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Abstract
In the present study, 2-Arylbenzimidazoline generated in situ from reaction of aromatic aldehydes and o-phenylenediamine 
used as biomimetic reductive agents for reductive alkylation of 2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one for 
synthesis of novel 3-benzyl-2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-ones is described. The main benefits of this 
protocol include simplicity, reaction mildness, high yield, easy work up, and simple purification. The molecular structures 
were characterized by IR spectrophotometry, mass spectrometry, NMR spectroscopy, and elemental analysis.
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Introduction

Heterocycles containing sulfur and nitrogen are highly 
important organic molecules, which are frequently found 
as classes of natural and synthetic organic molecules. 

Specifically, thiazolopyrimidines as fused hybrid heterocy-
cles of pyrimidine and thiazole represent a valuable class 
of interesting biologically active compounds which abun-
dantly exists in nature [1]. These fused ring systems exhibit 
a wide range of bioactivities, that include anti-bacterial, [2] 
antiviral, [3] anti-inflammatory, [4, 5] anti-nociceptive [5] 
anti-tubercular [6], and anti-malarial, [7] activity.

For instance, thiazolopyrimidine containing compounds 
have been reported with activities such as anti-Parkinson, [9] 
and antihistamine, [10] anti-bacterial [11](Figs. 1, 1–3). In 
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addition, thiadiazolopyrimidine as another pyrimidine-fused 
motif is potent anti-bacterial [12], antimicrobial [13] and 
anti-inflammatory [14] with significant inhibitory effects on 
cancer cells. [15] Selected examples of pharmacologically 
active compounds based on fused-thiadiazolopyrimidine and 
related scaffolds possessing antimicrobial [16] and antidia-
betic activities [17]are depicted (Fig. 1, 4 and 5).

Selective reductive alkylation of organic compounds is 
an important reaction in synthetic organic chemistry. Today, 
metal-free biomimetic hydrogenation of olefins is considered 
as a major area of research, especially in green chemistry. 
Heterocyclic compounds with hydrogenation potential such 
as 1,4-dihydropyridine known as the NAD(P)H model and 
dihydrobenzazole derivatives are commonly used as biomi-
metic reductive agents for the selective reduction of organic 
compounds [18–20]. Many of these compounds contribute 
significantly to bio-antioxidation and biological processes 
and naturally exist in different forms such as flavin adenine 
dinucleotide, [21] nicotinamide adenine dinucleotide, [22] 
ascorbic acid (vitamin C) [23]and tetrahydrofolate. [24] 
A large body of literature has been dedicated to different 
types of synthetic hydride donors such as five membered 
heterocycles, including 2,3-dihydrobenzo[d]thiazoles, 
2,3-dihydrobenzo[d]oxazoles, and 2,3-dihydrobenzo[d]imi-
dazoles [25–31] and six membered heterocycles, including 
10-methyl-9,10-dihydroacridine, 1-Benzyl-1,4-dihydronic-
otinamide and Hantzsch 1,4-dihydropyridine [32–44].  The 
main disadvantage in these useful reactions is removal of 
pyridine as by-product from the reaction mixture. Recently, 
2-phenylbenzimidazoline (PBI) and other related organic 
hydride reagents have been extensively used to transfer 
hydride to a variety of electron deficient substrates, in the 
presence of catalysts under mild conditions [45].  According 
to this technique, hydrogen atoms are transferred during the 
reduction from the C-2 position of PBI as a hydride [46].  

Ramachary et al. [47] in 2006 reported the direct organo-
catalytic chemo selective cascade of Knoevenagel–hydro-
genation using 2-phenylbenzimidazoline.

Interestingly, LaRochelle et al. [48] have developed ben-
zothiazolopyrimidone platform (Fig. 1, 6), for allosterically 
inhibits SHP2 in vitro and Erk phosphorylation and viability 
of cultured AML cells. Recently, Harutyunyan et al. syn-
thesized 3-benzyl-2-hydroxy-8-methoxy-4H-benzo[4,5]
thiazolo[3,2-a]pyrimidin-4-one as a novel benzothiazolopy-
rimidone derivative via condensation reaction of 2-amin-
obenzothiazoles with Diethyl benzylmalonate. [49] This 
synthetic method suffers from poorer product yields, and 
high reaction temperature.

Inspired by these reports, and in continuation of our 
research in the reaction of heterocyclic 1,3-diones to syn-
thesize useful novel benzothiazolopyrimidone heterocyclic 
compounds, [50–52] herein, we have focused our efforts on 
the design and metal-free and catalyst-free procedure for 
the one-pot synthesis of 3-benzyl-2-hydroxy-4H-benzo[4,5]
thiazolo[3,2-a]pyrimidin-4-one 5aa-dr, via reaction of 
2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one, 
o-phenylenediamine and aromatic aldehydes using in situ 
generated 2-arylbenzimidazoline from o-phenylenediamine 
and arylaldehyde as a highly active biomimetic reducing 
agent (Scheme 1). To our delight, synthesized 3-benzyl-
2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-ones 
can be evaluated for allosterically inhibits SHP2. Synthe-
sized product 5, in particular, could be exploited as allosteri-
cally inhibits SHP2 in vitro and Erk phosphorylation and 
viability of cultured AML cells (Table 2).

Cascade heterocyclic by-products 2-Aryl-benzimidazoles 
4a-r constitutes effective intermediate products in synthe-
sizing muscarinic, anti-fungal and anti-bacterial agonists, 
estrogen antagonists/agonists, and inhibitors of HIV-1 
reverse transcriptase, treating physiological disorders and 

Fig. 1   Some biologically active 
thiazolopyrimidine and thia-
diazolopyrimidine containing 
compounds
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preventing sleep apnea [53, 54]. A comprehensive review of 
literature showed no detailed studies on utilizing 2-hydroxy-
4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-ones as sub-
strates for synthesizing 3-benzyl-2-hydroxy-4H-benzo[4,5]
thiazolo[3,2-a]pyrimidin-4-ones 5 (Scheme 1, Table 2).

Results and discussions

Initially, a model one-pot reaction was investigated with 
2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one 
(1a), 4-Chlorobenzaldehyde (2b) and o-phenylenediamine 
(3) in (1:2:1) equivalent was stirred in ethanol at reflux for 
2 h, which resulted in the formation of desired product (5ab) 
and by-product (4b) in 95% and 94% yields, respectively 
(Table 1, entries 1). This result shows that the reagents 
have the self and auto-catalytic nature in cascade reactions. 
[55–56] The o-phenylenediamine enable the in situ construc-
tion of Knoevenagel condensation product from one equiva-
lent of each aldehyde and heterocyclic-1,3-dione followed 
by the cascade leading to the desired products 5ab and 4b. 
[47] To evaluate the role of o-phenylenediamine, a reaction 
medium mixture of heterocyclic 1,3-dione 2b with 4-Chlo-
robenzaldehyde 1a in a molar ratio (1:1) was refluxed in 
ethanol for 4 h in the absence of o-phenylenediamine. It was 
observed that the reaction was not provided any product and 
mostly the starting material was remained.

In order to increase the yield and develop the reaction 
conditions, the model reaction was carried out in polar 
solvents such as MeOH, H2O, EtOH/H2O (1:1), acetoni-
trile, dimethyl sulfoxide (DMSO), dimethylformamide 
(DMF), CHCl3 or under solvent-free conditions (Table 1, 
entries 10–14). It was found that higher product yields were 
obtained in ethanol. Furthermore, we considered the effect 
of temperature on the model reaction in ethanol at ambient 

or higher temperature such as 50 °C and 65 °C. As it can be 
clearly seen from Table 1, the best result was perceived only 
at reflux conditions (Table 1, entries 10–11).

A variety of either aromatic aldehydes were evaluated 
employing the best condition (Table 1, entry 1). A series of 
aromatic aldehydes having both electron-withdrawing and 
electron-donating groups such as Cl, Br, CH3, OCH3, OH, 
(CH3)2N and CN in various positions of the benzene ring 
of benzaldehydes were successfully converted to the cor-
responding products with high yields in short reaction times 
(Table 2, 5aa–5ab, 5ad–5am) except product 5ac in moder-
ate yield (Table 2, entry 3). In addition, polycyclic aromatic 
aldehyde like 2-naphthaldehyde and 1-naphthaldehyde also 
provided the desired products in very high yield (Table 2, 
5an). Heteroaromatic aldehydes like 2-thiophenecarboxal-
dehyde, 4-Pyridinecarboxaldehyde and 3-Pyridinecarbox-
aldehyde also reacted effectively to give their correspond-
ing products 5ao, 5ap and 5aq in 95%, 90 and 95% yields, 
respectively. Also, aliphatic aldehydes such as acetaldehyde 
and butyraldehyde were also examined, but unfortunately 
a tarry complex mixture of products was obtained and no 
desired product was formed at all.

Subsequently, synthetic application of this protocol 
was investigated using three heterocyclic 1,3-dions such 
as 2-hydroxy-8-methoxy-4H-benzo[4,5]thiazolo[3,2-a]
pyrimidin-4-one (1b), 7-hydroxy-2-(m-tolyl)-5H-[1,3,4]
thiadiazolo[3,2-a]pyrimidin-5-one (1c) and 7-hydroxy-
2,3-dihydro-5H-thiazolo[3,2-a]pyrimidin-5-one (1d) instead 
of 2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one 
(1a). As it is clear, these reactions were also carried out with 
high yield (Table 2, 5ba–5dr).

In the final step, we also examined the substituent effect 
on the reductive alkylation by arylbenzimidazoline using 
three various o-phenylenediamine and five various benzalde-
hyde under model reaction conditions. As shown in Table 3, 

Scheme 1   Synthesis of 
alkylated benzothiazolopyrimi-
done and benzothiadiazolopy-
rimidone derivatives

4a-r

5aa-dr
24 Examples
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using aldehyde and o-phenylenediamine substituted by 
electron-donating groups decreases the reaction time while 
increasing the yield. (Table 3, entries 1, 4, 7, 10 and 13). In 
contrast, using o-phenylenediamine and aromatic aldehyde 
bearing electron-withdrawing group decreased both the rate 
and the yield of the reaction (Table 3, entries 12 and 15). As 
a result, the substituents significantly influence the hydride 
transfer from C-2 position of benzimidazoline to the electron 
deficient olefin.

The elucidation of the products 5aa–dr were assumed 
from their IR, 1H NMR, 13C NMR spectra, elemental analy-
ses and spectrometry (see ESI). The molecular ion peaks of 
these compounds showed molecular ion peaks at the suit-
able m/z values in their mass spectra. Spectroscopic data 
obtained for the products is exemplified by that for com-
pound 5aa where the FT-IR spectrum displayed character-
istic absorption bands for carbonyl groups at 1636 cm−1, 
and 1602 cm−1. The 1H NMR spectrum showed a singlet for 
methylene group protons at δ = 3.77, the characteristic sig-
nals in the aromatic region of spectrum and a broad singlet 
for the enolic OH proton of pyrimidine ring. The 13C NMR 
spectrum of 5aa showed 15 distinct resonances in accord-
ance with the proposed structure. The mass spectrum of 5aa 
exhibited the molecular ion peak at m/z 307 which is con-
sistent with the mass of the suggested product (see ESI).

A plausible mechanism for synthesis of products based on 
of reported literature is proposed in Scheme 2. [58] Firstly, 

the reaction continues by formation of intermediate (6) by 
Knoevenagel condensation between heterocyclic CH acid (1) 
and aromatic aldehyde and at the same time, aldehyde (2) 
and o-phenylenediamine (3) undertake condensation to pro-
duce the reducing agent 2-phenylbenzimidazoline through 
the Schiff-based intermediate (7) which endures intramolec-
ular cyclization and proton transfer. Finally, the biomimetic 
hydrogenation of active olefin 6 is done by 2-Arylbenzimida-
zoline (8) as reducing agent, furnishes the desired product 5.

In summary, we have demonstrated a novel and efficient 
protocol for reductive alkylation of heterocyclic 1,3-diones 
using 2-Arylbenzimidazoline as a biomimetic agent pro-
duced in situ in the reaction medium in an environment-
friendly and catalyst-free synthetic method to achieve the 
desired products which has many applications in the syn-
thesis of natural products, drugs, and strategic materials. 
Easy preparation of reducing agent (in situ), simple purifica-
tion process, no usage of hydrogen gas, the high to excellent 
yields, broad substrate profile, and being catalyst-free are 
among advantages of this protocol.

Experimental general

Melting points were confirmed on an Electro thermal 
type 9100 melting point device and are uncorrected. 
The IR spectra were achieved on an Avatar 370 FT-IR 

Table 1   Optimization of biomimetic reductions alkylation

Reaction conditions: All reactants [1, 2(2 equivalents), 3] and were mixed and stirred at reflux. temperature. 50–94% of 4b was isolated. b sol-
vent [5 ml]. cYield refers to the filtration followed by recrystalyzation in ethanol

 

Entry Solventb T (°C) Time (h) Yield of 
5ab (%)c

1 EtOH Reflux 2 95
2 MetOH Reflux 24 80
3 H2O Reflux 24 60
4 EtOH: H2O (1:1) Reflux 24 70
5 CH3CN Reflux 24 75
6 DMSO 100 24 60
7 DMF 100 24 70
8 CHCl3 Reflux 24 10
9 neat 120 24 50
10 EtOH RT 24 45
11 EtOH 50 24 75
12 EtOH 65 24 85
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Table 2   Cascade in situ Reduction alkylation of 1 with o-Phenylenediamine and a variety of aldehyde

5aa-dr 4(a-r)
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Thermo-Nicolet spectrometer. 1H and 13C NMR spectra 
were run on BRUKER DRX-300 AVANCE spectrometer at 

300 for 1H NMR and 75 MHz for 13C NMR. DMSO-d6 was 
used as solvent. The mass spectra were scanned on a Varian 

Table 2   (continued)
a Reaction condition:1,3-dione (1 mmol), aldehyde (2 mmol), o-phenylendiamine (1 mmol) at reflux temperature (5 ml)
b 75–95% of 4a–o was isolated
c M.p (°C) [Lit.] [Ref.] = 248–250 [255] [57], dM.p (°C) [Lit.] [Ref.] = 276–278 [292–294] [49]

Table 3   Substituent effects on rates of reductive alkylation of electro deficient olefin

a Reaction conditions:1,3-dione (1 mmol), aldehyde (2 mmol), o-phenylendiamine (1 mmol) in ethanol (5 ml) at reflux

 

Entry R1 R2 R3 Time (h) Yield 5 (%)

1 MeO- CH3 CH3 0.5 5al (95)
2 MeO- H H 1 5al (94)
3 MeO- Cl H 3 5al (75)
4 (CH3)2 N- CH3 CH3 1 5am (95)
5 (CH3)2 N- H H 2 5am (95)
6 (CH3)2 N- Cl H 4 5am (65)
7 H CH3 CH3 1 5aa (95)
8 H H H 2 5aa (95)
9 H Cl H 3 5aa (54)
10 Cl CH3 CH3 1 5ab (95)
11 Cl H H 2 5ab (95)
12 Cl Cl H 4 5ab (55)
13 CN CH3 CH3 2 5ad (92)
14 CN H H 3 5ad (93)
15 CN Cl H 4 5ad (45)

Scheme 2   Plausible mechanism 
for the formation of product 5
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Mat CH-7 at 70 eV. 2-hydroxy-4H-benzo[4,5]thiazolo[3,2-
a]pyrimidin-4-one derivatives prepared in accordance with 
the procedures previously reported in literature [59].

General procedure for the synthesis of 4 
and 5

A mixture of heterocyclic1,3-Dione 1 (1 mmol), aromatic 
aldehyde 2 (2 mmol) and o-Phenylenediamine 3 (1 mmol) 
in 5 mL of ethanol was mixed and stirred at reflux. The reac-
tion was monitored by thin-layer chromatography (Hexane/
Ethyl acetate, 10/7). After TCL indicated the completion 
of the reaction, the reaction mixture was cooled down to 
room temperature, the insoluble product (5) filtered out the 
isolated solid from the reaction mixture, washed with cold 
ethanol to give the desired products 5aa–dr in good yield 
(65–97% yield). Then filtrate was concentrated in reduced 
pressure, and the solid residue was purified by plate chro-
matography eluted with n-hexane/ ethyl acetate (10/7) to 
afford pure products 4. High purity products were obtained 
by recrystallization from ethanol to yield (5).

3‑benzyl‑2‑hydroxy‑4H‑benzo[4,5]
thiazolo[3,2‑a]pyrimidin‑4‑one (5aa)

white powder; (0.29  g, 95% yield); mp = 248–250  °C; 
IR(KBr) (ʋ max/cm−1): ʋ = 1636 (C=O), 1602 (C=N); 1H 
NMR (300.13 MHz, DMSO-d6): δ (ppm) 3.77 (2H, s, CH2), 
7.14–7.33 (5H, m, ArH), 7.50–7.57 (2H, m, ArH), 7.98–8.03 
(1H, m, ArH), 8.94–8.99 (1H, m, ArH), 11.98 (1H, s, OH); 
13C NMR (76 MHz, DMSO) δ 28,74, 97.39, 118.87, 123.36, 
124.08, 126.10, 126.92, 127.16, 127.50, 128.50, 128.76, 
136.51, 141.34, 159.89, 162.54, 164.81; (m/z, %), 307 (M, 
47), 305 (100), 275 (68), 248 (29), 201 (72), 176 (98), 130 
(97), 102 (73), 102(72), 91 (95), 65(87), 51 (64), 39 (40), 
29 (94); Anal. Calcd for C17H12N2O2S (307.06): C, 66.22; 
H, 3.92; N, 9.08; S, 10.40%. Found: C, 66.21; H, 3.93; N, 
8.98; S, 10.39.

For physical and spectroscopy data of other product see 
Supplementary Material.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11030-​021-​10246-y.
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