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Abstract We present a systematic treatment, up to order α, for the fundamental renormal-
ization of quantum electrodynamics in real space. Although the standard renormalization is
an old school problem for this case, it has not been completely done in position space yet.
The most difference with well-known differential renormalization is that we do the whole
procedure in coordinate space without needing to transform to momentum space. Specially,
we directly derive the counterterms in coordinate space. This problem becomes crucial when
the translational symmetry of the system breaks somehow explicitly (by nontrivial boundary
condition (BC) on the fields). In this case, one is not able to move to momentum space by a
simple Fourier transformation. In the context of the renormalized perturbation theory, coun-
terterms in coordinate space will depend directly on the fields BCs (or background topology).
Trivial BC or trivial background leads to the usual standard counterterms. If the counterterms
are modified, then the quantum corrections of any physical quantity are different from those
in free space where we have the translational invariance. We also show that, up to order α,
our counterterms reduce to the usual standard one.

1 Introduction

From its early stages, quantum field theory (QFT) encountered some infinities leading to
meaningless results and required to eliminate. These ultraviolet (UV) infinities are related to
the quantum corrections of some physical quantities, such as electron mass and charge [1].
Very many attempts, starting with Kramers in the 1940s [2], have been done to control and
remove these ultraviolet divergences. To calculate a physical quantity (for instance, electron
mass) in an interacting field theory, in addition to its ‘bare’ value, we must take into account
quantum corrections, �m:

mphysical = mbare + �m, (1)

where �m is almost infinite due to undetermined momenta in loop quantum corrections.
The renormalization technique is a recipe that consistently removes and, also, controls

all infinities that appeared in theory. The importance of the renormalization procedure is not
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only to absorb divergences but also to complete the definition of the quantized field theory,
i.e., the finite parts of the renormalization constants -fixed by the renormalization conditions-
influence the results of the calculation of radiative corrections and physically observable
quantities. In QFT, there are two completely equivalent methods for the systematic of renor-
malization; First, Bare perturbation theory: working with the Bare parameters and relate
them to their physical values at the end of calculations. Roughly speaking, the divergences
absorb by redefinition of unmeasurable bare quantities. Second, renormalized perturbation
theory: splitting the parameters appeared in the Lagrangian into two parts: physical part and
counterterm part that absorbs the unphysical part. The unobservable shifts between the bare
and the physical parameters absorb by counterterms. Both methods are required to give us
precise definitions of the physical mass and coupling constants by applying renormalization
conditions. The differences between two renormalization procedures are purely a matter of
bookkeeping.

There are many investigations related to renormalization programs concerned with quan-
tum electrodynamics (QED) [3], Quantum chromodynamics (QCD) [4], and scalar field
with various self interactions [5–8]. All of these theories are renormalizable in 4-D since
their coupling constants are dimensionless (Weinberg theorem) [9]. On the other hand, the
renormalization group (RG) methods have been vastly considered (see [10–13]).

We should do, in principle, the renormalization in position space. However, for ease of
calculation, we do it in momentum space. There is a duality transformation from p- to x-
space renormalization, especially when we have translational symmetry. One moves from
position to momentum space by a simple Fourier transformation. It is easy to do if our wave
functions are plane waves. But, if the translational symmetry breaks somehow explicitly, then
the momentum is not a good quantum number. In this case, the wave functions are not plane
waves that the transformation to momentum space is no longer so simple and trivial. In this
case, field propagators will depend on nontrivial properties that break translational symmetry
( nontrivial boundary conditions (BC) or nontrivial background), all n-point functions and
consequently all counterterms will depend on those nontrivial properties. (Please note that
it is not possible to remedy the renormalization in momentum space by any perturbation
since a nontrivial BC or a nonzero background is not a perturbative phenomenon [14]). For
example, in the calculations of the radiative corrections to the Casimir effect, one usually
encounters counterterms. In this case, the non-trivial boundary conditions on the walls break
the translational invariance. For φ4 theory, such problems have been investigated in Refs.
[15–19]. Another example for the nontrivial background is the radiative correction to the
mass of the kink [20], where the existence of a constant background breaks the translational
symmetry. An important real example for QED is the Lamb shift which is a α5 order effect.
In this case, the responsible for symmetry breaking is the Coulomb potential.

We should here note that Differential Renormalization (DR) procedure [21,22], which has
been investigated in the literature vastly, is done in coordinate space, though the traditional
method of renormalization in momentum space (for review see [23,24]). DR is equivalent
to traditional renormalization [25–27]. It is based on the observation that the UV divergence
reflects in the fact that the higher-order amplitude cannot have a Fourier transform into
momentum space due to the short-distance singularity. Thus one can, first, regulate such an
amplitude by writing its singular parts as the derivatives of the normal functions, which have
well-defined Fourier transformation. Second, by performing the Fourier transformation in
partial integration and discarding the surface term, directly, get the renormalized result. In this
procedure, the surface terms which drop during the renormalization have just corresponded to
the counterterms. Therefore, to get the hidden counterterms, we have to move to momentum
space again.
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The derivation of standard counterterms from scattering amplitudes has been investigated
from many years ago. In the context of DR, there also exist some works in massive and
massless QED [28,29]. However, its program in position space has not been surveyed yet.
Besides, the large order behavior of φ4 theory for the nonzero background field considers
in [30]. Also, this theory in 1 + 1 dimensions, renormalization in real space, has been done
in Ref. [14]. Applications of this theory, where we have nontrivial BCs such as Dirichlet
BC or nonzero background such as a kink, have been used in Refs. [15–17], respectively.
In 3 + 1 dimensions, it has partially done in Ref. [20]. In [31,32] perturbative QFT in
configuration, space has developed on curved space. Also, one can follow several recent
works in this area. Amplitudes in a massless QFT [33], and relativistic causality and position
space renormalization [34], is considered.

In this paper, we shall derive the counterterms by imposing reasonable renormalization
conditions in configuration space. The resultant counterterms should be equivalent to ones
derived by the standard renormalization in momentum space with the translational invariance.
We will also present and check this equivalence.

We have organized the paper as the following. We review the systematics of the renor-
malization for QED theory in momentum space in Sect. 2. The renormalized perturbation
theory of QED as a program in position space considers in Sect. 3. In Sect. 4, we compare
our results with those in momentum space. Section 5 summarizes our results and conclu-
sions.

2 Renormalization of QED in momentum space: a brief review

We review the systematics of renormalization for QED theory in momentum space. In general,
any renormalizable QFT involves only a few superficially divergent amplitudes. In QED, there

are three amplitudes involving four infinite constants; vertex correction , vacuum

polarization and electron self energy . The renormalized perturbation

theory of QED aims to absorb these constants into the four unobservable parameters: the bare
mass, the bare coupling constant, the electron field strength, and the photon field strength.
The original QED Lagrangian is

LQED = −1

4
(Fμν)2 + �̄(i∂/ − m0)� − e0�̄γμ�Aμ. (2)

where m0 and e0 are the bare mass and the bare electric charge, respectively. The �(x) and
Aμ(x) are fermion and photon fields, respectively, and can be written as

�(x) =
∫

d3p
(2π)3

∑
s=1,2

1√
2Ep

[
cspψ

s(x) + dsp
†
φs(x)

]
(3)

Aμ(x) =
∫

d3p
(2π)3

3∑
s=0

1√
2ωp

[
asp Ã

s
μ(x) + asp

† Ãs∗
μ (x)

]
, (4)

where, in the first line, csp
† (csp) and dsp

† (dsp) create (annihilate) a fermion and anti-fermion
with momentum p and spin direction s, respectively. Here, ψ s(x) and φs(x) are the particle
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and anti-particle solutions of the Dirac equation, respectively. In the second line, asp
† (asp)

creates (annihilates) a photon with momentum p and polarization εsμ(p), and Ãr
μ(x) are the

momentum-space solution of the equation ∂μAμ = 0.
By replacing �(x) = √

z2�r (x) and Aμ(x) = √
z3A

μ
r (x), we have

LQED = −1

4
z3(F

μν
r )2 + z2�̄r (i∂/ − m0)�r − e0z2

√
z3�̄rγμ�r A

μ
r , (5)

where z2 and z3 are the field-strength renormalizations for � and Aμ, respectively. We define
a scaling factor z1 as ez1 = e0z2

√
z3 and split each term of the Lagrangian into two pieces

LQED = −1

4

(
Fμν
r

)2 + �r (i∂/ − m)�r − e�rγ
μ�r A

μ
r

−1

4
δ3

(
Fμν
r

)2 + iδ2�r∂/�r − (δm + mδ2) �r�r − eδ1�rγμ�r A
μ
r , (6)

with z3 = 1 + δ3, z2 = 1 + δ2, m0 = m + δm and z1 = 1 + δ1, where δ1, δ2, δ3 and δm
are counterterms. Here, m and e are the physical mass and physical charge of the electron
measured at large distances. Now, the Feynman rules for the above Lagrangian are:

= −ieγ μ (7)

= −ieδ1γ
μ (8)

= −igμν

q2 + iε
(Feynman gauge) (9)

= −i(gμνq2 − qμqν)δ3 (10)

= i

p� − m + iε
(11)

= i(p�δ2 − δm − mδ2). (12)
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We use the following notations:

= −i�(p/) (13)

= i�μν(q) = i(gμνq2 − qμqν)�(q2), (14)

= −ie�μ(p′, p). (15)

Here ‘1PI’ denotes a one-particle irreducible diagram which is the sum of any diagram that
cannot split in two by removing a single line. To fix the pole of the fermion propagator at the
physical mass m we need two renormalization conditions:

�(p/ = m) = 0 (16)
d�(p/)

dp/

∣∣∣∣
p/=m

= 0. (17)

The renormalization condition which fixes the mass of the photon to zero is

�(q2 = 0) = 0. (18)

Given the above conditions, finally, the physical electron charge is derived by the following
renormalization condition:

− ie�μ(p′ − p = 0) = −ieγ μ. (19)

Now, using the dimensional regularization we are able to compute −i�(p/), i�(q2) and
−ie�μ(p′, p). Applying the above renormalization conditions, up to leading order in α, the
divergent parts of the counterterms are derived as

δ2 ∼ − e2

8π2ε
, (20)

δm ∼ −3me2

8π2ε
, (21)

δ3 ∼ − e2

6π2ε
, (22)

δ1 = δ2 ∼ − e2

8π2ε
, (23)

where d = 4 − ε is the spacetime dimension so that we should take the limit ε → 0. These
counterterms can remove all UV divergences of the QED theory in free space.
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3 Renormalization in position space

We will survey the renormalization for QED in coordinate space within the renormalized
perturbation theory. Naturally, when a systematic treatment of the renormalization program
does, the counterterms automatically turn out to be dependent on the functional form of the
fields. Besides, the RG may lead to position-dependent mass and charge, as a manifestation
of the explicitly broken translational symmetry of the system. It is worth mentioning that
our main scheme is following the standard renormalization approach in momentum space.
In this case, we have the translational invariance. In the next three subsections, we sepa-
rately consider electron self-energy, photon self-energy, and vertex correction and derive the
counterterms by imposing proper renormalization conditions in the configuration space.

3.1 Electron self-energy

According to the Lagrangian (6), the perturbation expansion of the full electron propagator
up to order α is

− i� = = + + . (24)

We choose our renormalization condition in such a way that the pole of the first term of
the right-hand side (RHS) gives the physical mass m at x = x0. It requires that the sum of
remaining diagrams, which we call it −i�̃(x) vanishes at this point, namely

− i�̃(x)

∣∣∣∣
x=x0

=

⎛
⎜⎜⎝ +

⎞
⎟⎟⎠

x=x0

= 0, and
d

[−i�̃(x)
]

dx

∣∣∣∣
x=x0

= 0.

(25)
We can write −i�̃ to order α as

−i�̃(x) =
∫

dd yψ(y) [−i�2(x, y)] ψ(x) + ψ(x) [−δ2(x)∂/ − imδ2(x) − iδm(x)] ψ(x)

(26)

Thus, the first condition in Eq. (25) yields

− i�̃(x0) =
{∫

dd yψ(y) [−i�2(x, y)] ψ(x) + ψ(x) [−δ2(x)∂/ − imδ2(x) − iδm(x)] ψ(x)

}
x=x0

= 0, (27)

where −i�2 is O(α) electron self-energy diagram. Now, using Dirac equation (i∂/ − m) ψ =
0, up to order α we obtain

δm = −1

ψ(x0)ψ(x0)

∫
dd yψ(y)�2(x, y)ψ(x)

∣∣∣∣
x=x0

. (28)

To simplify the second condition in Eq. (25) we note that the �̃(x) is, in fact, a function of
ψ(x), ψ(x), ∂/ψ(x) and ∂/ψ(x) so that

d�̃(x)

dx
= ∂ψ

∂x

∂�̃

∂ψ
+ ∂ψ

∂x

∂�̃

∂ψ
+ ∂(∂/ψ)

∂x

∂�̃

∂(∂/ψ)
+ ∂(∂/ψ)

∂x

∂�̃

∂(∂/ψ)
. (29)
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Due to the opposite sign of the momentum for particles and anti-particles, the first two terms
cancel each other. The third term is also zero because there is no derivative of ψ in �̃ . Thus,
we obtain

∂
[−i�̃(x)

]
∂ (∂/ψ)

∣∣∣∣
x=x0

= 0. (30)

We can derive δ2(x0) by using the above equation and Eq. (26)

∂
[−i�̃(x)

]
∂ (∂/ψ)

∣∣∣∣
x=x0

=
∫

dd y
∂

[
ψ(y)(−i�2(x, y))ψ(x)

]
∂ (∂/ψ(x))

∣∣∣∣
x=x0

− ψ(x0)δ2(x0) = 0 (31)

⇒ δ2 = 1

ψ(x0)

∫
dd y

∂
[
ψ(y)(−i�2(x, y))ψ(x)

]
∂ (∂/ψ(x))

∣∣∣∣
x=x0

. (32)

3.2 Photon self-energy

For the photon propagator we again expand the full propagator as

i� = = + + + . . . . (33)

To have a massless photon, at x = x0, we need only the first term on the RHS with a pole
that is fixed definitely on zero. Therefore, the rest of the perturbation series must vanish so
that up to order α we have

i�̃(x)

∣∣∣∣
x=x0

=

⎛
⎜⎜⎜⎝ +

⎞
⎟⎟⎟⎠

x=x0

= 0 (34)

or equivalently,

i�̃(x0) =
{∫

dd y Ã∗
μ(y)

[
i�μν

2 (x, y)
]
Ãν (x) + Ã∗

μ (x) δ3(x)
[
−i

(
gμν∂2 − ∂μ∂ν

)]
Ãν (x)

}
x=x0

= 0, (35)

where i�μν
2 (x, y) is O(α) photon self-energy diagram. Therefore,

δ3 =
∫

dd y
− Ã∗

μ(y)�μν
2 (x, y) Ãν (x)

Ã∗
μ(x)(gμν∂2 − ∂μ∂ν) Ãν (x)

∣∣∣∣
x=x0

. (36)

3.3 Vertex correction

Formally, the vertex corrections give us the physical charge of electron. Diagrammatically,
we have

− ie�μ(x) = = + + + . . . (37)
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Our renormalization condition for the electron charge is to fix it on physical e at x = x0. We
can do this by using the first term on RHS of Eq. (37) so that the remaining diagrams should
cancel each other,

− ie�̃μ(x0) =

⎛
⎜⎜⎜⎜⎜⎝

+

⎞
⎟⎟⎟⎟⎟⎠

x=x0

. (38)

We can equivalently write the above equation as,

− ie�̃μ(x0) =
{∫

dd y dd z ψ(z)[−ieδ�μ(x, y, z)]ψ(y) + ψ(x)
[−ieδ1(x)γ μ

]
ψ(x)

}
x=x0

= 0, (39)

where −ieδ�ρ is the vertex correction diagram to order α. Therefore, we find

δ1γ μ =
∫

dd y dd z
ψ(z)δ�μ(x, y, z)ψ(y)

ψ(x)ψ(x)

∣∣∣∣
x=x0

. (40)

Accordingly, we may derive counterterms required for the renormalization of QED in coordinate
space. These counterterms could apply for problems in which the translational invariance breaks
explicitly. If we work in free space, with the translational symmetry, they should reduce to those in
the standard prevalent derived in momentum space. We show this equivalence in the next section.

4 Comparison to momentum space (free space)

In this section, as a special case, we compare our results with the renormalization of QED in free
space. In free space, the wave functions of fermions and photons consider as plane waves. We
start with Eq. (28) by inserting ψ (x) = us(p)e−i p.x (from here on we drop the superscript s for
simplicity). Then, the numerator of the integrand becomes

∫
dd y ψ(y)[−i�2(x, y)]ψ(x)

= −e2
∫

dd y u (p) eip.yγ μS (x − y) γ νDμν (y − x)u (p) e−i p.x

= −e2u (p)

[∫
dd y

ddk

(2π)d

ddk′
(2π)d

γ μ k/ − m

k2 − m2

γμ

k′2 e
−i(k+k′−p).ye−i(p−k′−k).x

]
u (p) ,

(41)

where S (x − y) and Dμν (y − x) are the propagators of fermion and photon in d spacetime
dimensions, respectively,

S (x − y) =
∫

ddk

(2π)d

i

k/ − m
e−ik.(x−y), (42)

and,

Dμν (x − y) =
∫

ddk

(2π)d

−igμν

k2 e−ik.(x−y). (43)
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Integrating over position and then k′ in Eq. (41) yields

∫
dd y ψ(y)[−i�2(x, y)]ψ(x) = −e2u (p)

[∫
ddk

(2π)d
γ μ 1

k/ − m
γμ

1

(p − k)2

]
u (p) . (44)

In terms of ε = 4 − d , the above equation becomes

∫
dd y ψ(y)[−i�2(x, y)]ψ(x) = u (p)

−ie2

8π2ε
(−p/ + 4m)u (p) + O(ε0) (45)

= −3ime2

8π2ε
u(p)u(p) + O(ε0). (46)

Finally, using Eq. (28) we have

δm = −1

uu

3me2uu

8π2ε
+ O(ε0)

= −3me2

8π2ε
+ O(ε0), (47)

The above result is independent of x0, manifesting the translational invariance of the system. It is
also in agreement with Eq. (21), the standard common counterterm derived directly in free space.

We similarly derive the second counterterm, δ2. Now, using Eq. (45) and the fact that ∂/ψ =
∂/[u(p)e−i p.x ] = −i p/ψ , we can rewrite Eq.(32) as follows:

δ2 = 1

u(p)

∂
[
u(p) −ie2

8π2ε
(−p/ + 4m) u(p)

]

∂ [−i p/u(p)]
= −e2

8π2ε
+ O(ε0), (48)

which is precisely in agreement with Eq. (20). Again we see that the position dependence cancels
out as expected.

To compute δ3 in free space, we use Ãμ(p, x) = εsμ(p)e−i p.x in Eq. (36). The numerator
becomes

∫
dd y Ã∗

μ(y)
(
i�μν

2

)
Ãν(x) = ε∗

μ

[
−ie2

∫
dd y γ μS (x − y) γ ν S (y − x) e−iq.x eiq.y

]
εν

= ε∗
μ

[
ie2

∫
dd y

∫
ddk

(2π)d

ddk′
(2π)d

γ μ 1

k/ − m

γ ν 1

k′/ − m
e−i(q+k−k′).x e−i(−k−q+k′).y

]
εν . (49)

Integrating over y and k′, the RHS gives,

ε∗
μ

[
ie2

∫
ddk

(2π)4 γ μ 1

k/ − m
γ ν 1

q/ + k/ − m

]
εν . (50)

By simple calculations we finally have,

∫
dd y Ã∗

μ(i�μν
2 ) Ãν = ε∗

μ

−ie2

6π2ε
(gμνk2 − kμkν)εν + O(ε0). (51)
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Inserting the above calculation in Eq. (36) and using Ã∗
μ(x) Ãν(x) = ε∗

μεν we derive,

δ3 = −ie2

6π2ε

ε∗
μ

(
gμνk2 − kμkν

)
εν

Ã∗
μ[−i

(
gμν

(−k2
) + kμkν

)] Ãν
+ O(ε0)

= − e2

6π2ε
+ O(ε0), (52)

which is in accordance with Eq. (22).
For the last counterterm, δ1, the numerator in Eq. (40) can be rewritten as

∫
dd zdd y ψ(z)δ�μ(x, y, z)ψ(y)

= −e2
∫

dd zdd y ψ
(
p′, z

)
γ αS (z, x) γ μS (x, y) γ βψ (p, y) Dαβ (y, z)

= e2
∫

dd zdd yu(p′)
[
eip

′.z
∫

ddk

(2π)d

ddk′
(2π)d

ddk′′
(2π)d

×γ α e−ik′.(z−x)

k′/ − m
γ μ e−ik.(x−y)

k/ − m
γ βe−i p.y −igαβ

k′′2 e−ik′′.(z−y)

]
u(p)

= −ie2u(p′)
∫

ddk

(2π)d

ddk′
(2π)d

ddk′′
(2π)d

γ α 1

k′/ − m
γ μ 1

k/ − m
γ β gαβ

k′′2

× (2π)2d δ(d)
(
k + k′′ − p

)
δ(d)

(
p′ − k′ − k′′) ei(k′−k).xu(p). (53)

Taking integral of k
′

and k
′′

yields,

∫
dd zdd y ψ(z)δ�μ(x, y, z)ψ(y)

= −ie2u(p′)
[∫

ddk

(2π)d
γ α 1

k′/ − m
γ μ 1

k/ − m
γ β −gαβ

(p − k)2 e
i(p′−p).x

]
u(p)

= u(p′)
[

−e2

8π2ε
γ μei(p

′−p).x

]
u(p) + O(ε0). (54)

Replacing this result in Eq. (40) we find,

δ1γ μ =
∫

dd zdd y
ψ(y)δ�μ(x, y, z)ψ(x)

ψ(x)ψ(x)

∣∣∣∣
x=x0

=
u(p′)

[ −e2

8π2ε
γ μei(p

′−p).x0
]
u(p)

u(p′)u(p)ei(p′−p).x0
+ O(ε0)

⇒ δ1 = − e2

8π2ε
+ O(ε0), (55)

which is again in complete agreement to Eq. (23). This counterterm is equal to δ2 as it should be,
due to the Ward identity. Consequently, up to order α, we show that our counterterms in position
space are equal to the usual terms derived in momentum space. The results, in this case, do not
depend on the spatial point x0 where our renormalization conditions impose. It manifests the
translational invariance of this problem.
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5 Conclusions

Ultraviolet infinities of QED theory are basically due to three divergent Feynman diagrams: ver-
tex correction, vacuum polarization, and electron self-energy. These infinities are controlled by
four counterterms that derive by using the renormalization program in free space with translational
symmetry. However, if the translational invariance of the system breaks strongly, then the momen-
tum is no longer a good quantum number. Renormalization procedure in configuration space can
be applied for such a situation, e.g. in problems with a nontrivial BC or a nonzero background
that cannot treat as small perturbations. For example, the kink as a constant background in 1+1
dimensions breaks the translational invariance, or in the Casimir effect, we have nontrivial BC
on the walls. Another real example for QED is the Lamb shift in which the Coulomb potential in
hydrogen atom breaks the translational symmetry. In this paper, we have done the renormalization,
up to order α, for the theory of QED in coordinate space and derived the general form of countert-
erms. The systematical treatment of the renormalized perturbation theory leads to x-independent
counterterms. It indicates the dependency on the BCs of the fermion and photon fields directly.
Finally, as a particular case, our results have been compared with those obtained in free space: we
have shown the equivalence in the two cases is guaranteed, up to order α.
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