,k τtij,k e− ηij,k(δ− εij,k)

2
− βij,k(δ− γij,k)

(12) 

The coefficientsnij,k, dij,k and tij,k, ηij,k , εij,k , βij,k , and γij,k are the EOS 
parameters and constant. They could be found in ISO 20765–2. 

Finally, the NG compressibility factor in GERG-2008 EOS could be 
computed as follow (Kunz and Wagner, 2012): 

Z = 1 + δαr
δ (13)  

where, αr
δ is calculated by the following equations (Kunz and Wagner, 

2012): 

αr
δ =

(
∂ar

∂δ

)

τ,X
(14) 

As NG pressure and temperature along with NG compositions are 
measured, the density is guessed at the first step and then by employing 
an iterative technique the pressure will be found. The other properties 
including Z will be calculated afterward. There are two ranges for using 
the GERG-2008 EOS (Kunz and Wagner, 2012): the normal and 
extended range. In the normal range, the temperature is between 90 K 

and 450 K and the pressure is up to 35,000 kPa. In addition, in the 
extended range, the temperature is between 60 K and 700 K and the 
pressure is valid up to 70,000 kPa. 

2.4. Computing Joule-Thomson coefficient using GERG-2008 EOS 

The calculations of NG thermodynamic properties such as the JT 
coefficient are related to derivatives of the Helmholtz free energy with 
respect to the reduced mixture variables δ and τ. All of the thermody
namic properties may be written explicitly in terms of the reduced 
Helmholtz free energy α and its various derivatives. The required de
rivatives to calculated thermodynamic properties are given below (Kunz 
and Wagner, 2012): 

αδ =

(
∂α
∂δ

)

τ,X
, αδδ =

(
∂2α
∂δ2

)

τ,X
,ατ =

(
∂α
∂τ

)

τ,X
,αττ =

(
∂2α
∂τ2

)

δ,X
,

ατδ =

[
∂
∂τ

(
∂α
∂δ

)

τ,X

]

δ,X
(15) 

The JT coefficient, JT, is calculated in GERG-2008 EOS by employing 
the following equation (Kunz and Wagner, 2012): 

Fig. 7. The compressibility factor versus JT in the constant temperatures for studied natural gases: (a) Khangiran and (b) Bidboland.  
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JT =

(
∂T
∂P

)

h,X
=

α2 − α1

α2
2 − (τ2.αττ.α1)

=
R
cp

(
α2

α1
− 1
)

=
R

cp.M

(
α2

α1
− 1
)

(16) 

The reduced Helmholtz free energy derivatives in the above equation 
(i.e. α1 and α2) could be defined as the following equations (Kunz and 
Wagner, 2012): 

α1 =

[
∂(δ2αδ)

∂δ

]

τ,X
= 2δαδ + δ2αδδ (17)  

α2 = − τ2
[

∂
∂τ

(δαδ

τ

)]

δ,X
= δαδ − τδατδ (18) 

In equation (16), M is molecular weight, Ris the molar gas constant 
and cp is the isobaric heat capacity. 

2.5. MLP method 

Artificial Neural Network (ANN) is an efficient algorithm for 
handling data with many discontinuities. The basic principles of ANN 
that are designed based on the human brain are learning the relationship 

Fig. 8. The compressibility factor error calculation versus JT in the constant temperatures for studied NG mixture: (a) Khangiran and Kangan and (b) Pars 
and Bidboland. 

Fig. 9. AAPD of the NG compressibility factor calculation for various natu
ral gases. 
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between the input and output of the network by utilizing trial and error 
(T.Hagan et al., 2002). The multilayer perceptron (MLP) model is one of 
the most basic ANN which is used to simulate the transmission function 
of the human brain. In this type of neural network, most of the network 
behavior of the human brain and signal propagation is considered and 
hence, it is sometimes referred to as the feed-forward networks. Each 
neuron (as the neural cell of the human brain) performs the processing of 
input and then transfers the result to another cell. This continues to get 
an outcome that will finally lead to a decision. (T.Hagan et al., 2002). 
The input layer, the hidden layer and the output layer are three layers, 
which are forming the MLP ANN. The independent variables in the 
problem are input layer neurons. It is the task of latent layer neurons to 
make connections between independent and dependent variables. The 
dependent variables are present in the output layer neurons. The main 
components of an MLP ANN include the algorithms for training the 
networks, the weights, the biases and the data collected for training. One 
of the parameters in the ANN is called an Activation function. The 
Activation function is a mathematical equation that determines the 
output of a neural network. The tangential hyperbolic (tansig) function 
is used as an activation function in the hidden layer. Also, the activation 
functions utilized in the output layer is a linear function (T.Hagan et al., 
2002). These Activation functions defined by the following equation: 

f (a)= tanh(a)=
exp(a) − exp(− a)
exp(a) + exp(− a)

; [− 1, 1] (tangential ​ hyperbolic ​ function)

(19)  

f (a)= a ; (− ∞,∞) (linear ​ function) (20) 

An algorithm should be trained in the neural network data. There are 
varieties of training algorithms for this purpose. In this study, the 
Levenberg-Marquadt learning algorithm is used for training the pro
posed MLP ANN. Levenberg-Marquadt is one of the powerful Back
propagation learning algorithms. The main duty of Levenberg-Marquadt 
is the optimization of weights and biases that is obtained by using the 
following equation (T.Hagan et al., 2002): 

W(k+1) =W(k) −
([

JT .J + μI
]− 1
)
.
(
JT .e

)
(21) 

In equation (21), W, J, e and I are weighted matrix, Jacobian Matrix, 

output/its target difference and I diagonal matrix which formed the 
main diagonal of JTJ, respectively. 

In this study, the temperature, pressure and JT coefficient are input 
parameters of the MLP ANN. These parameters are three measurable 
properties that are required to calculate the NG compressibility factor. 
The model output parameters can consist of several thermodynamic and 
physical properties, including the NG compressibility factor. Fig. 3 re
veals the structure of the proposed MLP model including input, hidden 
and output parameters. Also, the detailed information of the proposed 
MLP ANN are reported in Table 1. 

2.6. Assessment of the developed ANN 

In this section, two important parameters are defined to determine 
the performance of the developed ANN. The first parameter is the root 
mean sum of squares of the errors (RMSE) that defined as follow (T. 
Hagan et al., 2002): 

RMSE =
1
N
∑N

i=1
(ti − ai)

2 (22) 

The correlation coefficient for each input data, R, as the second 
parameter, could be determined as follow (T.Hagan et al., 2002): 

R=
N
( ∑N

i=1aiti
)
−
( ∑N

i=1ai
)(∑N

i=1ti
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N
∑N

i=1a2
i −

( ∑N
i=1ai

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N
∑N

i=1t2
i −

( ∑N
i=1ti

)2
√ (23) 

In the above equations, N,t and a are the total number of training 
data, the target value and the network output value respectively. 

In addition, to validate the MLP method with other methods (here 
GERG-2008 EOS), two parameters have been defined. The first param
eter is the percentage error defined by the following equation: 

ERROR=

⃒
⃒
⃒
⃒
⃒
⃒

ŷi− yi

yi

⃒
⃒
⃒
⃒
⃒
⃒
× 100% (24) 

The second parameter is the average absolute percent deviation 
(AAPD) that defined as follow (Chamkalani et al., 2013): 

AAPD=
1
N
∑N

i=1

⃒
⃒
⃒
⃒
⃒
⃒

ŷi− yi

yi

⃒
⃒
⃒
⃒
⃒
⃒
× 100% (25) 

In equations (24) and (25), ŷ and y are the estimated and observed 
values of the NG compressibility factor. Also, N is the total data used in 
the validation procedure. 

Given the characteristics of the developed MLP ANN, which are listed 
in Table 1, 70%, 15% and 15% of all data respectively are used for 
training, validation and testing of MLP ANN. Fig. 4 shows the output NG 
compressibility factor versus target data for training, validation, testing 
and all data set of the proposed MLP ANN. According to equations (22) 
and (23), the values of RMSE for the compressibility factor calculation is 
0.0086, 0.011, 0.0183, 0.0094 and the values of R is 0.9997,0.9988, 
0.9984, 0.9992 for training data, validation data, testing data and all 
data, respectively. According to the results obtained from Fig. 4 as well 
as the RMSE and R values, the proposed MLP ANN predicts the 
compressibility coefficient as a function of temperature, pressure and JT 
coefficient with high precision. 

3. Results and discussion 

3.1. Validating the MLP ANN method 

In this subsection, the proposed MLP ANN is validated using exper
imental data of Nasrifar and Bolland (2006) study. The validations are 
performed for two different databases: pure methane and a Synthetic NG 
mixture. The temperature, pressure and JT coefficient as input 

Fig. 10. The polar plot of the NG compressibility factor versus temperature, 
pressure and JT coefficient. 
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parameters input the network and the compressibility factor calculated 
then this Z-factor compared with Z-factor obtained from the study by 
(Nasrifar and Bolland, 2006). Table 2 shows the mole fraction of the 
Synthetic NG mixture that is used in the validation calculations (Nasrifar 
and Bolland, 2006). 

Fig. 5 shows the error of compressibility factor calculation versus 
pressure on the constant temperature for pure methane and a Synthetic 
NG mixture. According to Fig. 5, the error percent of calculations for 
pure methane is between − 1.5% and 1%. Also, the error percent of 
calculation for the Synthetic NG mixture is between − 1% and 1%. Based 
on equation (26), the AAPD is 0.46% and 0.34% for pure methane and 
the Synthetic NG mixture, respectively. 

The compressibility factor target obtained from (Nasrifar and Bol
land, 2006) compared with the compressibility factor output that has 
been calculated using MLP ANN data is shown in Fig. 6. As seen in Fig. 6, 
the output and target data have good agreement with each other. Also, 
the R and RMSE of the calculations are 0.998 and 0.38%, respectively. 
The results obtained from the validations of the ANN MLP calculation 
indicate that the developed ANN could compute the compressibility 
factor with acceptable accuracy. 

In the following step, the results of the proposed MLP ANN method 
have been compared to the GERG-2008 EOS results. Firstly, The JT 
coefficient and compressibility factor at various temperatures and 
pressure are calculated by utilizing GERG-2008 EOS. Then, the NG 
compressibility factor has been calculated by employing the proposed 
MLP ANN method. In this procedure, the temperature, pressure and JT 
coefficient are input parameters. Clearly, the compressibility factor 
calculated by the proposed ANN method should be the same as the 
compressibility factor calculated by GERG-2008 EOS. Table 3 shows the 
mole fraction (i.e. NG compositions) of natural gases that have been 
used for this purpose. 

Fig. 7 represents the comparison of the calculated compressibility 
factor using the proposed ANN and the GERG-2008 EOS for two studied 
NG mixture (Khangiran and Bidboland). The compressibility factor 
plotted versus the JT coefficient and for the various constant tempera
tures. According to Fig. 7, for Khangiran composition, the proposed ANN 
method could predict the compressibility factor with high accuracy in all 
temperatures. For Bidboland compositions (As well as Kangan, Pars), the 
mentioned method could predict the compressibility factor with good 
accuracy except for low temperatures, for example in T = 250 K. Due to 
the low molecular weight of Khangiran NG (MW = 16.34), it could be 
concluded that, by decreasing the molecular weight of NG, the accuracy 
of the proposed ANN model increases. 

Fig. 8 shows the error of compressibility factor calculation versus the 
JT coefficient in various constant temperatures for NG sources that are 
reported in Table 3. The results of Fig. 8 demonstrate that the error 
percent of the compressibility factor calculations, for all NG mixtures, 
are increased at low temperatures (close to the critical temperature). On 
the other hand, the natural gases with higher molecular weight are re
ported the more error percent to compute the compressibility factor. 

Looking at Figs. 7 and 8, one could be realized that the developed 
method could predict the NG compressibility factor with acceptable 
accuracy for the temperature higher than T = 270 K. The accuracy of the 
model decreases as temperature approaches the critical temperature. 

Fig. 9 represents the AAPD of NG compressibility factor calculations 
for various studied natural gases. According to Fig. 9, AAPD for the 
compressibility factor calculations is 0.385% for pure methane, 0.45% 
for Khangiran, 0.58% for Kangan, % 0.78 for Pars and is 1.12% for 
Bidboland. 

3.2. Results of ANN MLP method 

The output results of the proposed ANN MLP method as a polar plot 
is shown in Fig. 10. As seen, the compressibility factor plotted based on 
temperature, pressure and JT coefficient. Based on the information 
given in Fig. 10, if the deviation from the ideal gas state (i.e. Z-factor 

equal to one) at low temperatures (high pressures) is great, the value of 
the NG JT coefficient decreases. On the other hand, in the high tem
peratures (low pressure) the compressibility factor gets closer to one. In 
these conditions, the JT coefficient of NG increases. These types of 
graphs are very useful in the NG industry to obtain the compressibility 
factor without any knowledge of compositions. 

4. Conclusion 

In all EOS based methods for calculating the thermodynamic prop
erties of the mixture (including NG compressibility factor), the mixture 
composition should be known for start. The compositions are usually 
measured through a costly process. Two widely accepted EOSs in NG 
industries are AGA8 and GERG-2008 which the latter is the most recent 
one. Employing these EOSs are very costly as measuring NG composition 
requires expensive devices. 

The current study presents an intelligent approach for calculating NG 
thermodynamics properties without any knowledge of the composition. 
For this purpose, firstly, two NG thermodynamics properties (JT coef
ficient and compressibility factor) are computed for a wide range of 
temperature and pressure for 30,000 random datasets of compositions 
using GERG-2008 EOS. Based on these data sets of four thermodynamics 
properties, an ANN is developed in a way to compute NG compressibility 
factor while the other three properties are treated as input (pressure, 
temperature and JT coefficient). Due to the low cost of real-time 
measuring of these three properties, the current study presents a cost- 
effective method for real-time measuring of compressibility factor 
precisely. 

The developed ANN method is validated with experimental data. The 
validations compared to experimental data are demonstrated that the 
statistical parameters include R, RMSE and AAPD are 0.998, 0.38% and 
0.33%, respectively. 

To show the accuracy of the developed approach, four different NG 
compositions are selected for evaluating purposes. The compressibility 
factor and JT coefficient are computed for various pressure and tem
perature range using the traditional approach. 

Finally, the compressibility factor is determined using the intelligent 
approach when only pressure, temperature and JT coefficient are 
known. Then, the compressibility factor obtained from the ANN ap
proaches is compared with the GERG-2008 results. The AAPD of NG 
compressibility factor calculations show 0.385% for pure methane, 
0.45% for the Khangiran gas, 0.58% for the Kangan gas, 0.78% for the 
Pars gas and is 1.12% for the Bidboland gas. The results show that the 
overall AAPD is less than 0.7%, which indicates the high accuracy of the 
intelligent approach. 
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