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Abstract
Consider a locally compact group G with two compact sub-

groups H and K. Equip the double coset space K \ G/H with
the quotient topology. Suppose that µ is an N-relatively in-
variant measure, on K \ G/H. We define a multiplication on
L1(K \ G/H, µ) such that this space becomes a Banach algebra
that possesses a left (right) approximate identity.
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1. Introduction and Preliminaries

Suppose that G is a locally compact group and that H is a closed subgroup of G and K a com-
pact subgroup of G. It is a fundamental fact that any locally compact group possesses a left Haar
measure (a positive Radon measure which is left invariant) that is unique up to a multiplication by
constants ([3, Theorems 2.10, 2.20]) and we consider the Lebesgue spaces L1(G) with respect to
this measure. It is also well known that any locally compact group G has a modular function ∆G.
Liu [7] introduced the double coset space of G by H and K as

K \G/H = {KxH : x ∈ G}.

In fact, a double coset space such as K \G/H is a natural generalization of the coset spaces arising
from each of those subgroups, simultaneously. The canonical mapping q : G → K \G/H defined
by q(x) = KxH, denoted by ẍ, is surjective. If the double coset space K \ G/H is equipped with
the quotient topology, the largest topology that makes q continuous, then q is an open mapping.
Therefore, K \G/H is a locally compact and Hausdorff space.
Note that when K is the trivial group, it becomes the homogeneous space G/H, and when H = K,
the double coset space is a hypergroup. Homogeneous spaces and hypergroups play important
roles in physics; see [8].
For a locally compact group G, it is very well known that L1(G) is Banach algebra with the convo-
lution as the product which strongly depends on group operations (see [3]). For the homogeneous
space G/H (that is not necessarily a group), a multiplication on L1(G/H) was defined in [5] that
makes L1(G/H) a Banach algebra. In this note, we aim to extend this multiplication on double
coset spaces.

Let N be the normalizer of K in G, that is,

N = {g ∈ G : gK = Kg}.

Then the natural mapping ϕ : N × K \G/H → K \G/H defined by ϕ
(
n, q(x)

)
= KnxH induces a

well-defined continuous action of N to K \ G/H. Consider K \ G/H with this action, we denote
ϕ
(
n, q(x)

)
by n · q(x).

It is known that the mapping Q : Cc(G)→ Cc(K \G/H) defined by Q( f )(ẍ) =
∫

H×K
f (k−1xh)d(ν1×

ν2)(h, k), is a well-defined continuous onto linear map, as well as
(
Q( f )

)
⊆ q

(
( f )

)
, where ν1 and ν2

are left Haar measures for H and K, respectively, (see [1]).
In [7], it is shown that for n ∈ N,

Q(Ln f ) = Ln
(
Q( f )

) (
f ∈ Cc(G)

)
,

in which Ln is the left translation operator via n i.e LnQ( f )(KxH) = Q( f )(KnxH).
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Also, we recall that a positive Radon measure µ on K \G/H is called an N-relatively invariant
if there exists a positive character χ on N such that∫

K\G/H
Q( f )(nẍ)dµ(ẍ) = χ(n)

∫
K\G/H

Q( f )(ẍ)dµ(ẍ),

for all n ∈ N and f ∈ Cc(G). The character χ is called a modular function of µ. An N-relatively
invariant measure is said to be an N-invariant measure if its modular function is identically 1.
For a positive Radon measure µ and n ∈ N, let µn denote its translate by n, that is, µn(E) = µ(nE)
for all Borel sets E in K \ G/H. A positive Radon measure µ is called an N-strongly quasi-
invariant measure, if there exists a positive continuous function λ on N × K \ G/H such that
dµn(ÿ) = λ(n, ÿ)dµ(ÿ).

For the triple (K,G,H), a rho-function ρ is a positive locally integrable function on G such
that

ρ(kxh) =
∆H(h)∆K(k)

∆G(h)
ρ(x),

for all x ∈ G, h ∈ H, and k ∈ K. In [1], it is explained that for each triple (K,G,H) there exists a
strictly positive continuous rho-function ρ which constructs a N-strongly quasi invariant measure
µ satisfying ∫

K\G/H
Q( f )(ẍ)dµ(ẍ) =

∫
G

f (x)ρ(x)dm(x), (1.1)

for all f ∈ Cc(G), where m is a left Haar measure on G. Also in [1, Theorem3.4], it is proven that
ρ : G → (0,∞) is a homomorphism if and only if there exists a N-relatively invariant measure on
K \G/H. Moreover, in this case we have

χ(n) =
ρ(n)
ρ(e)

,

and
ρ(nm) =

ρ(n)ρ(m)
ρ(e)

, (1.2)

for all m, n ∈ N.
From now on, we consider the double coset space K \G/H with N-relatively invariant measure µ
that arises from the rho-function ρ.

When G/H equips with a relatively invariant measure µ, the authors of [6] defined a convo-
lution on L1(G/H, µ) and proved that L1(G/H, µ) is a Banach algebra with this convolution. The
main result of this paper is devoted to characterize the structure of L1(K \ G/H, µ) as a Banach
algebra.
More precisely, we define and generalize a convolution on the double coset space K \G/H. To do
this, let

Cc(K : G : H) = { f ∈ Cc(G) : f (k−1xh) = f (x), ∀x ∈ G, ∀h ∈ H, ∀k ∈ K},

and define f ∗
N

g(x) =
∫

N
f (n)g(n−1x)dω(n) for each f , g ∈ Cc(G), in which ω is a left Haar measure

on N. Now for f ∈ Cc(G) and g, h ∈ Cc(K : G : H), it can be verified that f ∗
N

g ∈ Cc(K : G : H)
and h ∗

N
f ∈ Cc(K : G : H). This implies that Cc(K : G : H) is a left and right ideal and therefore is

a subalgebra of Cc(G). We consider L1(K : G : H) as the ‖ · ‖L1(G)-closure of Cc(K : G : H).
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2. Main results

Suppose that G is a locally compact group, that H and K are compact subgroups of G, and that
N is the normalizer of K in G. Throughout this paper, we denote the left Haar measure on G, H, K,
and N by dm, dν1, dν2, and dω and their modular functions by ∆G, ∆H, ∆K , and ∆N , respectively
and µ is a N-relatively invariant measure on K \G/H arising from a homomorphism rho-function
ρ.
In the next proposition, we investigate some properties of the linear mapping Qρ between Cc(G)
and Cc(K \G/H). Note that compactness of K and H implies that Qρ in the following proposition
is injective. A property that is needed in the following proposition.

Proposition 2.1. Suppose that H and K are compact subgroups of the locally compact group G
and that µ is a relatively invariant measure on K \G/H that arises from the rho-function ρ. Then,
for the linear mapping Qρ : Cc(G) → Cc(K \ G/H) defined by Qρ( f )(ẍ) =

∫
H×K

f (k−1 xh)
ρ(k−1 xh) d(ν1 ×

ν2)(h, k), we have

(i) Qρ maps Cc(K : G : H) onto Cc(K \G/H);

(ii) Cc(K : G : H) = {ϕρ = ρ · ϕ ◦ q : ϕ ∈ Cc(K \G/H)};

(iii) Qρ

∣∣∣
Cc(K:G:H)

is injective.

Proof. For (i), suppose that ϕ ∈ Cc(K \ G/H). Since Q : Cc(G) → Cc(K \ G/H) defined by
Q( f ) =

∫
H×K

f (k−1xh)d(h, k) is surjective, there is g ∈ Cc(G) such that Q(g) = ϕ. Now if we put
h = ρ · g, then Qρ(h) = Q(g) = ϕ.
To prove (ii), for ϕ ∈ Cc(K \ G/H), since H and K are compact, so ∆G

∣∣∣
K

= ∆K = 1 and ∆G

∣∣∣
H

=

∆H = 1; hence ϕρ(kxh) = ρ ·ϕ◦q(kxh) =
(∆H(h)∆K (k)

∆G(h) ρ(x)
)
ϕ◦q(kxh) = ρ(x)ϕ◦q(x). Now these facts

that ϕρ is continuous and (ϕρ) ⊆ (ϕ ◦ q) and (ϕ ◦ q) are compact, imply that ϕρ ∈ Cc(K : G : H).
So if f ∈ Cc(K : G : H), then Qρ( f ) is a member of Cc(K \G/H).
The proof of (iii) is immediate.

Now by using the linear map Qρ, we are able to define a multiplication on Cc(K \ G/H) as
follows. For ϕ, ψ ∈ Cc(K \G/H) and the rho-function ρ, put ϕρ = ρ · (ϕ ◦ q) and ψρ = ρ · (ψ ◦ q),
and consider

] : Cc(K \G/H) ×Cc(K \G/H) → Cc(K \G/H)
(ϕ, ψ) 7→ ϕ]ψ := Qρ(ϕρ ∗N ψρ).

(2.1)

This linear map has the following properties. For ϕ, ψ1, ψ2 ∈ K \G/H we have,

(i) ϕ](ψ1 + ψ2) = ϕ]ψ1 + ϕ]ψ2.

(ii) (ϕ + ψ1)]ψ2 = ϕ]ψ2 + ψ1]ψ2.

(iii) c(ϕ]ψ) = (cϕ)]ψ = ϕ](cψ).

(iv) ϕ](ψ1]ψ2) = (ϕ]ψ1)]ψ2.
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The properties (i), (ii), and (iii) are easy to check. For (iv), first note that by injectively Qρ we have
(ϕ]ψ)ρ = ϕρ ∗

N
ψρ for all ϕ, ψ ∈ Cc(K \G/H). Therefore we may write

(
ϕ](ψ1]ψ2)

)
(KxH) = Qρ

(
ϕρ ∗

N
(ψ1]ψ2)ρ

)
(KxH)

=

∫
H×K

ϕρ ∗
N
(ψ1]ψ2)ρ(k−1xh)

ρ(k−1xh)
d(ν1 × ν2)(h, k)

=

∫
H×K

∫
N

ϕρ(n)(ψ1]ψ2)ρ(n−1k−1xh)
ρ(k−1xh)

dω(n)d(ν1 × ν2)(h, k)

=

∫
H×K

∫
N

∫
N

ϕρ(n)ψ1ρ(m)ψ2ρ(m−1n−1k−1xh)
ρ(k−1xh)

dω(m)dω(n)d(ν1 × ν2)(h, k)

=

∫
H×K

∫
N

∫
N

ϕρ(n)ψ1ρ(m)ψ2ρ
(
(nm)−1k−1xh

)
ρ(k−1xh)

dω(m)dω(n)d(ν1 × ν2)(h, k),

on the other hand,(
(ϕ]ψ1)]ψ2

)
(KxH) = Qρ

(
(ϕ]ψ1)ρ ∗

N
ψ2ρ

)
(KxH)

=

∫
H×K

(ϕ]ψ1)ρ ∗
N
ψ2ρ(k−1xh)

ρ(k−1xh)
d(ν1 × ν2)(h, k)

=

∫
H×K

∫
N

(ϕ]ψ1)ρ(n)ψ2ρ(n−1k−1xh)
ρ(k−1xh)

dω(n)d(ν1 × ν2)(h, k)

=

∫
H×K

∫
N

∫
N

ϕρ(m)ψ1ρ(m−1n)ψ2ρ(n−1k−1x)
ρ(k−1xh)

dω(m)dω(n)d(ν1 × ν2)(h, k)

=

∫
H×K

∫
N

∫
N

ϕρ(m)ψ1ρ(n)ψ2ρ
(
(mn)−1k−1xh

)
ρ(k−1xh)

dω(n)dω(m)d(ν1 × ν2)(h, k).

Proposition 2.2. Suppose that H and K are compact subgroups of the locally compact group G
and that µ is an N-relatively invariant measure on K \ G/H that arises from the rho-function ρ.
Then, for all ϕ, ψ ∈ Cc(K \G/H), the multiplication defined above satisfies

ϕ]ψ = Qρ(ϕρ ∗
N

g),

for all g ∈ Cc(G) with Qρ(g) = ψ.

Proof. Suppose that ϕ, ψ ∈ Cc(K\G/H) and g ∈ Cc(G) with Qρ(g) = ψ. Note that in [7] it has been
shown that the measure on K is invariant under inner automorphism N, that is ν2(n−1En) = ν2(E),
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for all n ∈ N and each Borel set E ⊆ K. Then by this we get,

Qρ(ϕρ ∗
N

g)(KxH) =

∫
H×K

(ϕρ ∗
N

g)(k−1xh)

ρ(k−1xh)
d(ν1 × ν2)(h, k)

=

∫
H×K

∫
N
ϕρ(n)g(n−1k−1xh)

ρ(e)
ρ(n)ρ(n−1k−1xh)

dω(n)d(ν1 × ν2)(h, k)

= ρ(e)
∫

N

ϕρ(n)
ρ(n)

∫
H×K

g(n−1k−1xh)
ρ(n−1k−1xh)

d(ν1 × ν2)(h, k)dω(n)

= ρ(e)
∫

N

ϕρ(n)
ρ(n)

∫
H×K

g(k−1n−1xh)
ρ(k−1n−1xh)

d(ν1 × ν2)(h, k)dω(n)

= ρ(e)
∫

N

ϕρ(n)
ρ(n)

Qρg(Kn−1xH)dω(n)

=
ρ(e)
ρ(e)

ρ(x−1)
∫

N
ϕρ(n)ρ(n−1x)ψ(Kn−1xH)dω(n)

= ρ(x−1)
∫

N
ϕρ(n)ψρ(n−1x)dω(n)

= ρ(x−1)ϕρ ∗
N
, ψρ(x),

for all x ∈ G. Furthermore, the equality (ϕ]ψ)ρ = ϕρ ∗
N
ψρ, implies that ρ.(ϕ]ψ)◦q(x) = ρ(x)Qρ(ϕρ ∗

N
g)(ẍ).

So, (ϕ]ψ)(ẍ) = Qρ(ϕρ ∗
N

g)(ẍ).

At this point, we recall that if X and Y are dense subspaces of Banach spaces X̃ and Ỹ , respec-
tively, then every bounded linear map T : X → Y has a unique extension T̃ : X̃ → Ỹ .
In the following theorem, we show that the convolution defined in Proposition 2.1 can be extended
to a convolution on L1(K \G/H, µ).

Theorem 2.3. With the assumptions as in Proposition 2.2, the convolution defined in Proposition
2.2 can be uniquely extended to a convolution

] : L1(K \G/H, µ) × L1(K \G/H, µ)→ L1(K \G/H, µ),

which makes L1(K \G/H, µ) into a Banach algebra.

Proof. Suppose that ϕ ∈ Cc(K \G/H). Equation (1.1) implies that

‖ϕ‖1 =

∫
K\G/H

|ϕ|(ẍ)dµ(ẍ)

=

∫
K\G/H

Qρ(|ϕρ|)(ẍ)dµ(ẍ)

=

∫
G
|ϕ|ρ(x)dm(x) = ‖ϕρ‖1.
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Now let ϕ, ψ ∈ Cc(K \G/H); then

‖ϕ]ψ‖1 = ‖Qρ(ϕρ ∗
N
ψρ)‖1

= ‖ϕρ ∗
N
ψρ‖L1(G)

≤ ‖ϕρ‖1‖ψρ‖1

= ‖Qρ(ϕρ)‖1‖Qρ(ψρ)‖1
= ‖ϕ‖1‖ψ‖1.

Hence, ] can be extended to L1(K \G/H, µ).

The following corollary shows that L1(K : G : H) and L1(K \ G/H, µ) are isometrically iso-
morphic.

Corollary 2.4. Suppose that H and K are compact subgroups of G, and let µ be a relatively
invariant measure that arises from the rho-function ρ. Then Qρ : L1(K : G : H)→ L1(K \G/H, µ)
is an isometrical isomorphism.

Proof. The first part of the proof of Theorem 2.3 shows that Qρ from L1(K : G : H) to L1(K\G/H)

is an isometry. Also since Cc(K : G : H)
‖·‖1

= L1(K : G : H) and L1(K\G/H, µ) = Cc(K \G/H)
‖·‖1

,
then by Proposition 2.1 and by the statements preceding of Theorem 2.3, the result is achieved.

Note that by Theorem 2.3 and Corollary 2.4, L1(K \G/H, µ) is a Banach algebra.
If K C G and µ is an N-strongly quasi-invariant measure that arises from the rho-function ρ, then
Lp(K \G/H, µ) is a Banach left L1(G)-module for all 1 ≤ p ≤ +∞ and the left action is defined as

L1(G) × Lp(K \G/H, µ) → Lp(K \G/H, µ)
( f , ψ) 7→ Qp( f ∗ g),

in which g ∈ Lp(G) and ψ = Qp(g).
Generally, we can redefine the modular action as follows:

L1(G) ×N Lp(K \G/H, µ) → Lp(K \G/H, µ)
( f , ψ) 7→ Qp( f ∗

N
g),

in which g ∈ Lp(G), ψ = Qp(g) and

Qp( f ∗
N

g)(ẍ) =

∫
H×K

( f ∗
N

g)(k−1xh)

ρ
1
p (k−1xh)

d(ν1 × ν2)(h, k). (2.2)

This modular action is also well-defined. This is because, ker Qp is an invariant subspace of
Lp(G) under the modular action and also if f ∈ L1(G) and g ∈ ker Qp, then ρ

1
p (Qpg ◦ q) = 0 in
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Lp(G). Hence for almost all x ∈ G and almost all ẍ ∈ K \G/H, we have

Qp( f ∗
N

g)(ẍ) =

∫
H×K

( f ∗
N

g)(k−1xh)

ρ
1
p (k−1xh)

d(ν1 × ν2)(h, k)

=

∫
H×K

∫
N

f (n)g(n−1k−1xh)

ρ
1
p (k−1xh)

dω(n)d(ν1 × ν2)(h, k)

=

∫
N

( ∫
H×K

f (n)g(n−1k−1xh)

ρ
1
p (k−1xh)

d(ν1 × ν2)(h, k)
)
dω(n)

=
1

ρ
1
p (x)

∫
H×K

( ∫
N

f (n)g(kn−1xh)dω(n)
)
d(ν1 × ν2)(h, k)

=
1

ρ
1
p (x)

∫
N

f (n)
( ∫

H×K

g(k−1n−1xh)

ρ
1
p (k−1n−1xh)

ρ
1
p (k−1n−1xh)d(ν1 × ν2)(h, k)dω(n)

)
=

1

ρ
1
p (x)

∫
N

f (n)ρ
1
p (Qpg ◦ q)(n−1x)dω(n)

=
1

ρ
1
p (x)

f ∗
N
ρ

1
p (Qpg ◦ q)(x) = 0.

In the following proposition, we show that the Banach algebra L1(K \G/H, µ) always possesses a
right approximation identity.

Proposition 2.5. Suppose that H and K are compact subgroups of the locally compact group G
and that µ is a relatively invariant measure on K \G/H. Then the Banach algebra L1(K \G/H, µ)
possesses a right (left) approximate identity.

Proof. Let {βα}α∈I be an approximation identity for L1(G); see [3]. For all α ∈ I, let ψα = Qρ(βα).
Now using Proposition 2.1, for each ϕ ∈ L1(K \G/H, µ), we have

lim
α∈I
‖ϕ]ψα − ϕ‖L1(K\G/H,µ) = lim

α∈I
‖Qρ(ϕρ ∗

N
βα − ϕρ)‖L1(K\G/H,µ)

= lim
α∈I
‖ϕρ ∗

N
βα − ϕρ‖L1(G) = 0.

Similarly, one can show that L1(K \G/H, µ) has a left approximate identity.

Lemma 2.6. Suppose that H and K are compact subgroups of the locally compact group G and
that µ is a relatively invariant measure on K \G/H that arises from the rho-function ρ. Then for
all ϕ, ψ ∈ L1(K \G/H, µ), we have

(i) ϕ]ψ(ẍ) = ρ(e)
∫

N
ϕ(n)
ρ(n)ψ(n−1 ẍ)dω(n), for µ-almost all ẍ ∈ K \G/H,

(ii) ‖Lnϕ‖1 =
ρ(n)
ρ(e)‖ϕ‖1.
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Proof. (i) First, let ϕ, ψ ∈ Cc(K \G/H). Then

ϕ]ψ(ẍ) = Qρ(ϕρ ∗
N
ψρ)(ẍ)

=

∫
K\G/H

∫
N

ϕρ(n)ψρ(n−1k−1xh)
ρ(k−1xh)

dω(n)d(ν1 × ν2)(h, k)

= ρ(e)
∫

N

ϕρ(n)
ρ(n)

∫
K\G/H

ψρ(k−1n−1xh)
ρ(k−1n−1xh)

d(ν1 × ν2)(h, k)dω(n)

= ρ(e)
∫

N

ϕρ(n)
ρ(n)

Qρ(ψρ)(n−1 ẍ)dω(n)

= ρ(e)
∫

N

ϕρ(n)
ρ(n)

ψ(n−1 ẍ)dω(n).

Since Cc(K \G/H) is dense in L1(K \G/H, µ), we conclude that

ϕ]ψ(ẍ) = ρ(e)
∫

N

ϕρ(n)
ρ(n)

ψ(n−1 ẍ)dω(n),

for µ-almost all ẍ ∈ K \G/H.

(ii) Let n ∈ N and let ϕ ∈ L1(K \G/H, µ); then

‖Lnϕ‖1 =

∫
K\G/H

|Lnϕ(ẍ)|dµ(ẍ)

=

∫
K\G/H

|ϕ(n−1 ẍ)|dµ(ẍ)

=

∫
K\G/H

|ϕ(Kn−1xH)|dµ(ẍ)

=

∫
K\G/H

ρ(n)
ρ(e)
|ϕ(ẍ)|dµ(ẍ)

=
ρ(n)
ρ(e)
‖ϕ‖1,

and the proof is complete.

At the end, we give a necessary and sufficient condition on a closed subspace of L1(K \G/H, µ)
to be a left ideal, where µ is an N-invariant measure on K \ G/H. However, first consider the
following remark.

Remark 2.7. Let H and K be compact subgroups of G and let µ be an N-invariant measure on G.
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Then

Ln(ϕ]ψ) = Ln
(
Qρ(ϕρ ∗N ψρ)

)
= Qρ

(
Ln(ϕρ ∗N ψρ)

)
= Qρ

(
Ln(ϕρ) ∗N ψρ

)
= Qρ

(
(Lnϕ)ρ ∗N ψρ

)
= Lnϕ]ψ,

for all n ∈ N and ϕ, ψ ∈ L1(K \G/H, µ). Therefore

Ln(ϕ]ψ) = Lnϕ]ψ. (2.3)

We conclude it by the characterization of the closed ideal in L1(K \ G/H, µ), where µ is N-
invariant measure on the double coset space K \G/H.

Theorem 2.8. Suppose that µ is an N-invariant measure on K\G/H and that I is a closed subspace
of L1(K \G/H, µ). Then I is a left ideal if and only if it is closed under the left N-translation.

Proof. Suppose that I is a left ideal, that {ψU}U∈U is an approximate identity, and that ϕ ∈ I. Then,
for all n ∈ N, by applying Lemma 2.7, we obtain Lnϕ = limU→{e} Ln(ψU]ϕ) = lim(LnψU)]ϕ, which
shows that Lnϕ ∈ I.
For the converse, suppose that I is closed under the left N-translation. According to Lemma 2.6,
for all ϕ ∈ L1(K \G/H, µ) and ψ ∈ I, we have ϕ]ψ which is a member of the closed linear span of
the left N-translation of ψ; therefore ϕ]ψ ∈ I.

Remark 2.9. Note that if K = H, then L1(G//H, µ) has a Banach structural, and this space is a
hypergroup and all the results achieved through are true.
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