Original Scientific Paper

Adjointness of Suspension and Shape Path Functors

Tayyebe Nasri, Behrooz Mashayekhy and Hanieh Mirebrahimi *

Abstract

In this paper, we introduce a subcategory \widetilde{Sh}_* of Sh_* and obtain some results in this subcategory. First we show that there is a natural bijection $Sh(\Sigma(X,x),(Y,y)) \cong Sh((X,x),Sh((I,I),(Y,y))), \text{ for every } (Y,y) \in Sh_*$ and $(X,x) \in Sh_*$. By this fact, we prove that for any pointed topological space (X,x) in \widetilde{Sh}_* , $\check{\pi}_n^{top}(X,x) \cong \check{\pi}_{n-k}^{top}(Sh((S^k,*),(X,x)),e_x)$, for all $1 \leq x \leq x \leq x$ $k \leq n - 1$.

Keywords: shape category, topological shape homotopy group, shape group, suspensions.

2010 Mathematics Subject Classification: 55P55, 55Q07, 54H11, 55P40.

How to cite this article

T. Nasri, B. Mashayekhy and H. Mirebrahimi, Adjointness of suspension and shape path functors, Math. Interdisc. Res. 6 (2021) 23–33.

1. Introduction and Motivation

Morón et al. [11] gave a complete, non-Archimedean metric (or ultrametric) on the set of shape morphisms between two unpointed compacta (compact metric spaces) X and Y, Sh(X,Y). They mentioned that this construction can be translated to the pointed case. Consequently, as a particular case, they obtained a complete ultrametric induces a norm on the shape groups of a compactum Y and then presented some results on these topological groups [12]. Also, Cuchillo-Ibanez et al. [5] constructed several generalized ultrametrics in the set of shape morphisms

Academic Editor: Ali Reza Ashrafi

Received 17 October 2020, Accepted 29 March 2021

DOI: 10.22052/mir.2021.240322.1246

©2021 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.

^{*}Corresponding author (E-mail: h mirebrahimi@um.ac.ir)

between topological spaces and obtained semivaluations and valuations on the groups of shape equivalences and kth shape groups. On the other hand, Cuchillo-Ibanez et al. [6] introduced a topology on the set Sh(X,Y), where X and Y are arbitrary topological spaces, in such a way that it extended topologically the construction given in [11]. Also, Moszyńska [10] showed that the kth shape group $\check{\pi}_k(X,x), k \in \mathbb{N}$, is isomorphic to the set $Sh((S^k,*),(X,x))$ consists of all shape morphisms $(S^k,*) \to (X,x)$ with a group operation, for all compact Hausdorff space (X,x). Note that, Bilan [1] mentioned that this fact is true for all topological spaces.

The authors [13] applied this topology on the set of shape morphisms between pointed spaces and proved that the kth shape group $\check{\pi}_k(X,x)$, $k \in \mathbb{N}$, with the above topology is a Hausdorff topological group, denoted by $\check{\pi}_k^{top}(X,x)$. In this paper, we introduce a subcategory \widetilde{Sh}_* of Sh_* and obtain some results in this subcategory. It is well-known that the pair (Σ,Ω) is an adjoint pair of functors on hTop_* and therefore, there is a natural bijection $Hom(\Sigma(X,x),(Y,y))\cong Hom((X,x),\Omega(Y,y))$, for every pointed topological spaces (X,x) and (Y,y). In this paper, we show that there is a natural bijection

$$Sh(\Sigma(X,x),(Y,y)) \cong Sh((X,x),(Sh((I,\dot{I}),(Y,y)),e_y)),$$

for every $(Y,y) \in \widetilde{Sh}_*$ and $(X,x) \in Sh_*$. By this fact we conclude that the functor Sh((I,I),-) preserves inverse limits such as products, pullbacks, kernels, nested intersections and completions, provided inverse limit exists in the subcategory \widetilde{Sh}_* . Also, the functor Σ preserves direct limits of connected spaces in this subcategory. As a consequence, if $(X \times Y, (x,y))$ is a product of pointed spaces (X,x) and (Y,y) in the subcategory \widetilde{Sh}_* , then

$$\check{\pi}_1(X \times Y, (x, y)) \cong \check{\pi}_1(X, x) \times \check{\pi}_1(Y, y).$$

It is well-known that for any pointed space (X,x) and for all $1 \leq k \leq n-1$, $\pi_n(X,x) \cong \pi_{n-k}(\Omega(X,x),e_x)$. In this paper, we show that for any pointed topological space (X,x) in \widetilde{Sh}_* , $\check{\pi}_n(X,x) \cong \check{\pi}_{n-k}(Sh((S^k,*),(X,x)),e_x)$, for all $1 \leq k \leq n-1$. We then exhibit an example in which this result dose not hold in the category Sh_* .

Endowed with the quotient topology induced by the natural surjective map $q:\Omega^n(X,x)\to\pi_n(X,x)$, where $\Omega^n(X,x)$ is the nth loop space of (X,x) with the compact-open topology, the familiar homotopy group $\pi_n(X,x)$ becomes a quasitopological group which is called the quasitopological nth homotopy group of the pointed space (X,x), denoted by $\pi_n^{qtop}(X,x)$ (See [2, 3, 4, 8]). Nasri et al. [14], showed that for any pointed topological space (X,x), $\pi_n^{qtop}(X,x)\cong\pi_{n-k}^{qtop}(\Omega^k(X,x),e_x)$, for all $1\leq k\leq n-1$. In this paper, we prove that for any pointed topological space (X,x) in \widetilde{Sh}_* , $\check{\pi}_n^{top}(X,x)\cong\check{\pi}_{n-k}^{top}(Sh((S^k,*),(X,x)),e_x)$, for all $1\leq k\leq n-1$.

2. Preliminaries

In this section, we recall some of the main notions concerning the shape category and the pro-HTop (See [9]). Let $\mathbf{X} = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{Y} = (Y_{\mu}, q_{\mu\mu'}, M)$ be two inverse systems in HTop. A pro-morphism of inverse systems, $(f, f_{\mu}) : \mathbf{X} \to \mathbf{Y}$, consists of an index function $f : M \to \Lambda$ and of mappings $f_{\mu} : X_{f(\mu)} \to Y_{\mu}, \mu \in M$, such that for every related pair $\mu \leq \mu'$ in M, there exists a $\lambda \in \Lambda$, $\lambda \geq f(\mu)$, $f(\mu')$ so that

$$q_{\mu\mu'}f_{\mu'}p_{f(\mu')\lambda} \simeq f_{\mu}p_{f(\mu)\lambda}.$$

The composition of two pro-morphisms $(f, f_{\mu}) : \mathbf{X} \to \mathbf{Y}$ and $(g, g_{\nu}) : \mathbf{Y} \to \mathbf{Z} = (Z_{\nu}, r_{\nu\nu'}, N)$ is also a pro-morphism $(h, h_{\nu}) = (g, g_{\nu})(f, f_{\mu}) : \mathbf{X} \to \mathbf{Z}$, where h = fg and $h_{\nu} = g_{\nu}f_{g(\nu)}$. The identity pro-morphism on \mathbf{X} is pro-morphism $(1_{\Lambda}, 1_{X_{\lambda}}) : \mathbf{X} \to \mathbf{X}$, where 1_{Λ} is the identity function. A pro-morphism $(f, f_{\mu}) : \mathbf{X} \to \mathbf{Y}$ is said to be equivalent to a pro-morphism $(f', f'_{\mu}) : \mathbf{X} \to \mathbf{Y}$, denoted by $(f, f_{\mu}) \sim (f', f'_{\mu})$, provided every $\mu \in M$ admits a $\lambda \in \Lambda$ such that $\lambda \geq f(\mu), f'(\mu)$ and

$$f_{\mu}p_{f(\mu)\lambda} \simeq f'_{\mu}p_{f'(\mu)\lambda}.$$

The relation \sim is an equivalence relation. The *category* pro-HTop has as objects, all inverse systems \mathbf{X} in HTop and as morphisms, all equivalence classes $\mathbf{f} = [(f, f_{\mu})]$. The composition of $\mathbf{f} = [(f, f_{\mu})]$ and $\mathbf{g} = [(g, g_{\nu})]$ in pro-HTop is well defined by putting

$$\mathbf{gf} = \mathbf{h} = [(h, h_{\nu})].$$

An HPol-expansion of a topological space X is a morphism $\mathbf{p}: X \to \mathbf{X}$ in pro-HTop, where \mathbf{X} belongs to pro-HPol characterised by the following two properties: (E1) For every $P \in HPol$ and every map $h: X \to P$ in HTop, there is a $\lambda \in \Lambda$ and a map $f: X_{\lambda} \to P$ in HPol such that $fp_{\lambda} \simeq h$.

(E2) If $f_0, f_1: X_{\lambda} \to P$ satisfy $f_0 p_{\lambda} \simeq f_1 p_{\lambda}$, then there exists a $\lambda' \geq \lambda$ such that $f_0 p_{\lambda \lambda'} \simeq f_1 p_{\lambda \lambda'}$.

Let $\mathbf{p}: X \to \mathbf{X}$ and $\mathbf{p}': X \to \mathbf{X}'$ be two HPol-expansions of an space X in HTop, and let $\mathbf{q}: Y \to \mathbf{Y}$ and $\mathbf{q}': Y \to \mathbf{Y}'$ be two HPol-expansions of an space Y in HTop. Then there exist two natural isomorphisms $\mathbf{i}: \mathbf{X} \to \mathbf{X}'$ and $\mathbf{j}: \mathbf{Y} \to \mathbf{Y}'$ in pro-HTop. A morphism $\mathbf{f}: \mathbf{X} \to \mathbf{Y}$ is said to be *equivalent* to a morphism $\mathbf{f}': \mathbf{X}' \to \mathbf{Y}'$, denoted by $\mathbf{f} \sim \mathbf{f}'$, provided the following diagram in pro-HTop commutes:

$$\begin{array}{ccc} X & \stackrel{i}{\longrightarrow} & X' \\ \downarrow^f & & f' \downarrow \\ Y & \stackrel{j}{\longrightarrow} & Y'. \end{array}$$

Now, the *shape category* Sh is defined as follows: The objects of Sh are topological spaces. A morphism $F: X \to Y$ is the equivalence class $\langle \mathbf{f} \rangle$ of a mapping $\mathbf{f}: \mathbf{X} \to \mathbf{Y}$ in pro-HTop. The *composition* of $F = \langle \mathbf{f} \rangle : X \to Y$ and $G = \langle \mathbf{g} \rangle : Y \to Z$ is defined by the representatives, i.e., $GF = \langle \mathbf{g} \mathbf{f} \rangle : X \to Z$.

The *identity shape morphism* on a space X, $1_X : X \to X$, is the equivalence class $< 1_X >$ of the identity morphism 1_X in pro-HTop.

Let $\mathbf{p}: X \to \mathbf{X}$ and $\mathbf{q}: Y \to \mathbf{Y}$ be HPol-expansions of X and Y, respectively. Then for every morphism $f: X \to Y$ in HTop, there is a unique morphism $\mathbf{f}: \mathbf{X} \to \mathbf{Y}$ in pro-HTop such that the following diagram commutes in pro-HTop.

$$\begin{array}{ccc}
\mathbf{X} & \longleftarrow & X \\
\downarrow \mathbf{f} & & f \downarrow \\
\mathbf{Y} & \longleftarrow & Y.
\end{array}$$

If we take other HPol-expansions $\mathbf{p}': X \to \mathbf{X}'$ and $\mathbf{q}': Y \to \mathbf{Y}'$, we obtain another morphism $\mathbf{f}': \mathbf{X}' \to \mathbf{Y}'$ in pro-HTop such that $\mathbf{f}'\mathbf{p}'^* = \mathbf{q}'f$ and so we have $\mathbf{f} \sim \mathbf{f}'$. Hence every morphism $f \in HTop(X,Y)$ yields an equivalence class $< [\mathbf{f}] >$, i.e., a shape morphism $F: X \to Y$ which is denoted by $\mathcal{S}(f)$. If we put $\mathcal{S}(X) = X$ for every topological space X, then we obtain a functor $\mathcal{S}: HTop \to Sh$, called the shape functor. Also if $Y \in HPol$, then every shape morphism $F: X \to Y$ admits a unique morphism $f: X \to Y$ in HTop such that $F = \mathcal{S}(f)$ [9, Theorem 1.2.4].

Similarly, we can define the categories pro-HTop_{*} and Sh_{*} on pointed topological spaces (See [9]).

3. Main Results

In this section, we introduce a subcategory \widetilde{Sh}_* of Sh_* consists of all pointed topological spaces having bi-expansions. Then we consider the well-known suspension functor $\Sigma: Sh_* \to Sh_*$ (See [9]) and $Sh((I,\dot{I}),-): Sh_* \to Sh_*$ and show that there is a natural bijection $Sh(\Sigma(X,x),(Y,y)) \cong Sh((X,x),(Sh((I,\dot{I}),(Y,y)),e_y))$, for every $(Y,y) \in \widetilde{Sh}_*$ and $(X,x) \in Sh_*$. Then using this bijection we conclude some results in subcategory \widetilde{Sh}_* .

Definition 3.1. We say that a pointed topological space (X, x) has a bi-expansion $\mathbf{p}: (X, x) \to (\mathbf{X}, \mathbf{x})$ whenever \mathbf{p} is an HPol_* -expansion of (X, x) such that $\mathbf{p}_*: Sh((I, \dot{I}), (X, x)) \to \mathbf{Sh}((I, \dot{I}), (X, x))$ is an HPol_* -expansion of $Sh((I, \dot{I}), (X, x))$.

In follow, we recall some conditions on topological space X under which X has a bi-expansion.

Remark 1. [13, Remark 4.11]. If $\mathbf{p}:(X,x)\to (\mathbf{X},\mathbf{x})$ is an HPol*-expansion of X, then $\mathbf{p}_*:Sh((S^k,*),(X,x))\to \mathbf{Sh}((S^k,*),(X,x))$ is an inverse limit of $\mathbf{Sh}((S^k,*),(X,x))=(Sh((S^k,*),(X_\lambda,x_\lambda)),(p_{\lambda\lambda'})_*,\Lambda)$ (See [6, Theorem 2]). Moreover, if $Sh((S^k,*),(X,x))$ is compact and $Sh((S^k,*),(X_\lambda,x_\lambda))$ is compact polyhedron for all $\lambda\in\Lambda$, then by [7, Remark 1], \mathbf{p}_* is an HPol*-expansion of $Sh((S^k,*),(X,x))$.

Lemma 3.2. [13, Lemma 4.12] Let (X, x) have an $HPol_*$ -expansion $\mathbf{p}: (X, x) \to ((X_{\lambda}, x_{\lambda}), p_{\lambda \lambda'}, \Lambda)$ such that $\pi_k(X_{\lambda}, x_{\lambda})$ is finite, for every $\lambda \in \Lambda$. Then $\mathbf{p}_*: Sh((S^k, *), (X, x)) \to \mathbf{Sh}((S^k, *), (X, x))$ is an $HPol_*$ -expansion of $Sh((S^k, *), (X, x))$, for all $k \in \mathbb{N}$.

Example 3.3. [13, Example 4.13] (See also [9]). Let $\mathbb{R}P^2$ be the real projective plane. Consider the map $\bar{f}: \mathbb{R}P^2 \to \mathbb{R}P^2$ induced by the following commutative diagram:

$$D^{2} \leftarrow \int_{f} D^{2}$$

$$\downarrow \phi \qquad \phi \downarrow$$

$$\mathbb{R}P^{2} \leftarrow \overline{f} \quad \mathbb{R}P^{2},$$

where $D^2=\{z\in\mathbb{C}\ |\ |z|\leq 1\}$ is the unit 2-cell, $f(z)=z^3$ and $\phi:D^2\to\mathbb{R}P^2$ is the quotient map identifies pairs of points $\{z,-z\}$ of S^1 . We consider X as the inverse sequence

$$\mathbb{R}P^2 \stackrel{\bar{f}}{\longleftarrow} \mathbb{R}P^2 \stackrel{\bar{f}}{\longleftarrow} \cdots$$

Since $\mathbb{R}P^2$ is compact polyhedron, by [7, Remark 1] X is compact and $\mathbf{p}: X \to (\mathbb{R}P^2, \bar{f}, \mathbb{N})$ is an HPol-expansion of X. Since \bar{f} is onto and $\pi_k(\mathbb{R}P^2) \cong \mathbb{Z}_2$ is finite, $\mathbf{p}_*: Sh((S^k, *), (X, x)) \to \mathbf{Sh}((S^k, *), (X, x))$ is an HPol*-expansion of $Sh((S^k, *), (X, x))$, for all $k \in \mathbb{N}$.

The well-known suspension functor $\Sigma: HTop_* \to HTop_*$ is extended to a suspension functor $\Sigma: Sh_* \to Sh_*$ (See [9]). Note that, if (X,x) is a pointed topological space, then $\Sigma(X,x)=(\Sigma X,\Sigma x)$ is also a pointed topological space. Therefore, whenever $\mathbf{p}:(X,x)\to (\mathbf{X},\mathbf{x})$ is an HPol_* -expansion of (X,x), then $\Sigma\mathbf{p}:\Sigma(X,x)\to\Sigma(\mathbf{X},\mathbf{x})=(\Sigma(X_\lambda,x_\lambda),\Sigma p_{\lambda\lambda'},\Lambda)$ is an HPol_* -expansion of $\Sigma(X,x)$.

Remark 2. Let (X, x) be a connected topological space and $\mathbf{p}: (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_{\lambda}, x_{\lambda}), p_{\lambda \lambda'}, \Lambda)$ be an HPol_{*}-expansion of (X, x). Since X is connected, one can assume that all X_{λ} are connected, by [9, Remark 4.1.1] and so $\pi_1(\Sigma(X_{\lambda}, x_{\lambda})) = 0$, for all $\lambda \in \Lambda$ (by Van Kampen Theorem). Therefore, the HPol_{*}-expansion $\Sigma \mathbf{p}: \Sigma(X, x) \to \Sigma(\mathbf{X}, \mathbf{x})$ satisfies in the conditions of Lemma 3.2 and so $\Sigma(X, x) \in \widetilde{Sh}_*$.

Let $F: \Sigma(X,x) \to (Y,y)$ be a shape morphism represented by $\mathbf{f}: \Sigma(\mathbf{X},\mathbf{x}) \to (\mathbf{Y},\mathbf{y})$ consists of $f: M \to \Lambda$ and $f_{\mu}: \Sigma(X_{f(\mu)},x_{f(\mu)}) \to (Y_{\mu},y_{\mu})$. If (Y,y) has a bi-expansion $\mathbf{q}: (Y,y) \to (\mathbf{Y},\mathbf{y})$, then F determines a map $F^{\sharp}: (X,x) \to (Sh((I,\dot{I}),(Y,y)),e_y)$ represented by $\mathbf{f}^{\sharp}: (\mathbf{X},\mathbf{x}) \to (Sh((I,\dot{I}),(Y,y)),e_y)$ consists of $f: M \to \Lambda$ and $f^{\sharp}_{\mu}: (X_{f(\mu)},x_{f(\mu)}) \to (Sh((I,\dot{I}),(Y_{\mu},y_{\mu})),e_{y_{\mu}})$ which is defined as $f^{\sharp}_{\mu}(x) = \mathcal{S}(l_{x\mu})$, where $l_{x\mu}: (I,\dot{I}) \to (Y_{\mu},y_{\mu})$ is a map in HTop* such that $l_{x\mu}(t) = f_{\mu}([x,t])$.

In the following lemma we show that F^{\sharp} is a shape morphism.

Lemma 3.4. The map F^{\sharp} defined in the above is a shape morphism.

Proof. With the above notation, first we show that $f^{\sharp}_{\mu}: X_{f(\mu)} \to Sh((I,\dot{I}), (Y_{\mu},y_{\mu}))$ is continuous. Since Y_{μ} is a polyhedron, the space $Sh((I,\dot{I}), (Y_{\mu},y_{\mu}))$ is discrete by [6, Corollary 1]. Therefore, it is sufficient to show that f^{\sharp}_{μ} is locally constant. Let $x \in X_{f(\mu)}$. Since $X_{f(\mu)}$ is polyhedron, there is an open neighborhood V_x of x that is contractible to x in $X_{f(\mu)}$. We will show that f^{\sharp}_{μ} is constant on V_x . Let $x' \in V_x$, then by path connectedness of V_x , there exists a path $\alpha: I \to X_{f(\mu)}$ such that $\alpha(0) = x$ and $\alpha(1) = x'$. We define the map $H: I \times I \to Y_{\mu}$ by $H(t,s) = f_{\mu}([\alpha(s),t])$. Since f_{μ} and α are continuous and V_x is contractible to x in $X_{f(\mu)}$, the map H is well-defined and continuous. Moreover, H is a relative homotopy between $f_{\mu}([x,-])$ and $f_{\mu}([x',-])$. Hence $l_{x\mu} \simeq l_{x'\mu}$ (rel $\{\dot{I}\}$) and so $S(l_{x\mu}) = S(l_{x'\mu})$. Therefore $f^{\sharp}_{\mu}(x) = f^{\sharp}_{\mu}(x')$ and so f^{\sharp}_{μ} is constant on V_x . Finally, we conclude that f^{\sharp}_{μ} is continuous.

Now, let $\mathbf{p}: (X, x) \to (\mathbf{X}, \mathbf{x})$ be an HPol_* -expansion of (X, x) and $\mathbf{q}: (Y, y) \to (\mathbf{Y}, \mathbf{y})$ be a bi-expansion of (Y, y). The map \mathbf{f}^{\sharp} is a morphism in pro-HTop_{*}. Indeed, for any pair $\mu' \geq \mu$, there is a $\lambda \geq f(\mu), f(\mu')$ such that

$$f_{\mu} \circ \Sigma p_{f(\mu)\lambda} \simeq q_{\mu\mu'} \circ f_{\mu'} \circ \Sigma p_{f(\mu')\lambda} \quad (rel\{\Sigma x_{\lambda}\}).$$
 (1)

Also, for every $x \in X_{\lambda}$,

$$f^{\sharp}_{\mu}(p_{f(\mu)\lambda}(x)) = \mathcal{S}(l_{p_{f(\mu)\lambda}(x)\mu}),$$

and for every $t \in I$,

$$l_{p_{f(\mu)\lambda}(x)\mu}(t) = f_{\mu}([p_{f(\mu)\lambda}(x), t]) = f_{\mu} \circ \Sigma p_{f(\mu)\lambda}([x, t])$$

$$(q_{\mu\mu'})_* \circ l_{p_{f(\mu')\lambda}(x)\mu'}(t) = q_{\mu\mu'} \circ f_{\mu'}([p_{f(\mu')\lambda}(x),t]) = q_{\mu\mu'} \circ f_{\mu'} \circ \Sigma p_{f(\mu')\lambda}([x,t]).$$

By Equation (1), $l_{p_{f(\mu)\lambda}(x)\mu} \simeq (q_{\mu\mu'})_* \circ l_{p_{f(\mu')\lambda}(x)\mu'}$ $(rel\{\dot{I}\})$. Therefore

$$f_{\mu}^{\sharp} \circ p_{f(\mu)\lambda}(x) = \mathcal{S}(l_{p_{f(\mu)\lambda}(x)\mu}) = \mathcal{S}((q_{\mu\mu'})_{*} \circ l_{p_{f(\mu')\lambda}(x)\mu'}) = (q_{\mu\mu'})_{*} \circ f_{\mu'}^{\sharp}(p_{f(\mu')\lambda}(x)).$$

On the other hand, let $G:(X,x)\to (Sh((I,\dot{I}),(Y,y)),e_y)$ be a shape morphism represented by $\mathbf{g}:(\mathbf{X},\mathbf{x})\to (\mathbf{Sh}((I,\dot{I}),(Y,y)),\mathbf{e_y})$ consists of $g:M\to\Lambda$ and $g_\mu:(X_{g(\mu)},x_{g(\mu)})\to (Sh((I,\dot{I}),(Y_\mu,y_\mu)),e_{y_\mu})$. Then we define $G^\flat:\Sigma(X,x)\to (Y,y)$ represented by $\mathbf{g}^\flat:\Sigma(\mathbf{X},\mathbf{x})\to (\mathbf{Y},\mathbf{y})$ in pro-HTop* consists of $g:M\to\Lambda$ and $g^\flat_\mu:\Sigma(X_{g(\mu)},x_{g(\mu)})\to (Y_\mu,y_\mu)$ given by $g^\flat_\mu([x,t])=g'_{\mu x}(t)$, where $g'_{\mu x}$ is a unique morphism in HTop* with $\mathcal{S}(g'_{\mu x})=g_\mu(x)$ (See [9, Theorem 1.2.4]).

Lemma 3.5. The map G^{\flat} defined in the above is a shape morphism.

Proof. First we show that g_{μ}^{\flat} is continuous. It is sufficient to show that $\overline{g_{\mu}^{\flat}}: (X_{g(\mu)} \times I, \{x_{g(\mu)}\} \times \dot{I}) \to (Y_{\mu}, y_{\mu})$ is continuous. We claim that the map $e_{\mu}:$

 $Sh((I,\dot{I}),(Y_{\mu},y_{\mu})) \times I \to Y_{\mu}$ given by $e_{\mu}(F,t) = F'(t)$ is continuous, where F' is a unique morphism in HTop* with $\mathcal{S}(F') = F$ (See [9, Theorem 1.2.4]). To prove the continuity of e_{μ} , let U be an open set containing an arbitrary point $e_{\mu}(F,t) = F'(t)$. Since F' is continuous, there is an open neighbourhood V of t in I such that $F'(V) \subseteq U$. Hence the set $\{F\} \times V$ is an open neighbourhood of (F,t) in $Sh((I,\dot{I}),(Y_{\mu},y_{\mu})) \times I$ such that $e_{\mu}(\{F\} \times V) \subseteq U$. Now, the map g_{μ}^{\flat} is equal to the composition $e_{\mu} \circ (g_{\mu} \times id)$ and so it is continuous.

Let $\mathbf{p}: (X, x) \to (\mathbf{X}, \mathbf{x})$ and $\mathbf{q}: (Y, y) \to (\mathbf{Y}, \mathbf{y})$ be HPol_* -expansions of (X, x) and (Y, y), respectively. The map $\mathbf{g}^{\flat}: \Sigma(\mathbf{X}, \mathbf{x}) \to (\mathbf{Y}, \mathbf{y})$ is a morphism in pro- HTop_* . To prove this, let $\mu' \geq \mu$, then there is a $\lambda \geq g(\mu), g(\mu')$ such that

$$(g_{\mu\mu'})_* \circ g_{\mu'} \circ p_{g(\mu')\lambda} \simeq g_{\mu} \circ p_{g(\mu)\lambda} \quad (rel\{x_{\lambda}\}).$$

Since Y_{μ} is a polyhedron, the space $Sh((I,\dot{I}),(Y_{\mu},y_{\mu}))$ is discrete by [6, Corollary 1]. But homotopic maps in a discrete space are equal, so

$$(g_{\mu\mu'})_* \circ g_{\mu'} \circ p_{q(\mu')\lambda} = g_{\mu} \circ p_{q(\mu)\lambda}. \tag{2}$$

Also, for every $x \in X_{\lambda}$ and $t \in I$,

$$g_{\mu}^{\flat} \circ \Sigma p_{g(\mu)\lambda}([x,t]) = g_{\mu}^{\flat}([p_{g(\mu)\lambda}(x),t]) = g_{\mu p_{g(\mu)\lambda}(x)}'(t)$$

and

$$q_{\mu\mu'} \circ g_{\mu'}^{\flat} \circ \Sigma p_{g(\mu')\lambda}([x,t]) = q_{\mu\mu'} \circ g_{\mu'}^{\flat}([p_{g(\mu')\lambda}(x),t]) = q_{\mu\mu'} \circ g_{\mu'p_{g(\mu')\lambda}(x)}'(t).$$

Also,

$$\mathcal{S}(g'_{\mu p_{g(\mu)\lambda}(x)}) = g_{\mu}(p_{g(\mu)\lambda}(x))$$

and

$$\mathcal{S}(q_{\mu\mu'} \circ g'_{\mu'p_{g(\mu)\lambda}(x)}) = q_{\mu\mu'} \circ g_{\mu'}(p_{g(\mu')\lambda}(x)).$$

Hence, using Equation (2) and [6, Theorem 1.2.4],

$$g'_{\mu p_{g(\mu)\lambda}(x)} \simeq q_{\mu\mu'} \circ g'_{\mu' p_{g(\mu)\lambda}(x)} \quad (rel\{\dot{I}\})$$

and so
$$g_{\mu}^{\flat} \circ \Sigma p_{q(\mu)\lambda} \simeq q_{\mu\mu'} \circ g_{\mu'}^{\flat} \circ \Sigma p_{q(\mu')\lambda} \quad (rel\{\Sigma x_{\lambda}\}).$$

Let \widetilde{Sh}_* be a subcategory of Sh_* consists of all pointed topological spaces having bi-expansions. In follow, we conclude some results in the subcategory \widetilde{Sh}_* . It is well-known that the pair (Σ, Ω) is an adjoint pair of functors on hTop_{*}. In the following theorem we prove similar result on subcategory \widetilde{Sh}_* .

Theorem 3.6. For every $(Y,y) \in \widetilde{Sh}_*$ and $(X,x) \in Sh_*$, there is a natural bijection

$$Sh(\Sigma(X,x),(Y,y)) \cong Sh((X,x),(Sh((I,\dot{I}),(Y,y)),e_y)).$$
 (3)

Proof. Let $\mathbf{p}:(X,x)\to (\mathbf{X},\mathbf{x})$ be an HPol*-expansion of (X,x) and $\mathbf{q}:(Y,y)\to (\mathbf{Y},\mathbf{y})$ be a bi-expansion of (Y,y). We define

$$\tau_{XY}: Sh(\Sigma(X,x),(Y,y)) \to Sh((X,x),(Sh((I,\dot{I}),(Y,y)),e_y)),$$

by $\tau_{XY}(F) = F^{\sharp}$ and

$$\theta_{XY}: Sh((X, x), (Sh((I, \dot{I}), (Y, y)), e_y)) \to Sh(\Sigma(X, x), (Y, y)),$$

by $\theta_{XY}(G) = G^{\flat}$. By Lemmas 3.4 and 3.5, the maps τ_{XY} and θ_{XY} are well-defined. It is easy to see that $\theta_{XY} \circ \tau_{XY} = id$, $\tau_{XY} \circ \theta_{XY} = id$ and τ_{XY} is natural in each variable. Hence the result holds.

Using natural bijection Equation (3), one can see that the functor $Sh((I, \dot{I}), -)$ preserves inverse limits such as products, pullbacks, kernels, nested intersections and completions, provided inverse limit exists in the subcategory \widetilde{Sh}_* . Also, the functor Σ preserves direct limits of connected spaces in this subcategory. Hence if $(X \times Y, (x, y))$ is a product of pointed spaces (X, x) and (Y, y) in the subcategory \widetilde{Sh}_* , then

$$Sh((I, \dot{I}), (X \times Y, (x, y))) = Sh((I, \dot{I}), (X, x)) \times Sh((I, \dot{I}), (Y, y)),$$

and so

$$\check{\pi}_1(X \times Y, (x, y)) = \check{\pi}_1(X, x) \times \check{\pi}_1(Y, y).$$

Lemma 3.7. The mappings τ_{XY} and θ_{XY} are continuous.

Proof. First, we show that τ_{XY} is continuous. Let V_{μ}^{F} be a basis element of $Sh((X,x),(Sh((I,\dot{I}),(Y,y)),e_{y}))$ containing F. We will show that $\tau_{XY}(V_{\mu}^{F^{\flat}})\subseteq V_{\mu}^{F}$. Let $G\in V_{\mu}^{F^{\flat}}$. By definition, $q_{\mu}\circ F^{\flat}=q_{\mu}\circ G$ as homotopy classes to Y_{μ} , or equivalently $f_{\mu}^{\flat}\circ \Sigma p_{f(\mu)}\simeq g_{\mu}\circ \Sigma p_{g(\mu)}$ $(rel\{\Sigma x\})$. It is sufficient to show that $(q_{\mu})_{*}\circ F=(q_{\mu})_{*}\circ G^{\sharp}$ as homotopy classes to $Sh(I,Y_{\mu})$ or equivalently $f_{\mu}\circ p_{f(\mu)}\simeq g_{\mu}^{\sharp}\circ p_{g(\mu)}$ $(rel\{x\})$. For every $x\in X$,

$$g_{\mu}^{\sharp} \circ p_{g(\mu)}(x) = \mathcal{S}(l_{p_{g(\mu)}(x)\mu}),$$

and for every $t \in I$,

$$l_{p_{g(\mu)}(x)\mu}(t) = g_{\mu}([p_{g(\mu)}(x), t]) = g_{\mu} \circ \Sigma p_{g(\mu)}([x, t]).$$

Also

$$\begin{split} f^{\flat}_{\mu} \circ \Sigma p_{f(\mu)}([x,t]) &= f^{\flat}_{\mu}([p_{f(\mu)}(x),t]) \\ &= f'_{\mu p_{f(\mu)}(x)}(t), \end{split}$$

where $\mathcal{S}(f'_{\mu p_{f(\mu)}(x)}) = f_{\mu}(p_{f(\mu)}(x))$. Since $f^{\flat}_{\mu} \circ \Sigma p_{f(\mu)} \simeq g_{\mu} \circ \Sigma p_{g(\mu)}$ (rel $\{\Sigma x\}$), by the above equalities, $l_{p_{g(\mu)}(x)\mu} \simeq f'_{\mu p_{f(\mu)}(x)}$ (rel $\{\dot{I}\}$). Thus

$$g_{\mu}^{\sharp} \circ p_{g(\mu)}(x) = \mathcal{S}(l_{p_{g(\mu)}(x)\mu}) = \mathcal{S}(f'_{\mu p_{f(\mu)}(x)}) = f_{\mu}(p_{f(\mu)}(x)).$$

So $\tau_{XY}(G) = G^{\sharp} \in V_{\mu}^{F}$, and therefore τ_{XY} is continuous. Similarly, θ_{XY} is continuous.

In particular, we can conclude that for any pointed topological space (X, x), $Sh((I, \dot{I}), (Sh((I, \dot{I}), (X, x)), e_x)) \cong Sh((I^2, \dot{I}^2), (X, x))$. We know that for any pointed space (X, x) and for all $1 \leq k \leq n - 1$, $\pi_n(X, x) \cong \pi_{n-k}(\Omega(X, x), e_x)$. As a result of Theorem 3.6, we have the following corollary:

Corollary 3.8. Let (X,x) be a pointed topological space in \widetilde{Sh}_* . Then for all $1 \le k \le n-1$

$$\check{\pi}_n(X,x) \cong \check{\pi}_{n-k}(Sh((S^k,*),(X,x)),e_x).$$

Proof. By the definition of the shape homotopy group and using Theorem 3.6 and Lemma 3.7, we have

$$\check{\pi}_n(X,x) = Sh((S^n,*),(X,x)) \cong Sh((\Sigma^n S^0,*),(X,x))
\cong Sh((\Sigma^{n-k} S^0,*),(Sh((S^k,*),(X,x)),e_x))
\cong Sh((S^{n-k},*),(Sh((S^k,*),(X,x)),e_x))
= \check{\pi}_{n-k}(Sh((S^k,*),(X,x)),e_x),$$

as desired.

In follow, we exhibit an example in which the above corollary and therefore Theorem 3.6 do not hold in the category Sh_* .

Remark 3. The pair $(\Sigma, Sh((I,\dot{I}), -))$ is not an adjoint pair of functors on the category Sh_* . By contrary, if the pair $(\Sigma, Sh((I,\dot{I}), -))$ is an adjoint pair on Sh_* , with the same argument we obtain $\check{\pi}_n(X,x) \cong \check{\pi}_{n-k}(Sh((S^k,*),(X,x)),e_x)$, for all $1 \leq k \leq n-1$ and for all pointed topological space (X,x). But this isomorphism does not hold in general. Put $X = S^2$ and n = 2, we have $\check{\pi}_2(S^2) = \pi_2(S^2) = \mathbb{Z}$ while $\check{\pi}_1(Sh(S^1,S^2))$ is trivial. Note that, S^2 is a polyhedron and so $Sh(S^1,S^2)$ is discrete by [13, Theorem 4.4]. Hence $\check{\pi}_1(Sh(S^1,S^2))$ is trivial.

Nasri et al. in [14] showed that for any pointed topological space (X,x), $\pi_n^{qtop}(X,x) \cong \pi_{n-k}^{qtop}(\Omega^k(X,x),e_x)$, for all $1 \le k \le n-1$. In the following corollary we prove this result for $\check{\pi}_n^{top}$. The following result is an immediate consequence of Corollary 3.8 and Lemma 3.7.

Corollary 3.9. Let (X,x) be a pointed topological space in \widetilde{Sh}_* . Then for all $1 \le k \le n-1$

$$\check{\pi}_n^{top}(X,x) \cong \check{\pi}_{n-k}^{top}(Sh((S^k,*),(X,x)),e_x).$$

Acknowledgements. This research was supported by a grant from Ferdowsi University of Mashhad-Graduate Studies (No. 2/43171).

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication of this article.

References

- [1] N. K. Bilan, The coarse shape groups, *Topol. Appl.* **157** (2010) 894 901.
- [2] D. Biss, The topological fundamental group and generalized covering spaces, $Topol.\ Appl.\ 124\ (2002)\ 355-371.$
- [3] J. Brazas, The topological fundamental group and free topological groups, *Topol. Appl.* **158** (2011) 779 802.
- [4] J. Brazas, The fundamental group as topological group, *Topol. Appl.* **160** (2013) 170 188.
- [5] E. Cuchillo-Ibanez, M. A. Morón and F. R. Ruiz del Portal, Ultrametric spaces, valued and semivalued groups arising from the theory of shape, Mathematical Contributions in Honor of Juan Tarrés (Spanish), 81 – 92, Univ. Complut, Madrid, Fac. Mat., Madrid, 2012.
- [6] E. Cuchillo-Ibanez, M. A. Morón, F. R. Ruiz del Portal and J. M. R. Sanjurjo, A topology for the sets of shape morphisms, *Topol. Appl.* 94 (1999) 51 – 60.
- [7] H. Fischer and A. Zastrow, The fundamental groups of subsets of closed surfaces inject into their first shape groups, *Algebra. Geom. Topol.* **5** (2005) 1655-1676.
- [8] H. Ghane, Z. Hamed, B. Mashayekhy and H. Mirebrahimi, Topological homotopy groups, *Bull. Belg. Math. Soc. Simon Stevin* **15** (3) (2008) 455 464.
- [9] S. Mardesic and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
- $[10]~{\rm M}$. Moszyńska, Various approach es to fundamental groups, Fund. Math. ${\bf 78}~(1973)~107-118.$
- [11] M. A. Morón and F. R. Ruiz del Portal, Shape as a Cantor completion process, $Math.\ Z.\ 225\ (1997)\ 67-86.$
- [12] M. A. Morón and F. R. Ruiz del Portal, Ultrametrics and infinite dimensional Whitehead theorems in shape theory, *Manuscr. Math.* **89** (1996) 325 333.
- [13] T. Nasri, F. Ghanei, B. Mashayekhy and H. Mirebrahimi, On topological shape homotopy groups, *Topol. Appl.* **198** (2016) 22 33.

[14] T. Nasri, H. Mirebrahimi and H. Torabi, Some results in topological homotopy groups, *Ukrainian Math. J.*, to appear.

Tayyebe Nasri Department of Pure Mathematics Faculty of Basic Sciences University of Bojnord, Bojnord, Iran e-mail: t.nasri@ub.ac.ir

Behrooz Mashayekhy Department of Pure Mathematics Center of Excellence in Analysis on Algebraic Structures Ferdowsi University of Mashhad P.O.Box 1159-91775, Mashhad Iran e-mail: bmashf@um.ac.ir

Hanieh Mirebrahimi Department of Pure Mathematics Center of Excellence in Analysis on Algebraic Structures Ferdowsi University of Mashhad P.O.Box 1159-91775, Mashhad Iran

e-mail: h_mirebrahimi@um.ac.ir