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Abstract. A numerical approach based on Bernstein polynomials ba-
sis is presented to unravel optimal control of nonlinear systems. The
operational matrices of differentiation, integration, and product are in-
troduced. Then, these matrices are implemented to decrease the solution
of the nonlinear optimal control problem to the solution of the quadratic
programming problem which can be solved with many algorithms and
softwares. This method is easy to implement with an accurate solution.
Some examples are included to demonstrate the validity and applicabil-
ity of the technique.
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1. Introduction and Background
One of the most challenging and difficult issues in control theory is the non-
linear optimal control problems (NOCPs) ([3, 13]). Many methods have
been applied to solve optimal control of nonlinear systems, but these meth-
ods can solve a few classes of nonlinear systems. For instance, Lee and
Chang [15] studied a special class of optimal control of nonlinear systems
by employing general orthogonal polynomials. Vlassenbroock and Dooren
used Chebyshev polynomials for solving the NOCPs ([22]). Next, a gen-
eral technique was grown by presenting Block Plus functions for solving the
NOCPs in [21]. Besides, in [2], first the NOCPs transformed to the calculus
of variations problem, then the new problem was solved with discretization
approach. By using Quasilinearisation and Chebyshev polynomials, an ap-
proximation technique was implemented to solve the NOCPs in [11]. Mohan
and Kar applied Block Plus functions and Legendre polynomials to solve the
NOCPs ([17]). Also, using Block Plus functions and Bernoulli polynomials,
NOCPs was solved in [16].
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In recent years, Bernstein polynomials (BPs) and orthogonal functions
have been applied to evaluate various problems. For example, in [7] and [25],
BPs were employed to solve the partial differential equations and fractional
optimal control problems. Furthermore, they were used for solving optimal
control of time-varying singular systems and the nonlinear age-structured
population models [5, 26]. Bhatti [6], presented an approximation technique
to a fractional differential equation by employing fractional BPs matrices.
Additionally, these polynomials were exploited to solve optimal control sys-
tems with constant and Pantograph delays [12]. The cubic B-spline functions
and Bernstein multi-scaling functions were employed in [9] to solve an in-
verse heat condition problem along with the Ritz-Galerkin method. In [20],
a Legendre operational matrices were used to unravel a class of fractional
differential equations. Exerting Taylor series as well as Jacobi polynomials,
operational matrices of Jacobi orthogonal functions were obtained [14, 10].

In the present study, we consider a wide class of NOCPs which most of
them do not have exact solutions, so finding the numerical solutions to these
problems is very useful. Besides, these problems are very interesting to en-
gineers and mathematicians, since most real-world systems in science and
engineering are inherently nonlinear in nature. Using the Bernstein opera-
tional matrices, we obtain a computationally simple and efficient approxi-
mated technique that decreases the NOCPs to the quadratic programming
problem (QPP). To our knowledge, there is no previous work focused on the
use of the QPP based on the BPs basis for solving the NOCPs. Most ap-
proaches were used to solve various optimal control problems numerically,
transform the original problem into the Lagrangian multipliers problem.
Compare with the Lagrangian multipliers method, we do not need to solve
the system of nonlinear algebraic equations which needs more computations
and time. As is well-known, solving the system of nonlinear algebraic equa-
tions is also cumbersome, and sometimes, the solution may be unreliable.
The proposed method in this paper transforms the original NOCPs into the
QPP that can be solved by many subroutine algorithms and software with
an alternative accurate. Using this method is easy and straightforward with
more accuracy and less time and computations. This is because the new ap-
proximated problem only corresponds to the unknown BPs coefficient. This
method only needs a small number of BPs basis to obtain very satisfactory
and efficient results as well.

This paper is organized as follows: we first describe the fundamental
formulation of BPs. Following, we explain the convergence of our method
and, the operational matrices of BPs are introduced. Then, we state the
wide class of NOCPs and introduce the proposed approach based on BPs.



THE NUMERICAL SOLUTION OF NONLINEAR OPTIMAL CONTROL PROBLEMS 3

Eventually, we report numerical examples which show the validity, accuracy,
efficiency, and applicability of the proposed method.

2. Preliminaries
In this section, some preliminaries of the BPs are given which will be used

later

2.1. The properties of the BPs. The BPs of m-th degree on the interval
[0, tf ] is defined as follows: ([7])

Bi,m(t) =

(
m

i

)
1

(tf )m
ti(tf − t)m−i, i = 0, 1, . . . ,m.

Assume
ϕ(t) = [B0,m(t) B1,m(t) . . . Bm,m(t)]T ,

Then ϕ(t) can be written as follows:
(2.1) ϕ(t) = ATm(t),

where
(2.2) Tm(t) =

[
1 t t2 . . . tm

]T
, A = {a(i, j)}m+1

i,j=1,

where (i,j)-th entry of A, a(i, j), defines as follow:

(2.3) a(i, j) =

{
(−1)j−i(tf )

1−j
(

m
i−1

)(
m−i+1
j−i

)
j ≤ i

0 j > i.

Therefore A is an (m+ 1)× (m+ 1) upper triangular matrix.
As is well-known, the BPs form a basis for the vector space of continuous

polynomials which causes that any polynomial can be written as a linear
combination of the BPs basis.

2.2. Function approximation. Presume H = L2[0, tf ] be Hilbert space
with the inner product that is defined by ⟨f, g⟩ =

∫ tf
0 fgdt. Let Y =

span {B0,m, B1,m, · · · , Bm,m}, this set is a finite dimensional and closed sub-
space of H. Hence Y is a complete subspace of H. Suppose f is an arbi-
trary element in H, so f has a unique best approximation out of Y , called
it y0 ∈ Y , that is:

∃ y0 ∈ Y, s.t. ∀y ∈ Y, ∥f − y0∥2 ≤ ∥f − y∥2,

which ∥f∥22 = ⟨f, f⟩, (For more details see [23])
Since y0 ∈ Y , so there exist the unique coefficients c0, c1, . . . , cm such that

(2.4) f(t) ≃ y0 =
m∑
i=0

ciBi,m = cTϕ(t),

where
cT = [c0, c1, . . . , cm].
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The vector cT can be obtained by:

cT ⟨ϕ, ϕ⟩ = ⟨f, ϕ⟩,

where

(2.5) ⟨f, ϕ⟩ =
∫ tf

0
fϕdt = [⟨f,B0,m⟩ ⟨f,B1,m⟩ . . . ⟨f,Bm,m⟩] ,

and ⟨ϕ, ϕ⟩ is an (m+ 1)× (m+ 1) matrix and is called as dual matrix of ϕ.
Let

(2.6) Q = ⟨ϕ, ϕ⟩ =
∫ tf

0
ϕ(t)ϕ(t)T dt,

then one can show that

(2.7) cT = (

∫ tf

0
f(t)ϕ(t)T dt)Q−1.

The next lemma shows that the error between the function and its best
approximation reduces to zero as m increases.

Lemma 2.1. ([12] ) Consider the real valued function f , where f ∈ Cm+1[0, tf ],
and

Y = span {B0,m, B1,m, · · · , Bm,m}. If cTϕ(t) be the best approximation f
out of Y then the mean error bound is presented as follows:

(2.8) ∥f − cTϕ(t)∥2 ≤
Mt

2m+3
2

f

(m+ 1)!
√
2m+ 3

,

where M = max | fm+1(η) |, η ∈ [0, tf ].

2.3. Operational matrices of the BPs. Here, we define operational ma-
trices of BPs. Operational matrices of differentiation D, integration P , dual
Q, and product Ĉ of BPs are receptively defined by:

d

dt
ϕ(t) = Dϕ(t), 0 ≤ t ≤ tf ,(2.9) ∫ t

0
ϕ(x)dx = Pϕ(t), 0 ≤ t ≤ tf ,(2.10)

Q =

∫ tf

0
ϕ(t)ϕ(t)Tdt,(2.11)

CTϕ(t)ϕ(t)T = ϕ(t)T Ĉ,(2.12)

where the details of obtaining these matrices are given in [24].
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3. Problem statement
Consider the following NOCPs,

min J =
1

2

∫ tf

0

[
Px2(t) +Ru2(t)

]
dt,(3.1)

ẋ(t) = l(t)x(t)n + s(t)u(t)m + h(t)x(t)u(t)

+ α(t)x(t) + β(t)u(t)(3.2)
x(0) = x0,(3.3)
x(tf ) = xf ,(3.4)

where x(t) is a state function, u(t) is a control function. We denote the right
hand side of equation(3.2) by f(t, x, u). Thus f is a continues nonlinear time
varying function, where f : A × B × [0, tf ] −→ R, and A ⊆ R, B ⊆ R are
compact subset and must be chosen so that the system reach from initial
state x0 to final state xf . Also l(t), s(t), h(t), α(t), and β(t) are continuous
functions which are the coefficients of x(t)n, u(t)m, x(t)u(t), x(t), and u(t),
respectively, also n and m are integer number and n,m ≥ 0. P and R are
positive constants. The goal is finding the pair of x(t)∗ and u(t)∗ which
minimizes the cost function of (3.1) and satisfies the nonlinear system (3.2)-
(3.4).

4. Approximation solution based on BPs basis
In this section, a new approach based on the BPs basis is presented to
unravel the numerical solution of the NOCPs.
We approximate x(t) and u(t) by X(t) and U(t), respectively. Each X(t)
and U(t) can be written in term of BPs as follows:

x(t) ≃ X(t) = XTϕ(t),(4.1)
u(t) ≃ U(t) = UTϕ(t),(4.2)

where ϕ(t) = [B0,m(t) B1,m(t) . . . Bm,m(t)]T and XT = [χ0 χ1 . . . χm].
Furthermore since l(t), s(t), h(t), α(t), and β(t) in general are not poly-

nomials, we can approximate them by appropriate BPs as follows:

l(t) ≃ LTϕ(t),(4.3)
s(t) ≃ STϕ(t),(4.4)
h(t) ≃ HTϕ(t),(4.5)
α(t) ≃ ATϕ(t),(4.6)
β(t) ≃ BTϕ(t).(4.7)

With using the operational matrix of product (2.12) ,we have:

x2(t) = XTϕ(t)ϕ(t)TX = XT X̂ϕ(t),
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also
x3(t) = XT X̂ϕ(t)ϕ(t)TX = XT X̂2ϕ(t).

By following the above procedure, we have

xn(t) = XT X̂n−1ϕ(t),

so
l(t)xn(t) = XT X̂n−1ϕ(t)ϕ(t)TL = XT X̂n−1L̂ϕ(t).(4.8)

Similarly
um(t) = UT Ûm−1ϕ(t),

and
s(t)u(t)m = UT Ûm−1ϕ(t)ϕ(t)TS = UT Ûm−1Ŝϕ(t).(4.9)

Also, we have:

x(t)u(t) = XT Ûϕ(t),

h(t)x(t)u(t) = XT ÛĤϕ(t). ≤ r,(4.10)

And finally we can write:

α(t)x(t) = XT Âϕ(t),(4.11)
β(t)u(t) = UT B̂ϕ(t).(4.12)

With using the differentiation operational matrix (2.9), we have:

Ẋ(t) =
d

dt
X(t) =

d

dt
(XTϕ(t))

= XT d

dt
ϕ(t) = XTDϕ(t).(4.13)

Thus, for the nonlinear system of equations (3.2)-(3.4), with the above equa-
tions we obtain:

XTDϕ(t) = XT X̂n−1L̂ϕ(t) + UT Ûm−1Ŝϕ(t)

+XT ÛĤϕ(t) +XT ÂTϕ(t) + UT B̂ϕ(t),(4.14)
XTϕ(0) = X0, XTϕ(tf ) = Xf .

With eliminating ϕ and putting the whole of terms on the left hand side of
equalization (4.14), we obtain:

R1 =XTD −XT X̂n−1L̂− UT Ûm−1Ŝ

−XT ÛĤXT ÂT − UT B̂.

Finally, we approximate the objective function (3.1) as follows:

x2(t) = XTϕ(t)ϕ(t)TX,

u2(t) = UTϕ(t)ϕ(t)TU,
(4.15)
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By substituting (4.15) into (3.1), we obtain:

R2 =
1

2
PXT

[∫ tf

0
ϕ(t)ϕT (t)dt

]
X

+
1

2
RUT

[∫ tf

0
ϕ(t)ϕT (t)dt

]
U.

Then (3.1) can be rewritten as follows:

R2 =
1

2
PXTQX +

1

2
RUTQU,

where as (2.11), the matrix Q is as follows:∫ tf

0
ϕ(t)ϕT (t)dt = Q.

Also, we may recall that Q and P are positive definite matrices, so R2 is a
non-negative quadratic form. Now the NOCPs (3.1)- (3.4) can be reduced
to the following nonlinear programming problem.

min M∥R1∥2 +R2,

s.t. XTϕ(0) = x0, XTϕ(tf ) = Xf .
(4.16)

The new problem consists only the entries of the vectors X and U . The
norm we used in this optimization problem is the Euclidean norm, and
M is a penalty parameter. As we see, the approximation technique can
reduce the basic dynamical systems to the QPP. Indeed, since R1 is a linear
equality, and R2 is a non-negative quadratic form, the original problem can
be reformulated as a QPP. The QPP (4.16) can be solved by many softwares,
in this paper we used the package of Mathematica 10 to solve this problem.

Remark 4.1. This approach can be extended to a higher dimensional sys-
tem. Let r, q ∈ N , then we can approximate x(t) = [x1(t) x2(t) · · · xr(t)]

T

and u(t) = [u1(t) u2(t) · · · uq(t)]
T by

X(t) = [X1(t) X2(t) · · · Xr(t)]
T

U(t) = [U1(t) U2(t) · · · Uq(t)]
T .

Each Xi(t), 1 ≤ i ≤ r and Uj(t), 1 ≤ j ≤ q can be written in terms of BPs,
namely

Xi(t) = XT
i ϕ(t)

Uj(t) = UT
j ϕ(t),

where ϕ(t) = [B0,m(t) B1,m(t) . . . Bm,m(t)]T and XT
i = [X0i X1i . . . Xmi].

Similarly, with the same computation of (4.3)-(4.16), the original problem
can be reformulated as QPP.
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5. Numerical examples
In this section, six examples are presented to illustrate the validity and

efficiency of the proposed approach. The numerical results are programmed
with the help of Mathematica 10 software.

Example 5.1. Consider the following time-varying optimal control problem
[1].

J =
1

2

∫ 1

0
(x2(t) + u2(t))dt,

ẋ(t) = tx(t) + u(t),

x(0) = 1.

By choosing m = 6, as the degree of BPs, we obtain the following solution

x(t) = (1− t)6 + 5.03132(1− t)5t+ 11.1579(1− t)4t2

+ 13.9881(1− t)3t3 + 10.5984(1− t)2t4

+ 4.60881(1− t)t5 + 0.92174t6,

u(t) = −0.968575(1− t)6 − 4.80814(1− t)5t

− 9.54528(1− t)4t2 − 9.33825(1− t)3t3

− 4.62694(1− t)2t4 − 0.918807(1− t)t5

− 0.0000824538t6.

The approximated objective function with m = 6 is J = 0.484228 and
the value of objective function of Power series, Shifted Chebyshev (1 st
kind), Shifted Chebyshev (2 nd kind), and Shifted Legendre with m = 6 are
J = 0.484072, J = 0.484265, J = 0.484265 and J = 0.484262, respectively.
The graph of approximated solution x(t) and u(t) are plotted in the FIGURE
1. The Tables 1 and 2 demonstrate the numerical results for the state and
the control variables, respectively, for the the mentioned methods and the
proposed method in article with m = 6.

Example 5.2. Consider the following NOCP [17].

J =
1

2

∫ 1

0
(x2(t) + u2(t))dt,

ẋ(t) = x(t)u(t) + 3u(t)− 2x(t),

x(0) = 5.
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Table 1. Comparison of x(t) using the different approaches
for Example 5.1

t The proposed Power Shifted Chebyshev Shifted Chebyshev Shifted
method series (2 nd kind) (1 st kind) Legendre

0 1 0.999999 0.999999 1 1
0.1 0.912841 0.9125870 0.9128372 0.9128436 0.9128402
0.2 0.844075 0.8439083 0.8440804 0.8440875 0.8440838
0.3 0.792566 0.7924710 0.7925795 0.7925848 0.7925822
0.4 0.75766 0.7575558 0.7576795 0.7576830 0.7576814
0.5 0.739162 0.7390190 0.7391855 0.7391888 0.7391874
0.6 0.737388 07371867 0.7373666 0.7373711 0.7373689
0.7 0.752962 0.7528404 0.7529964 0.7530020 0.7529991
0.8 0.78739 0.7872928 0.7874314 0.7874368 0.7874340
0.9 0.84268 0.8425564 0.8427275 0.8427314 0.8427295
1 0.92174 0.9216030 0.9217929 0.9217992 0.9217963

Table 2. Comparison of u(t) using the different approach
for Example 5.1

t The proposed Power Shifted Chebyshev Shifted Chebyshev Shifted
method series (2 nd kind) (1 st kind) Legendre

0 −0.968575 −0.9683481 −0.9685254 −0.9685323 −0.9685288
0.1 −0.868473 −0.8683751 −0.8685338 −0.8685402 −0.8685370
0.2 −0.768625 −0.7685019 0.7686403 −0.7686461 −0.7686431
0.3 −0.669056 −0.6689425 −0.6690605 −0.6690654 −0.6690630
0.4 −0.570052 −0.5699850 −0.5700840 −0.5700883 −0.5700862
0.5 −0.47197 −0.4719342 −0.4720162 −0.4720199 −0.4720180
0.6 −0.375096 −0.3750550 −0.3751203 −0.3751233 −0.3751218
0.7 −0.279572 −0.2795159 −0.2795623 −0.2795649 −0.2795635
0.8 −0.185361 −0.1853325 −0.1853572 −0.1853591 −0.1853581
0.9 −0.0922808 −0.0923125 −0.0923169 −0.0923181 −0.0923175
1 −8.2454e− 05 −1.74e− 08 −5.25e− 09 −8.99e− 08 −2.69e− 09

By choosing m = 8, we obtain the following solution
x(t) = 5(1− t)8 + 2.49972(1− t)7t+ 41.9064(1− t)6t2

+ 26.9588(1− t)5t3 + 4.55487(1− t)4t4 + 17.1269(1− t)3t5

+ 4.54265(1− t)2t6 + 0.667393(1− t)t7 + 0.0801383t8,

u(t) = −3.42941(1− t)8 − 12.783(1− t)7t+ 49.2549(1− t)6t2

− 120.996(1− t)5t3 + 2.45668(1− t)4t4 + 24.8102(1− t)3t5

− 6.88784(1− t)2t6 − 0.934623(1− t)t7 + 0.0421773t8.

The approximated objective function with m = 8 is J = 1.47311 and the
value of objective function Block Plus function and Legendre polynomial
with m = 10 and n = 3 in [17], is J = 1.4851. The graph of approximated
solution x(t) and u(t) are plotted in the FIGURE 2.
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approximate x(t)
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(a) x(t)

approximate u(t)
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u(t)

(b) u(t)

Figure 1. The graph of approximated solution x(t) and u(t)
for Example 5.1

(a) x(t) (b) u(t)

Figure 2. The graph of approximated solution x(t) and u(t)
for Example 5.2

Example 5.3. Consider the following NOCP [18].

min J =

∫ 1

0

[
x21(t) + x22(t)

]
dt,

ẋ1(t) = x2(t),

ẋ2(t) = 10x31(t) + u(t),

x1(0) = 0 x1(1) = 0.1,

x2(0) = 0 x2(1) = 0.3.
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(a) x1(t) and x2(t) (b) u(t)

Figure 3. The graph of approximated solution x1(t), x2(t)
and u(t) for Example 5.3

By choosing m = 8, the approximate solutions of x1(t) and x2(t) with
presented method are

x1(t) = 2.57174× 10−7(1− t)7t+ 1.62669(1− t)6t2

− 3.07993(1− t)5t3 + 11.2922(1− t)4t4 − 2.93251(1− t)3t5

+ 3.53359(1− t)2t6 + 0.5(1− t)t7 + 0.1t8,

x2(t) = 3.25338(1− t)7t− 15.7466(1− t)6t2 + 41.5685(1− t)5t3

+ 0.737089(1− t)4t4 − 29.8323(1− t)3t5 + 26.4319(1− t)2t6

− 3.26719(1− t)t7 + 0.3t8.

The value of cost function with the proposed method with m = 8 is J =
0.0136461 and it value obtained in [18] is J = 0.024 also in [2] value of
cost function is J = 0.0134817. Thus with m = 8, we achieved acceptable
numerical results in comparison with what have been acquired in [18] and
[2]. The graph of approximated solution x1(t), x2(t) and u(t) are plotted in
the FIGURE 3.

Example 5.4. Consider the following NOCP [18].

min J =

∫ 1

0
u2(t)dt,(5.1)

ẋ(t) =
1

2
x2(t)sinx(t) + u(t),(5.2)

x(0) = 0.

x(1) = 0.5.

The approximated cost function by the presented method with m = 8 is
J = 0.226676, and the value of approximated cost function in [18] which
has been solved this problem by Embedding method with M = 24, N =
1000, M

′
1 = 6, M2 = 8, L = 10, P1 = 24 and P2 = 71 is j = 0.2425.

So with m = 8, we achieved satisfactory numerical results in comparison
with what have been obtained in [18].The graph of approximated state and
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(a) x(t) (b) u(t)

Figure 4. The graph of approximated solution x(t) and u(t)
for Example 5.4

control are plotted in the FIGURE 4. Also the approximate solutions of
x(t) and u(t) with presented method are

x(t) = 0.47639(1− t)7t+ 3.62987(1− t)6t2

+ 8.86159(1− t)5t3 + 18.1152(1− t)4t4 + 17.0711(1− t)3t5

+ 10.6956(1− t)2t6 + 3.48824(1− t)t7 + 0.5t8,

u(t) = 0.476366(1− t)8 + 4.40106(1− t)7t+ 8.70318(1− t)6t2

+ 32.6219(1− t)5t3 + 39.6488(1− t)4t4 + 23.7836(1− t)3t5

+ 14.6908(1− t)2t6 + 3.13301(1− t)t7 + 0.454464t8.

Example 5.5. Consider the van der Pol oscillator problem [4].

min J =
1

2

∫ 5

0
(x21(t) + x22(t) + u2(t))dt,

ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + (1− x21(t))x2(t) + u(t),

x1(0) = 1,

x2(0) = 0.

For solving this problem we choose m = 6, the optimal value of the cost
functional is obtained as J = 1.43168. The objective value J = 1.438097
has been achieved in [4] employing Quasilinearization and Discretization
methods. In [8] the value of the objective function with second variation
method is J = 1.433508. Hence, our results with m = 6 are in good agree-
ment with the results shown in [4] and [8]. In addition, the approximate



THE NUMERICAL SOLUTION OF NONLINEAR OPTIMAL CONTROL PROBLEMS13

Figure 5. The graph of approximated x1(t),x2(t) and u(t)
for Example 5.5

solutions of x1(t), x2(t) and u(t) with presented method are:

x1(t) =
(5− t)6

15625
+ 0.000383996(5− t)5t

+ 0.0000314387(5− t)4t2 + 0.0000280601(5− t)3t3

− 0.000135932(5− t)2t4 − 0.0000680602(5− t)t5

− 5.71071× 10−6t6,

x2(t) = −0.000371418(5− t)5t− 0.00037973(5− t)4t2

− 0.000133894(5− t)3t3 − 0.000139268(5− t)2t4

− 6.92806× 10−6(5− t)t5 + 6.75918× 10−6t6,

and
u(t) = −9.85503× 10−6(5− t)6 + 0.000448566(5− t)5t

+ 0.00200647(5− t)4t2 − 0.000645179(5− t)3t3

+ 0.000327379(5− t)2t4 − 0.0000350843(5− t)t5

− 2.3217× 10−6t6.

The figures of x1(t), x2(t) and u(t) are shown in the FIGURE 5.

Example 5.6. Consider the following optimal control problem [19].

J =
1

2

∫ 1

0
(x2(t) + u2(t))dt,

ẋ(t) = −x(t) + u(t),

x(0) = 1,

x(1) = 0.5.

The exact solution is

x(t) = 0.129195e
√
2t − 0.129195e−

√
2t

u(t) = 0.311903e
√
2t + 0.0535141e−

√
2t
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By choosing m = 4, the approximated solution is
x(t) = 0.364339(1− t)3t+ 1.10357(1− t)2t2

+ 1.20525(1− t)t3 + 0.5t4,

u(t) = 0.364281(1− t)4 + 1.84252(1− t)3t

+ 3.62578(1− t)2t2 + 3.40818(1− t)t3

+ 1.29461t4.

The Tables 3 and 4 demonstrate approximated solution, exact Solution and
error between them for m = 4. The graph of approximated solution and
exact solution x(t) and u(t) are plotted in the FIGURE 6.

Table 3. Comparison between of x(t) exact and approxi-
mated solution for Example 5.6

t Approximated solution Exact Error between exact
with m = 4 solution and approximated solution

0 0 0 0
0.1 0.036634 0.0366638 −0.4e−5

0.2 0.0740734 0.0740621 1.13e−5

0.3 0.112987 0.112944 4.3e−5

0.4 0.154126 0.154089 3.7e−5

0.5 0.198323 0.19832 0.3e−5

0.6 0.24649 0.246525 −3.5e−5

0.7 0.299624 0.299668 −4.4e−5

0.8 0.358801 0.358815 −1.4e−5

0.9 0.42518 0.42515 0.3e−5

1 0.5 0.5 0

Table 4. Comparison between of u(t) exact and approxi-
mated solution for Example 5.6

t Approximated solution Exact Error between exact
with m = 4 solution and approximated solution

0 0.364281 0.0365417 −1.1e−3

0.1 0.40589 0.405741 1.49e−4

0.2 0.454587 0.454193 3.94e−4

0.3 0.511857 0.511745 1.12e−4

0.4 0.579265 0.579548 −2.83e−4

0.5 0.65846 0.658961 −5.01e−4

0.6 0.751171 0.751576 −4.05e−4

0.7 0.859209 0.859247 −3.8e−5

0.8 0.984465 0.984132 3.33e−4

0.9 1.12891 1.12873 1.8e−4

1 1.29461 1.29595 −1.3e−3
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Figure 6. The graph of approximated and exact solution
x(t) and u(t) for Example 5.6

6. Conclusions
In this paper, the operational matrices of integration, differentiation, and

product for BPs are introduced. Also, an upper bound for the error of ap-
proximation is given. The presented upper bound of error demonstrates
convergent to the exact solution when a degree of the BPs tends to infinity.
The BPs are used to solve NOCPs. The problem has been reduced to solve a
QPP which can be solved by many softwares with alternative accuracy and
without solving any large system of nonlinear algebraic equations. Compar-
ing with other methods, for instance, Quasilinearization, Linearization, and
Discretization, the proposed method is general with less time and calcula-
tions, easy to implement, and yields accurate results. However, the upper
bound of error proves the convergence of this method. Authors understand
that this technique for large m does not work effectively, since the error
computing by computer, arises with increasing m. But we found that one
can easily achieve satisfactory results with some small m, such as m = 6, 7, 8,
in comparison with other methods. The illustrative examples demonstrate
that the presented method is valid and effective.
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