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Abstract
We introduce two notions of ex-post fairness, namely ex-post favoring ranks (EFR)
and robust ex-post favoring ranks, which consider whether objects are received by
those agents who have the highest rank for them. We examine their compatibility with
standard properties of random assignments and state some impossibility theorems.We
also propose and formalize a revised version of the Boston mechanism and prove that
it provides an EFR random assignment.
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1 Introduction

An assignment problem seeks to allocate a finite set of indivisible objects, without
recourse to money, to a set of agents who have reported their ordinal preferences over
objects, and each is entitled to at most one of them. One of the main properties of an
assignment is fairness, which has different variations. Nevertheless, no matter how we
define or understand fairness, it is quite difficult, if not impossible, to fairly assign indi-
visible objects, ex-post, in a deterministic setting. Therefore, to attain fairness, at least
from an ex-ante perspective, lotteries have been used to make a random assignment.
However, since in real-world settings, agents could not observe the full random assign-
ment, but rather a deterministic assignment from one of its decomposition, fairness
concern mostly matters for the deterministic outcome ex-post.
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Our contribution in this paper is that we introduce two notions of ex-post fair-
ness, namely ex-post favoring ranks (EFR) and robust ex-post favoring ranks (REFR),
which, in contrast to the recent papers, are not based on an approximation of fairness,
but rather an established fairness notion, called favoring higher rank (FHR), intro-
duced by Kojima and Ünver (2014). In deterministic assignments, the typical notion
of fairness, i.e., envy-freeness, realized when each agent (weakly) prefers her own
object to the object of any other agent, no matter how others appreciate their assigned
object. However, favoring higher rank takes into account whether the envy is justified,
in the sense that which agent is more rightful to get (has a higher rank for) a contested
object.

We assess how our proposed notions of fairness are related to different notions of
efficiency to give a big picture of how different notions of fairness and efficiency in
random assignment problems are associated with each other. We show that (robust)
ex-post favoring ranks is a refinement of (robust) ex-post Pareto efficiency, and it
is not logically related to neither ordinal efficiency nor (weak) envy-freeness. These
relationships give a hierarchy of different notions of fairness for random assignments.

The Boston mechanism, studied by Abdulkadiroğlu and Sönmez (2003), has been
already used to allocate objects. Doğan andKlaus (2018) formalized its desirable prop-
erties when respecting the relative rank of a school among the students’ preferences
is essential. It is easily seen that the FHR is a characteristics feature of the Boston
mechanism (Kojima and Ünver 2014; Chen 2016). Last but not the least, we propose
and formalize a revised version of the Boston mechanism and prove that it provides
an ex-post favoring ranks random assignment.

The literature on the assignment of indivisible goods is concentrated on ex-ante
fairness (e.g., Nesterov 2017; Basteck 2018). While there is experimental evidence
that people demonstrate concern for ex-post fairness in a probabilistic assignment
(e.g., Karni et al. 2008), it only recently attractedmore attention. For instance, Freeman
et al. (2020) designed an efficient algorithm that is exactly fair ex-ante and approx-
imately fair ex-post simultaneously. Aziz (2020) also presented an algorithm that
computes an ex-ante envy-free lottery over deterministic allocations which are envy-
free up to one item.

The paper is organized as follows. In Sect. 2, we review the standard model and
axioms of random assignments. In Sect. 3, we introduce (robust) ex-post favoring
ranks. Section 4 examines its relationship with other notions of efficiency, strategy-
proofness, and fairness, especially those that care for favoring higher ranks and prove
some impossibility theorems. In Sect. 5, we prove that a revised version of the Boston
mechanism is ex-post favoring ranks.

2 Model

Let A be a finite set of objects which should be assigned to a finite set of agents, N , with
|A| = |N | = n. Each agent i ∈ N has a complete, transitive, and anti-symmetric strict
preference relation�i over A. We denote a preference profile by �≡ (�i )i∈N and the
domain of those preferences by �. Each agent i ∈ N has a ranking over any object
a ∈ A, which we represent by rk(a,�i ), where rk(a,�i ) = |{b ∈ A|b �i a}| + 1.

123



Ex-post favoring ranks: a fairness…

We represent a random assignment by a bistochastic matrix1 P = [pia]i∈N ,a∈A,
with agents on rows and objects on columns, where pia is the probability of assigning
object a to agent i . We denote the domain of random assignments by R. A random
allocation for some agent i ∈ N , Pi , is a probabilistic distribution over all objects
in A where the sum of probabilities of assigning objects to the agent i equals to
1. A deterministic assignment, � = [�ia]i∈N ,a∈A, is a particular case of random
assignment where its entries are all either 0 or 1. The Birkhoff–vonNeumann Theorem
states that all random assignments can be decomposed as a probability distribution
over deterministic assignments and can be implemented in practice.

An important feature of any assignment is efficiency, which has different notions:
Pareto efficiency (PE) means that there are no Pareto-improving trading cycles2 such
that each agent improves her assigned object. Given a preference profile � , a random
assignment P , and for all a,b ∈ A, we define a binary relation τ in A as aτ (P,�) b
if and only if there exists i ∈ N such that a �i b and pib > 0. Bogomolnaia and
Moulin (2001) (Lemma 3, page 304) proved that the random assignment P , P ∈ R, is
ordinally efficient at a profile� if and only if the relation τ (P,�) is acyclic, i.e., there
is no Pareto improving trading cycle in probability shares in a random assignment.

Put it differently, upon enumerating objects in A for agent i from best to worst
according to ai,1 �i ai,2 �i ai,3 �i . . . �i ai,n , where ai,k is the kth best object of
agent i , we define uP

ir = ∑r
k=1 piai,k to be the summation of probabilities of receiving

the first r best objects of agent i in the random assignment P . Given a preference
ordering �i on A, the stochastic dominance relation associated with �i is denoted by
�sd
i , where Pi �sd

i Qi if and only if uP
ir ≥ uQ

ir for r = 1, . . . , n.
Ex-post Pareto (EP) efficiency for a random assignment requires that there exists

a lottery over deterministic assignments where all of them are Pareto efficient. An
assignment is robust ex-post Pareto (REP) efficient if and only if any of its decompo-
sition is a lottery over Pareto optimal deterministic assignments (Aziz et al. 2015). REP
is a weaker notion than ordinal efficiency but stronger than ex-post Pareto efficiency.

A mechanism, given preferences of all agents, provides us with a procedure to
assign objects to agents. More formally, a mechanism μ(.) is a function from �

n

into R, that associates each preference profile with some random assignment. When
an agent truthfully reports her preferences, she should find her allocation at least as
desirable as any allocation she might obtain by misreporting her preferences. More
precisely, a mechanism μ(.) is strategy-proof (SP) whenever for all preference profile
�≡ (� j

)
j∈N , and for each i ∈ N , μi (�i ,�−i ) �sd

i
μi (�′

i
,�−i ) for all �′

i �=�i . A
mechanism μ(.) is weakly strategy-proof (WSP) whenever for all preference profile
�≡ (�i )i∈N , and for each i ∈ N , if μi (�′

i ,�−i ) �sd
i

μi (�i ,�−i ) then μi (�′
i ,�−i )

= μi (�i ,�−i ), for all �′
i �=�i .

1A bistochastic matrix is a square matrix with nonnegative real numbers that the summation of elements in
each of its rows and columns equals to 1.
2The trading cycle is a sequence of agent/object pairs, where each agent prefers (the fraction of) the object
of the next pair to her, in a (probabilistic) deterministic setting. Therefore, each agent is willing to trade (a
probability of getting) her object, in a (probabilistic) deterministic setting, with the agent in the successor
pair. For the very last pair, the next pair is defined to be the very first one.
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If an agent finds her allocation at least as desirable as an allocation of another one, he
does not envy. In other words, for each �∈ �

n and all i , j ∈ N , a random assignment
P ∈ R is envy-free (EF) if Pi �sd

i Pj . If an agent does not find an allocation of another
one strictly better than her own allocation, he does not envy in the weak sense. More
precisely, for each �∈ �

n and all i, j ∈ N , a random assignment P ∈ R is weakly
envy-free (WEF) if Pj �sd

i Pi then Pi = Pj .
Equal treatment of equals (ETE) requires that for each i , j ∈ N with �i=� j the

allocation of both agents i and j are identical: Pi = Pj . Nesterov (2017) introduced
a stronger notion of fairness called strong equal treatment of equals (SETE). An
assignment satisfies SETE if any two agents with identical preferences from the top
object down to some particular one receive identical assignments from the top down
to that object. More formally, a random assignment P satisfies SETE, whenever for
every two arbitrary agents i and j , if the first kth best object of agent i and j are the
same, then for all objects a with rank less than or equal to k in preference of agent i ,
i.e. rk(a,�i ) ≤ k, we have pia = p ja .

3 Favoring ranks in random assignment problems

We introduce two new notions of ex-post fairness, namely ex-post favoring ranks
(EFR) and robust ex-post favoring ranks (REFR). We consider a random assignment
fair if it admits a convex decomposition over favoring higher ranks (FHR) determin-
istic assignments: A random assignment is ex-post favoring ranks if it is equal to a
lottery of some FHR deterministic assignments. We also say a mechanism (rule) is
EFR whenever for every preference profile, it outputs an EFR random assignment.
A random assignment is REFR if all its decompositions are into FHR deterministic
assignments. When a random assignment is REFR, it is guaranteed that any of its
possible realizations leads to deterministic assignments that all favor higher ranks.

This idea of FHR was first codified by Kojima and Ünver (2014): A deterministic
assignment � is favoring higher ranks when for some agent j and object b, � assigns
b to j , i.e., � jb = 1, while there is another agent i who prefers b more, i.e., rk(b,�i )

< rk(b,� j ), then � does not assign to i any inferior object, such as c that rk(c,�i )

> rk(b,�i ), i.e., �ic = 0. Note that the notion of FHR differs from EF. Lemma 1
depicts this difference.

Lemma 1 For deterministic assignments, EF implies FHR, but the reverse does not
hold.

Proof Suppose that � is EF and assigns b to j , i.e., � jb = 1, while there is another
agent i who prefers b more, i.e., rk(b,�i ) < rk(b,� j ). Assume that for some object
a, we have �ia = 1. Since � is EF, agent i does not envy agent j and thus rk(a,�i )

< rk(b,�i ), and therefore � does not assign to i any inferior object, such as c that
rk(c,�i ) > rk(b,�i ), i.e., �ic = 0. Note that the reverse does not hold. For these
preferences

1 : a �1 b
2 : a �2 b

, (1)
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the deterministic assignment that gives a to agent 1 and b to agent 2 favors higher rank
while it is not envy-free since agent 2 envies agent 1.

The interim favoring ranks (IFR) concept of Harless (2018)3 could be considered as
one of the possible extensions of FHR for random assignments: A random assignment
P is interim favoring rankswhenfor every agent j and object b, if P assigns b to j , i.e.,
p jb > 0,while there is another agent i whoprefersbmore, i.e., rk(b,�i ) < rk(b,� j ),
then P does not assign to i any inferior object, such as c that rk(c,�i ) > rk(b,�i ),
i.e., pic = 0. The next Lemma shows that the notion of IFR is different from EF and
WEF, as none of them could imply the other one.

Lemma 2 There exists an IFR assignment that fails to be EF or WEF, and there exists
an EF and WEF assignment that fails to be IFR.

Proof The random assignment

P =
(
1/2 1/2
1/2 1/2

)

,

for these preferences
1 : a �1 b
2 : b �2 a

,

is both EF and WEF but not IFR since there is a chance that the random assignment
gives object b to agent 1, i.e., p1b > 0, and while agent 2 prefers b more, rk(b,�2)

< rk(b,�1), P assigns her the inferior object a, p2a > 0. Moreover, the random
assignment

P =
(
1/4 3/4
3/4 1/4

)

,

for preferences (1), is IFR but it is neither EF since agent 1 envies agent 2, i.e.,
P2 �sd

1 P1, nor WEF since P2 �sd
1 P1 but P2 �= P1.

Example 1 shows that IFR is different from EFR as well.

Example 1 A random assignment which is not IFR but it is a lottery of FHR deter-
ministic assignments.

Let N = {1, 2, 3, 4} be the set of agents and A = {a, b, c, d} be the set of objects.
For these preferences,

1 : a �1 b �1 d �1 c
2 : d �2 a �2 b �2 c
3 : a �3 d �3 b �3 c
4 : d �4 b �4 a �4 c

, (2)

3 Harless (2018) named itRespect for Rank However, tomake the connectionwith Kojima andÜnver (2014)
clearer, we rename this concept to interim favoring rank.
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we could think of a random assignment

P =

Not IFR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

1/2 0 1/2 0
0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2

⎞

⎟
⎟
⎠ = 1

2

FHR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ + 1

2

FHR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠, (3)

which is not IFR since agent 1 ranksb higher than agent 2 does, i.e., rk(b,�1) <

rk(b,�2), but P assignsb to agent 2with positive probability, i.e., p2b > 0,while gives
agent 1 her inferior object c, i.e., rk(c,�1) > rk(b,�1), with positive probability,
i.e., p1c > 0. However, P can be represented as a lottery over two deterministic
assignments, both favor higher ranks. Therefore, for this realization of the lottery, no
agent could have a valid rank-based complaint that what she prefers more, has been
given to another agent who has a lower rank for it in her preference.

Example 1 gives us another reason to be interested in EFR or REFR.We believe that
IFR is quite strict, as the random assignment in Example 1 is not IFR, but it could be
decomposed into deterministic assignments that all favor higher ranks. Moreover, we
typically face impossibilities where various desiderata are not compatible with each
other. A very fair mechanism, in the sense of IFR, might come at the cost of losing
other properties. Therefore, as REFR and EFR are less restricted fairness notions, they
make it more probable to fulfill other desirable properties.

While the notion of FHR captures a new kind of fairness, it fails to provide a
fair division in a setting where some agents have the same preference over a set of
objects. Randomization over different possible deterministic assignments could give
these agents more chance to get their favorite objects and increase fairness. IFR is one
way to make lottery over some deterministic assignments that prioritizes entitlements
to objects according to their rank. The main concern in IFR is to eliminate ex-ante
dissatisfaction of each agent due to receiving a less preferred object while her more
preferred one has been handed to another agent who prefers it less. However, EFR
addresses this concern from the ex-post perspective.

4 Characteristics of (robust) ex-post favoring ranks

As Fig. 1 illustrates, there is a hierarchy of relationships between different notions of
efficiency, while so far there has not been similar notions for fairness in the literature
to build an analogous hierarchy upon. In this Section, we characterize EFR and REFR
and deduce their relationship with different notions of efficiency, according to Fig. 1,
as well as strategy-proofness and fairness notions

We already know that OE implies REP. Couldwe draw the same logical relationship
for IFR and REFR as well? The first Proposition confirms that we have the same
resemblance.

Proposition 1 IFR implies REFR but not conversely.

Proof See the Appendix. 	
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Fig. 1 Analogy between notions of efficiency and fairness

Now it is clear that IFR implies REFR (Proposition 1) and OE (Harless 2018), and
REFR implies EFR by definition, and REP (since a REFR random assignment could
be decomposed into FHR deterministic assignments which are all Pareto efficient).
Moreover, REP is a logical consequence of OE. In order to have a complete picture of
how all these different notions are associated, we should examine, on the one hand,
how REFR and EFR are related to OE, and on the other hand, how EFR is linked to
REP. Proposition 2 addresses all these relationships.

Proposition 2 There exist

(i) REFRassignments that fail to beOE, and there existOEassignments that fail to be
REFR. A random assignment that satisfies both OE and REFR is not necessarily
IFR.

(ii) EFR assignments that fail to be OE, and there exist OE assignments that fail to
be REFR. A random assignment that satisfies both OE and EFR is not necessarily
IFR.

(iii) EFR assignments that fail to be REP, and there exist REP assignments that fail to
be EFR. A random assignment that satisfies both REP and EFR is not necessarily
REFR.

Proof See the Appendix. 	

Proposition 2 shows that neither REFR nor OE implies the other one, and their

combination is not necessarily IFR. Moreover, because REFR implies EFR, an IFR
random assignment is EFR as well. While IFR random assignment is also OE, the
question arises whether EFR or OE might indicate the other one and if not whether
their combination always implies IFR. Proposition 2 shows that none of these two
conjectures are indeed the case.

It is also trivial that EFR implies EP (since an EFR random assignment has a
decomposition into FHR deterministic assignments which all are Pareto efficient).
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Fig. 2 Relationship of EFR and
REFR with notions of
efficiencies

Fig. 3 Relationship of EFR and
REFR with EF and WEF

Therefore, we could summarize our characteristics of EFR and REFR with respect to
IFR and different notions of efficiency in Fig. 2.

The following impossibility result states that EFR is not logically related toEF since,
for some profile of preferences, no mechanism could provide a random assignment
that meets both EFR and EF.

Proposition 3 EFR and EF are logically unrelated.

Proof See the Appendix. 	

As it is mentioned in Lemma 2, IFR is compatible with neither EF nor WEF.

Therefore, EFR and REFR are new fairness concepts that are logically distinct from
IFR, EF, andWEF. Figure 3 gives us a broad picture of how to associate these different
notions of fairness.

Bogomolnaia and Moulin (2001) (Theorem 2, page 310) proved that no mecha-
nism meets ordinal efficiency, strategy-proofness, and ETE. However, their proposed
Probabilistic Serial (PS) mechanism satisfies ordinal efficiency together with EF and
WSP. As Nesterov (2017) showed that EF implies SETE, OE is possible with SETE
andWSP as well. Our following impossibility result states that EFR, SETE, andWSP
are not possible. The impossibility also proves that SP mechanisms do not necessarily
provide an EFR random assignment.

Theorem 1 (i) For at least four agents, EFR, SETE, and Weak Strategy-proof are not
compatible.

(ii) For at least three agents, there is no strategy-proof mechanism that always yields
an EFR assignment.
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Proof See the Appendix. 	

We already showed impossibility results with strategy-proof, which is a demanding

property to fulfill. There might also be other (im)possibilities in light of other possible
combinations of axioms without strategy-proofness. While there is no strategy-proof
mechanism thatmeetsOEandETE, one could examinewhether there is a non-strategy-
proof mechanism that satisfies OE, EFR, and EF (or any weaker notions such as SETE
or ETE).

5 The revised bostonmechanism

The twobest-knownmechanisms for the assignment problem, namely the Probabilistic
Serial (PS) mechanism of Bogomolnaia and Moulin (2001), and the Random Prior-
ity (RP) mechanism of Zhou (1990), satisfy EF and WEF, respectively. Could these
mechanisms provide a fair random assignment, in the sense of EFR or REFR as well?
Example 2 shows that PS and RP do not care whether objects are received by those
agents who have the highest ranks for them.

Example 2 The PS and RP mechanisms are neither EFR nor REFR.
For the preferences profile

1 : a �1 b �1 c
2 : a �2 c �2 b
3 : b �3 a �3 c

, (4)

we have the following random assignments from running PS and RP:

PS =
⎛

⎝
1/2 1/4 1/4
1/2 0 1/2
0 3/4 1/4

⎞

⎠ = 1

4

Not FHR but Pareto
︷ ︸︸ ︷⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ + 1

4

FHR and Pareto
︷ ︸︸ ︷⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ + 1

2

FHR and Pareto
︷ ︸︸ ︷⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠

RP =
⎛

⎝
1/2 1/6 1/3
1/2 0 1/2
0 5/6 1/6

⎞

⎠ = 1

6

Not FHR but Pareto
︷ ︸︸ ︷⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ + 1

3

FHR and Pareto
︷ ︸︸ ︷⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ + 1

2

FHR and Pareto
︷ ︸︸ ︷⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ .

The first deterministic matrix in both decompositions is not FHR, since agent 1 gets
object b which agent 3 prefers it more and nevertheless agent 3 has been given
a less preferable object c. Because both random assignments have a deterministic
assignment in their support which does not favor higher ranks, the output of the PS
and RP mechanisms do not satisfy EFR. Moreover, as their decomposition is unique,
these mechanisms do not provide REFR as well.

We introduce a revised Boston mechanism4 with single tie-breaking that satisfies
EFR. Let us think of objects as schools and agents as students, where there is only

4 The Boston mechanism has different variations, which are different, especially in terms of strategy-
proofness (Mennle and Seuken, 2018; Dur, 2019). In its standard version, first, each school reports its strict
priority ordering of students and each student submits his preference ranking over schools. Then, at Step 1,
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one copy of each object (only one seat in each school), and objects (schools) do not
have any priorities over agents (students). As they are indifferent over their applicants,
they will randomize between them in case of a tie. Here is the formalization of our
proposed revised Boston mechanism:

Given an object, say a ∈ A, a subset of all agents, say B ⊆ N , and a preference
profile�, we demonstrate the most rightful agents to get a, i.e., those agents who have
the highest rank for it, by

M (a, B,�) = {
i ∈ B | ∀ j ∈ B : rk(a,�i ) ≤ rk(a,� j )

}
.

An ordering (line-up) of N is a one-to-one mapping σ from {1, 2, . . . , n} to N . We
refer to the set of all orderings by θ . For the set of objects A, we recursively define

• A1 = {a ∈ A | ∃i ∈ N rk(a,�i ) = 1},
• A2 = {a ∈ A | ∃i ∈ N rk(a,�i ) = 2}\ A1,
• …
• Ak = {a ∈ A | ∃i ∈ N rk(a,�i ) = k}\⋃

1≤t≤k−1 A
t .

Informally, Ak is the set of k-best objects of some agents which are not the t-best
objects of any other agent for any t < k. One may note that this recursive definition is
partitioning A, as A = ⋃

1≤t≤n At and Ak ∩ Al = ∅ for k �= l. Hence, for each object
a ∈ A, we define s(a) to be a number that a ∈ As(a).

A higher-rank ordering (line-up) of A is a one-to-one mapping δ from {1, 2, . . . , n}
to A where for every objects a, b we have s(a) < s(b) if and only if δ−1(a) < δ−1(b).
we refer to the set of all higher-rank orderings by �.

Given a line σ ∈ θ of agents, a line δ ∈ � of objects, and a preference profile �,
we assign the kth object in line δ to L(k)th agent in line σ where L(k) is inductively
defined as follows

• L(1) = min{t | σ(t) ∈ M(δ(1), N ,�)},
• …
• L(k+1)=min{t | σ(t) ∈ M(δ(k+1), N\{σ(L(1)), σ (L(2)), . . . , σ (L(k))},�)}.
We refer to this deterministic assignment by �(σ,δ,�) where �(σ,δ,�)(δ(k)) =

σ(L(k)) for all 1 ≤ k ≤ n, which assigns the kth object in the line δ to the L(k)th
agent in the line σ . The summation of all these matrixes weighted by their relative
probability of incidence, gives us the final random assignment matrix, denoted by

P(�). We define it as P(�) = 1

|θ |
1

|�|
∑

σ∈θ,δ∈� �(σ,δ,�).

It is obvious that given σ and δ, and a preference profile �, �(σ,δ,�) is a unique
deterministic assignment. As P(�) is a convex combination of all �(σ,δ,�) for all

Footnote 4 continued
each student applies to his first best school while schools admit students, following their priority order, until
there is left neither a seat nor a student who has listed that school as his first choice. At Step k, each of
remaining student who has been rejected at step k − 1, applies to his kth best school even though it might
not have any seat left. Each school considers students who have listed it as their kth choice and assigns
remaining seats to these students, one at a time following their priority order, until there is left neither a
seat nor a student who has listed that school as his kth choice. The algorithm terminates when no student
applies to a school.
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σ ∈ θ , δ ∈ �, P(�) is also unique. Therefore, our proposed mechanism is well-
defined.

Informally, our mechanism works as follows: we randomly choose a line-up of
agents σ from θ , and a higher-rank line-up of objects δ from �. Then, the first object
in the line δ, i.e., δ(1), is assigned to the first agent in σ , say i , that rk(δ(1),�i ) <

rk(δ(1),� j ) for all other agents j . The agent i leaves the line σ with her assigned
δ(1). Then, second object in line δ, i.e., δ(2), is assigned to the first agent in the
remaining σ who ranks δ(2) higher than all other agents in the line, and so on. In the
end, we are left with a deterministic assignment matrix that satisfies FHR.

Example 3 demonstrates how this revised Boston mechanism works.

Example 3 For the preference profile (4), with N = {1, 2, 3}, we have 6 possible
line-ups. Given A = {a, b, c}, we recursively define
• A1 = {a ∈ A | ∃i ∈ N rk(a,�i ) = 1} = {a, b} ,
• A2 = {a ∈ A | ∃i ∈ N rk(a,�i ) = 2}\A1 = {a, b, c} \ {a, b} = {c} ,
• A3 = {a ∈ A | ∃i ∈ N rk(a,�i ) = k}\⋃

1≤t≤k−1 A
t = {b, c} \ ({a, b} ∪ {c})

= ∅.

Therefore s(a) = s(b) = 1 and s(c) = 2. There are two possible higher-rank order-
ings in this case, i.e., � = {[a, b, c] , [b, a, c]}. For now, let us take δ1 = [a, b, c].

We arbitrarily line up all agents, e.g., σ1 = [1, 2, 3], that means agent 1 is the first
one in the line, agent 2 is the second one in the line, and agent 3 is the third one in
the line. We also define inductively

• L(1) = min{t | σ1(t) ∈ M(a, N ,�)} = 1 ,
• L(2) = min{t | σ1(t) ∈ M(b, N\ {L(1)} ,�)} = 3
• L(3) = min{t | σ1(t) ∈ M(c, N\{L(1), L(2)},�)} = 2.

We could then define the corresponding deterministic assignment, as �(σ,δ,�)(a) =
σ(1), �(σ,δ,�)(b) = σ(3), and �(σ,δ,�)(c) = σ(2):

�(σ1,δ1,�) =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ .

As long as agent 1 stands before agent 2 in the line, e.g., for σ2 = [1, 3, 2], and
σ3 = [3, 1, 2], we get the same deterministic assignment �(σ1,δ1,�). For σ4 = [3, 2, 1],
we define

• L(1) = min{t | σ4(t) ∈ M(a, N ,�)} = 2 ,
• L(2) = min{t | σ4(t) ∈ M(b, N\ {L(1)} ,�)} = 1
• L(3) = min{t | σ4(t) ∈ M(c, N\{L(1), L(2)},�)} = 3.

We could then define the corresponding deterministic assignment, as �(σ4,δ1,�)(a) =
σ(2), �(σ4,δ1,�)(b) = σ(1), and �(σ4,δ1,�)(c) = σ(3):

�(σ4,δ1,�) =
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ .
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As long as agent 2 stands before agent 1 in the line, e.g., for σ5 = [2, 1, 3], and
σ6 = [2, 3, 1], we get the same deterministic assignment �(σ4,δ1,�).

Now, let us take δ2 = [b, a, c]. It is easy to show that �(σl ,δ1,�) = �(σl ,δ2,�), for all
l = 1, 2, . . . , 6, i.e., all possible line-ups of agents. Note that we had two line-ups for
objects and six line-ups for agents, i.e., |�| = 2 and |θ | = 6 . Therefore, we could
define the final random assignment, as

P(�) = (1/2)(1/6)
∑

6

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ + 6

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ =
⎛

⎝
1/2 0 1/2
1/2 0 1/2
0 1 0

⎞

⎠ .

We could now prove that our proposed mechanism, in the deterministic setting,
provides FHR matrixes.

Proposition 4 Given σ ∈ θ , δ ∈ � and a preference profile �, the deterministic
assignment �(σ,δ,�) satisfies FHR.

Proof For simplicity of notation, we refer to the matrix of the assignment �(σ,δ,�)

simply by �. Let for some arbitrary agent j and arbitrary object b, � jb = 1 (i.e.,
�(σ,δ,�)(b) = j). Also, suppose that for some agent i , rk(b,�i ) < rk(b,� j ). Let
also c be an object where rk(b,�i ) < rk(c,�i ). To prove that�(σ,δ,�) satisfies FHR,
we should show that �ic = 0 (i.e., �(σ,δ,�)(c) �= i). Suppose that it is not the case,
i.e., �ic = 1.

Let δ−1(b) = v1, δ−1(c) = v2, σ−1( j) = z1 , and σ−1(i) = z2. Since �ic = 1,
by definition of �(σ,δ,�), we have

L(v2)=min {t | σ(t) ∈ M(c, N−{σ(L(1)), σ (L(2)), . . . , σ (L(v2 − 1))} ,�)}= z2,

which implies

i ∈ N − {σ(L(1)), σ (L(2)), . . . , σ (L(v2 − 1))}. (5)

Similarly as � jb = 1, we have

L(v1)=min {t | σ(t) ∈ M(b, N−{σ(L(1)), σ (L(2)), . . . , σ (L(v1 − 1)} ,�)}= z1,

which implies

j ∈ M(b, N − {σ(L(1)), σ (L(2)), . . . , σ (L(v1 − 1)},�).

As rk(b,�i ) < rk(b,� j ), if i ∈ N−{σ(L(1)), . . . , σ (L(v1 − 1)}, by definition of
M , j /∈ M(b, N −{σ(1), . . . , σ (v1−1)},�). Thus, i ∈ {σ(L(1)), . . . , σ (L(v1−1)}.
Moreover, from (5), we know i /∈ {σ(L(1)), . . . , σ (L(v2 − 1))}. Therefore, we must
have v2 < v1, and since δ is a higher-rank line up, we should have s(c) < s(b) which
contradicts with rk(b,�i ) < rk(c,�i ), and thus �ic = 0. 	
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The outcome of our proposed mechanism is simply EFR, by definition. Corollary
1 formalizes this idea which is trivial to prove.

Corollary 1 The random assignment P(�) = 1

|θ |
1

|�|
∑

σ∈θ,δ∈� �(σ,δ,�) satisfies

EFR.

Proof Since for all σ ∈ θ , δ ∈ �, and a preference profile �, the determin-
istic assignment �(σ,δ,�) satisfies FHR, thus the random assignment P(�) =
1

|θ |
1

|�|
∑

σ∈θ,δ∈� �(σ,δ,�) which is convex combinations of �(σ,δ,�) satisfies EFR.

	


6 Conclusion

In a deterministic assignment of indivisible objects, it is quite difficult to make a fair
assignment, ex-post, regardless of how we define fairness. Therefore, lotteries have
been used to make a fair random assignment. While the literature on the random
assignment of indivisible goods is concentrated on ex-ante fairness, in this paper, we
introduce two notions of ex-post fairness, namely ex-post favoring ranks (EFR) and
robust ex-post favoring ranks (REFR), which are based on a fairness notion, called
favoring higher rank (FHR), introduced by Kojima and Ünver (2014). A random
assignment is EFR if it is equal to a lottery over some FHR deterministic assignments.
A random assignment is REFR if all its decompositions are lotteries over FHR deter-
ministic assignments. Therefore, REFR is a stronger notion of fairness that makes sure
that all of its possible deterministic realizations favor higher ranks.

We assess how our proposed notions of fairness are related to different notions of
efficiency. We found that (robust) ex-post favoring ranks is a refinement of (robust)
ex-post Pareto while it is not logically related to ordinal efficiency. Moreover, ex-post
favoring ranks is not logically associated with robust ex-post Pareto. We demonstrated
that the logical relationship between ex-post favoring ranks, robust ex-post favoring
ranks, interim favoring ranks (IFR), in the sense of (Harless 2018), and favoring higher
rank is similar to the logical relationship between ex-post Pareto efficiency, robust ex-
post Pareto efficiency, ordinal efficiency, and deterministic Pareto efficiency.

Furthermore, we showed that IFR is a refinement of REFR while the latter is not
logically related to (weak) envy-freeness. We also proved two impossibility results
that, for at least three agents, firstly, EFR, strong equal treatment of equals, and weak
strategy-proof are not compatible. Secondly, there is no strategy-proof mechanism
that always yields an EFR random assignment. Finally, we proposed and formalized a
revised version of the Boston mechanism and proved that it provides an EFR random
assignment.

Appendix: omitted proofs

Proof of Proposition 1 We prove that every decomposition of an IFR random assign-
ment is a lottery over deterministic assignments that favor higher ranks. An IFR
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random assignment P could be decomposed into deterministic assignments, P =∑k
l=1 λl�l where

∑k
l=1 λl = 1. Suppose for some l , where λl �= 0, �l does not

favor higher ranks. Then, in this deterministic assignment, there are agents i and j ,
such that i could object j in the sense that for some object b and c, (�l) jb = 1 and
rk(b,�i ) < rk(b,� j ), while (�l)ic = 1where rk(c,�i ) > rk(b,�i ). Now, consider
the random assignment P. Since (�l) jb = 1, we have p jb ≥ λl(�l) jb = λl > 0,
and since P is IFR, we must have pic = 0. However, as (�l)ic = 1, we have
pic ≥ λl(�l)ic = λl > 0, which is a contradiction.

We show the other direction by a counterexample: Take a random assignment (3) for
the preference profile (2). The support of P has only four following deterministic
assignments:

�1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟
⎟
⎠ , �2 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

�3 =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ , �4 =

⎛

⎜
⎜
⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

where all favor higher ranks, and therefore P is REFR. However, P is not IFR since
while rk(b,�1) < rk(b, ,�2) and p2b > 0, we have p1c > 0 where rk(c,�1) >

rk(b, ,�1). QED.

Proof of Proposition 2 (i) For the preference profile

1 : a �1 b �1 c �1 d
2 : a �2 c �2 b �2 d
3 : b �3 c �3 d �3 a
4 : b �4 d �4 a �4 c

, (6)

the random assignment

P =

⎛

⎜
⎜
⎝

0 0 1 0
1 0 0 0
0 1/2 0 1/2
0 1/2 0 1/2

⎞

⎟
⎟
⎠ = 1

2

FHR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠ + 1

2

Not FHR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞

⎟
⎟
⎠, (7)

is not REFR since it has a decomposition with the deterministic assignment which is
not FHR: the second deterministic matrix is not FHR: agent 1 gets object c which
agent 3 prefers it more while the latter has been given a less preferable object d .

However, P is OE since it is acyclic: we only have aτ (P,�1) c (since a �1 c and
p1c > 0), bτ (P,�1) c (since b �1 c and p1c > 0), bτ (P,�3) d (since b �3 d and
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p3d > 0), cτ (P,�3) d (since c �3 d and p3d > 0), and τ (P,�4) (since b �4 d
and p4d > 0) which do not make a cycle.

For the preference profile
1 : a �1 b �1 c �1 d
2 : c �2 b �2 d �2 a
3 : c �3 d �3 b �3 a
4 : a �4 d �4 b �4 c

, (8)

the random assignment

P =

⎛

⎜
⎜
⎝

1/2 1/2 0 0
0 0 1/2 1/2
0 1/2 1/2 0
1/2 0 0 1/2

⎞

⎟
⎟
⎠ = 1

2

FHR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠ + 1

2

FHR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞

⎟
⎟
⎠ (9)

is not OE since P is not acyclic: we have bτ (P,�2) d (since b �2 d and p2d > 0),
dτ (P,�3) b (since d �3 b and p3b > 0), which make a cycle.

Yet, P is REFR since it has a unique decomposition (9) into FHR deterministic
assignments: We must give a to either to agent 1 or agent 4, since if we give it to agent
2 or agent 3, a trade happens as both agents 2 and 3 know a as their worst choice,
while agents 1 and 4 know a as their first best choice. On the one hand, once we give
a to agent 1 , as p2b = p4b = 0, we have to give b to agent c, and as p4c = 0 we
only have one choice to give c to agent 2 and finally d to agent 4. On the other hand,
once we give a to agent 4 , as p1d = p3d = 0 we have to give d to agent 2, and since
p1c = 0 we only have one choice to give c to agent 3 and finally give b to agent 1.

For the preference profile
1 : a �1 d �1 c �1 b
2 : c �2 a �2 d �2 b
3 : c �3 d �3 b �3 a
4 : a �4 c �4 b �4 d

,

the random assignment

P =

⎛

⎜
⎜
⎝

1/2 0 0 1/2
0 0 1/2 1/2
0 1/2 1/2 0
1/2 1/2 0 0

⎞

⎟
⎟
⎠ = 1

2

FHR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟
⎟
⎠ + 1

2

FHR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟
⎟
⎠

is OE since it is acyclic: we have aτ (P,�1) d (since a �1 d and p1d > 0 ),
cτ (P,�2) d and aτ (P,�2) d (since c �3 d �3 a and p2d > 0), cτ (P,�3) b
and dτ (P,�3) b (since c �3 d �3 b and p3b > 0), and finally aτ (P,�4) b and
cτ (P,�4) b (since a �4 c �4 b and p4b > 0), which do not make a cycle.

P is also REFR since it has a unique decomposition into FHR deterministic assign-
ments: The decomposition of P is also unique: We must give a to either to agent 1 or
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agent 4, since if we give it to agent 2 or agent 3 , a trade happens. On the one hand,
once we give a to agent 1, as p3d = p4d = 0, we have to give d to agent 2, and as
p1c = p4c = 0 we only have one choice to give c to agent 3 and finally b to agent 2.
On the other hand, once we give a to agent 4, as p1b = p2b = 0 we have to give b
to agent 3, and since p1c = 0 we only have one choice to give c to agent 3 and finally
give d to agent 1.

However, P is not IFR since p2d > 0 , and while agent 3 ranks d higher than agent
2 does, i.e., rk(d,�3) < rk(d,�2), P assigns an inferior object b, i.e., rk(b,�3) >

rk(d,�3), to agent 3 with a positive probability.

i i) For the preference profile (6),the random assignment (7) is OE not EFR since in its
only possible decomposition into deterministic assignments, there is a deterministic
matrix which does not favor higher ranks. For the preference profile (8), the random
assignment (9) is not OE since it is not acyclic, while it has a decomposition into FHR
deterministic assignments.

We already showed in Example 1 that an assignment (3) for the preferences profile
(2) is not IFR while it is EFR. We now show that it is also OE as it is acyclic: we
only have aτ (P,�1) c, bτ (P,�1) c, dτ (P,�1) c, (since a �1 b �1 d �1 c and
p1c > 0), dτ (P,�2) b, aτ (P,�2) b (since d �2 a�2 b and p2d > 0), aτ (P,�3) c,
dτ (P,�3) c, and bτ (P,�3) c, (sincea �3 d �3 b �3 c and p3b > 0), dτ (P,�4) b
(since d �4 b and p4b > 0) which do not make a cycle.

i i i) We show both directions by counterexamples: For the preference profile (6),
the random assignment (7) is robust ex-post Pareto efficient since both determinis-
tic assignments in its only decomposition are Pareto efficient. However, it is not EFR
as there exists a deterministic assignment in its decomposition, which is not FHR.

For the preference profile
1 : a �1 d �1 b �1 c
2 : c �2 b �2 d �2 a
3 : c �3 d �3 b �3 a
4 : a �4 b �4 c �4 d

,

the random assignment

P =

⎛

⎜
⎜
⎝

1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2
1/2 1/2 0 0

⎞

⎟
⎟
⎠ = 1

2

FHR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞

⎟
⎟
⎠ + 1

2

FHR
︷ ︸︸ ︷⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟
⎟
⎠

= 1

2

Not Pareto
︷ ︸︸ ︷⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞

⎟
⎟
⎠ + 1

2

Pareto
︷ ︸︸ ︷⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞

⎟
⎟
⎠,
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is EFR since there it has a decomposition into FHR deterministic assignments. How-
ever, P is not REP since there is a decomposition of it that admits a non-Pareto optimal
deterministic assignment consistent with it.

For the preference profile (6), the random assignment

P =

⎛

⎜
⎜
⎝

1/2 0 1/2 0
1/2 0 1/2 0
0 1/2 0 1/2
0 1/2 0 1/2

⎞

⎟
⎟
⎠ = 1

2

Not FHR but Pareto
︷ ︸︸ ︷⎛

⎜
⎜
⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞

⎟
⎟
⎠ + 1

2

FHR and Pareto
︷ ︸︸ ︷⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠

= 1

2

FHR and Pareto
︷ ︸︸ ︷⎛

⎜
⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠ + 1

2

FHR and Pareto
︷ ︸︸ ︷⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞

⎟
⎟
⎠,

has only two possible decompositions where in both all deterministic assignments are
Pareto while there is a deterministic assignment in the first decomposition that does
not favor higher ranks. Therefore, P is REP and EFR, but not REFR. QED.

Proof of Proposition 3 Suppose for the preferences profile,

1 : a �1 b �1 . . .

2 : a �2 b �2 . . .

. . . : . . . . . . . . . . . . . . .

i : b �i a �i . . .

. . . : . . . . . . . . . . . . . . .

n : a �n b �n . . .

,

P is a random assignment where it is both EF and EFR with a decomposition P =∑k
l=1 λl�l where �l is FHR for all l.

On the one hand, since b is the first best object of only agent i , all deterministic
FHR assignments, �l , should assign object b to agent i , which implies that pib = 1
(hence agent i gets all other objects with zero probability, particularly object a, i.e.,
pia = 0). Moreover, any other agent j �= i has no chance to get object b, i.e., p jb = 0;
particularly agent 1, p1b = 0.

On the other hand, since P is EF and object a is the first best of all agents j �= i , the
chance of receiving abject a must be divided equally among all these n − 1 agents,
i.e., p ja = p1a = 1

n−1 . Now, since

p1a + p1b = 1

n − 1
< pia + pib = 1,
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the allocation of agent 1, regarding her preference, does not stochastically domi-
nate the allocation of agent i , agent 1 envies agent i , and P is not EF, which is a
contradiction. QED.

Proof of Theorem 1 (i) Suppose n = |A| = |N | = 4, and mechanism μ is EFR and P
is the output of μ on preference profile:

1 : a �1 b �1 c �1 d
2 : a �2 b �2 c �2 d
3 : b �3 a �3 c �3 d
4 : b �4 a �4 c �4 d

.

We should have pic ≤ 1/4 for i = 1, . . . 4. Without loss of generality, suppose
p1c ≤ 1/4. As μ is EFR and SETE, we have p1a = p2a = 1/2, and p1b = 0.
Now, if agent 1 misreports to �′

1: a �′
1 c �′

1 b �′
1 d, since μ is EFR and SETE,

we have p′
1a = p′

2a = 1/2, p′
1b = 0, and p′

1c = 1/2 . (Since agent 1 prefers c
more than any other agent, in any deterministic FHR assignments, she is assigned
either her first best object a, or her second best object c, i.e., p′

1a + p′
1c = 1.) Now,

we have p′
1a = 1/2 ≥ p1a = 1/2, p′

1a + p′
1b = 1/2 ≥ p1a + p1b = 1/2 , and

p′
1a + p′

1b + p′
1c = 1 > p1a + p1b + p1c = 3/4. Therefore, agent 1 is better off

misreporting.

Now, suppose n > 4, and we have additional agents 5 ,6, . . ., n and objects o5 , o6, …,
on, where oi is the first-best object of each new agent i . Since mechanism μ is EFR
and P is the output of μ on preference profile

1 : a �1 b �1 c �1 d �1 o5 �1 o6 �1 . . . �1 on
2 : a �2 b �2 c �2 d �2 o5 �2 o6 �2 . . . �2 on
3 : b �3 a �3 c �3 d �2 o5 �2 o6 �2 . . . �2 on
4 : b �4 a �4 c �4 d �2 o5 �2 o6 �2 . . . �2 on
5 : o5 �6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 : o6 �6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n : on �n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

,

for i > 4, we should have pioi = 1 and p joi = 0 for j �= i . Otherwise there exits a
deterministic assignment in any decomposition of P that is not favoring higher ranks.
For n ≥ 4, agents 1 to 4 get the very same allocation as when we had n = 4 agents
and objects. Therefore, with the same argument, agent 1 has an incentive to misreport.
Thus, P ′

1 �sd
1 P1 , and μ is not weak-strategy proof.

i i) Suppose that the number of agents and objects is at least three, i.e., n = |A| =
|N | ≥ 3, and for all agents, object a is the first best and object b is the second best. For
every EFR mechanism μ(�) = P, there exists some agent i such that, pia + pib < 1.
(Since if for all agents i , we have pia + pib = 1, as the number of agents is at least
three, then

∑
i∈N pia + ∑

i∈N pib > 2, which contradicts with the fact that matrix
P is bistochastic.) Let us define ε = 1 − (pia + pia) > 0 . For a utility function, ui ,
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which respects the preference �i , let us also assume ui (a) = 10+ ε, ui (b) = 10, and
ui (c) < ε/n for all c ∈ A/ {a, b}. We prove that given ui , agent i has the incentive to
misreport her preference as i : b �′

i a �′
i . . ..

Since P
′ = μ(�′

i ,�−i ) satisfies EFR and b is the first best object of i in �′
i , and not

the first best object of anyone else, she must get it for sure, i.e., p
′
ib = 1, and p

′
id = 0

for d ∈ A/ {b}. Therefore, the (expected) utility of agent i in the assignment P
′
is

Ui (P
′
) = p

′
ibui (b) + ∑

d∈A/{b} p
′
idui (d) = 10. However,

Ui (P) = piaui (a) + pibui (b) +
∑

c∈A/{a,b} picui (c)

= pia (10 + ε) + 10pib +
∑

c∈A/{a,b} picui (c)

= 10 (pia + pib) + piaε +
∑

c∈A/{a,b} picui (c)

< 10 (pia + pib) + piaε +
∑

c∈A/{a,b} pic(
ε

n
)

< 10 (pia + pib) + piaε + (n − 2)(
ε

n
)

< 10 (1 − ε) + ε + ε < 10 = Ui (P
′
).

1-Hence, given the utility function ui , agent i could gain more via misreporting her
preference, and thus it is not possible for the mechanism μ to be both SP and EFR.
QED.
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