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1  |   INTRODUCTION

Music consists of organized sequences of sounds, arranged 
in hierarchical temporal patterns that unfold over time and 
involve complex cognitive processes (Patel & Daniele, 2003; 
Pearce & Wiggins,  2012). Music perception involves the 

generation of expectations, anticipation of their development, 
and eventually violation or fulfilment of the predictions 
(Cheung et al., 2019; Friston, 2002, 2010; Gold et al., 2019; 
Lumaca et al., 2019). Generally speaking, music plays with 
our expectations in two forms; it plays with what to expect 
and when to expect an event. Although the part of what to 
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Abstract
Rhythm processing involves building expectations according to the hierarchical tem-
poral structure of auditory events. Although rhythm processing has been addressed in 
the context of predictive coding, the properties of the oscillatory response in different 
cortical areas are still not clear. We explored the oscillatory properties of the neural 
response to rhythmic incongruence and the cross-frequency coupling between multi-
ple frequencies to further investigate the mechanisms underlying rhythm perception. 
We designed an experiment to investigate the neural response to rhythmic deviations 
in which the tone either arrived earlier than expected or the tone in the same metri-
cal position was omitted. These two manipulations modulate the rhythmic structure 
differently, with the former creating a larger violation of the general structure of 
the musical stimulus than the latter. Both deviations resulted in an MMN response, 
whereas only the rhythmic deviant resulted in a subsequent P3a. Rhythmic deviants 
due to the early occurrence of a tone, but not omission deviants, seemed to elicit 
a late high gamma response (60–80 Hz) at the end of the P3a over the left frontal 
region, which, interestingly, correlated with the P3a amplitude over the same region 
and was also nested in theta oscillations. The timing of the elicited high-frequency 
gamma oscillations related to rhythmic deviation suggests that it might be related to 
the update of the predictive neural model, corresponding to the temporal structure of 
the events in higher-level cortical areas.
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expect is shaped through melody, phrase, and harmonic struc-
tures, the part of when to expect an event involves matching 
the rhythmic structure of music with rhythmic or metrical 
templates that can be extrapolated in the future (Rohrmeier 
& Koelsch, 2012).

Recently, music perception has been addressed in the 
context of predictive coding (Bouwer et  al.,  2020; Cheung 
et al., 2019; Friston, 2002, 2005; Gold et al., 2019; Koelsch 
et al., 2019; Rohrmeier et al., 2012), which provides a compel-
ling framework to address the predictive processes. This view 
is based on hierarchical Bayesian inference (Friston,  2005, 
2010) and assumes that the brain constantly models statistical 
regularities in the auditory stream, actively produces predic-
tions that are compared with incoming auditory inputs, and 
optimizes representations to reduce prediction error (Koelsch 
et  al.,  2019). It has been suggested that when exposed to 
music, the listener's brain extracts the temporal regularities, 
as well as the rhythmic structures, and shapes a probabilistic 
model, which in turn provides predictions on when to expect 
an event (Koelsch et  al.,  2019; Lumaca et  al.,  2019; Vuust 
et al., 2009). If the auditory input violates the prediction of 
the neural model, e.g. if a certain note arrives earlier/later 
than expected, an error signal is generated—the more accu-
rate the prediction, the smaller the prediction error (Hansen 
& Pearce, 2014). The brain is functionally organized to mini-
mize this error to accomplish temporally precise predictions. 
This attempt is shaped by a reciprocal cascade of cortical 
functions, in which higher-level structures generate predic-
tions of inputs from lower-level ones and pass them through 
top-down connections. Then, error signals are transferred 
through bottom-up connections to update the models that led 
to these predictions (Kanai et al., 2015).

The neural response to violations of rhythmic structures 
has been addressed mostly in the context of specific auditory 
evoked potentials, the mismatch negativity (MMN) (Bouwer 
& Honing,  2015; Bouwer et  al.,  2014; Geiser et  al.,  2009; 
Grahn, 2012; Honing et al., 2009; Lappe et al., ,2013, 2016; 
Lelo-de-Larrea-Mancera et  al.,  2017; Vuust et  al.,  2016; 
Zhao et al., 2017), as well as later ERP components, includ-
ing P3 (Friedman et al., 2001). Rhythmic deviations, in terms 
of a tone occurring earlier than expected, elicit an MMN be-
tween 100–200 ms (Lumaca et al., 2019), which, depending 
on the experimental design, can be followed by a subsequent 
P3a in a time window of ~200–300 ms (Geiser et al., 2009; 
Vuust et al., 2009, 2016). In addition, the pre-attentive neu-
ral response to the occasional omission of tones within a 
rhythmic sequence manifests as an MMN response (Bouwer 
et al., 2014; Honing et al., 2009; Ladinig et al., 2009), which 
is followed by a P3a component in some paradigm designs 
(Bouwer et  al.,  2016). The theory of predictive coding has 
been used to explain the neural response to rhythmic incon-
gruence, with the MMN having the properties of an error term 
and the P3a reflecting upward propagation and subsequent 

evaluation of the error across higher levels of the hierarchy 
in the neural structures (Vuust et al., 2009). In this view, the 
relatively less pronounced MMN response to small rhythmic 
violations in complex rhythmic patterns has been related to 
less confident predictions of the weaker neural models—the 
more difficult the stimuli are to model, the weaker the pre-
dictive models, and hence the smaller the prediction error 
(Lumaca et al., 2019). Consistent with this view, it has also 
been demonstrated that the amplitude of the MMN depends 
on the metrical position of the omitted tone, being stronger 
for metrically stronger positions than metrically weaker ones 
(Bouwer et al., ,2014, 2016; Ladinig et al., 2009), again elic-
iting a more pronounced MMN in response to larger viola-
tions. Furthermore, the amplitude of the MMN is modulated 
by musical training (Lappe et al., 2011, 2013) and is stronger 
in musicians than non-musicians (James et al., 2012; Vuust 
et al., 2009; Vuust et al., 2005), probably reflecting a stron-
ger metrical predictive structure in experienced listeners. In 
addition, it has been suggested that musical cultural back-
grounds shape expectations toward rhythmic structures im-
plicitly through music exposure throughout life, which in turn 
can modulate the error signal created in response to rhyth-
mic incongruence (Akrami & Moghimi,  2017; Haumann 
et al., 2018). Put together, the statistical regularities and hi-
erarchical nature of rhythmic structures make music rhythm 
a powerful tool to investigate predictive coding in the brain, 
which in turn can be employed to explain the neural dynam-
ics underlying the perception of rhythm.

The mechanisms underlying the reciprocal relationships 
between predictions and prediction errors have been investi-
gated using several experimental paradigms that rely on the 
contrast between neural responses to anticipated and novel 
auditory stimuli (Garrido et al., 2007, 2008). An elegant par-
adigm, referred to as the ‘‘local-global’’ paradigm, has been 
developed and used to address the auditory novelty response, 
as well as dissociate predictions based on local probabilities 
from those related to global rules (Chao et al., 2018; Chennu 
et al., 2013). It has been demonstrated that the detection of 
the violation of the global rules, in which subjects have to 
create a neural model of the temporal pattern and non-local 
dependencies of tones, results in a more global and integra-
tive violation of expectation, which manifests as both early 
and late ERP components (Chennu et al., 2016). Violations of 
the global rule of stimuli sequence also elicit widespread and 
protracted oscillatory responses (Dürschmid et  al.,  2016), 
including low-frequency theta/alpha effects (Recasens 
et al., 2018), fronto-temporo-parietal depression in the beta-
band (Dürschmid et al., 2016), and high gamma augmenta-
tion in the temporal and frontal areas (Karoui et  al.,  2015; 
Kaiser et al., 2005, 2007). The different oscillatory activities 
over distinct brain regions, as well as early/late ERP com-
ponents during the processing of low-level violations versus 
violations of the global rules, reflect the different underlying 
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neural mechanisms recruited for the aforementioned pro-
cesses. In the context of this paradigm, the response to a de-
viant tone has also been compared to that of the omission of 
an expected tone (Wacongne et al., 2011). It has been demon-
strated that the relatively late ERP component (200–300 ms) 
present in the processing of a deviant tone (in which the 
stimulus differs from that predicted by the recent history of 
the stimuli) is not elicited during the processing of omission 
(lack of any sensory input) (Chennu et al., 2016).

Generally, the predictive coding framework suggests 
that lower-level violations arise from the primary auditory 
cortex, whereas violations of the global rule of sequences, 
involve (1) revising the mental representation of the se-
quence in the higher-level system, including the prefrontal 
cortex (Bekinschtein et al., 2009; Chao et al., 2018; Chennu 
et al., 2013; El Karoui et al., 2015; Uhrig et al., 2014), and 
(2) updating the predictions for the next trial in lower-level 
sensory areas (Chao et  al.,  2018). Deviant auditory stimuli 
evoke neural responses in the bilateral auditory cortex, supe-
rior temporal gyri, and prefrontal cortex (Doeller et al., 2003; 
Molholm et  al.,  2005; Rinne et  al.,  2005). Beyond the au-
ditory cortex, the prefrontal cortices integrate error sig-
nals to update the prediction models (Bastos et  al.,  2012; 
Summerfield et  al.,  2006). Indeed, there is evidence for a 
frontotemporal hierarchy of prediction and prediction error 
information transfer (Chao et al., 2018; Chennu et al., 2016; 
Garrido et al., 2007, 2008, 2009; Phillips et al., 2015).

Music rhythmic violations are a good example of the vio-
lation of the global rule of sequences, in which the expecta-
tion is developed based on the modeled local and non-local 
temporal dependencies. We designed an experiment to inves-
tigate the neural response to rhythmic deviations in which 
the tone either arrived earlier than expected or the tone in the 
same metrical position was omitted. These two manipulations 
modulate the rhythmic structure differently, with the former 
creating a larger violation of the general structure of the mu-
sical stimulus than the latter, in which the temporal Gestalt 
characteristics of the chord sequence (corresponding to the 
rhythmic or relative temporal pattern of acoustic events that 
leads to their perceptual grouping Koelsch, 2011; Tenney & 
Polansky, 1980) ) are not violated. Although the processing of 
music rhythm has been addressed in the context of predictive 
coding, the properties of the oscillatory response in different 
cortical areas are still not clear. To date, mostly ERP compo-
nents have been analyzed to address the neural mechanisms 
of rhythm perception. To better understand the mechanisms 
underlying the neural response to rhythmic incongruence and 
the perception of rhythm, we explore the oscillatory prop-
erties of these responses and compare them under the two 
conditions of manipulation. In addition, growing evidence 
suggests that perception involves cross-frequency coupling 
(CFC) in terms of coordinated slow and fast neural oscilla-
tions, typically nested theta/gamma oscillations (Buzsáki & 

Draguhn, 2004; Canolty et al., 2006; Lakatos et al., 2005), 
which presumably enhance combinatorial opportunities for 
encoding (Rasch & Born, 2013) and facilitate synaptic plas-
ticity (Bergmann & Born, 2018; Buzsáki & Draguhn, 2004; 
Salimpour & Anderson, 2019). Thus, given the role of CFC 
in perception, we explore the CFC between multiple frequen-
cies to explain the underlying mechanisms involved in rhythm 
perception. Our central hypothesis is that there should be a 
fundamental difference in the neural response to violations 
consisting of the omission of tones and rhythmic violations 
due to tones arriving earlier than expected, with the latter 
creating a larger violation of the rhythmic structure. We hy-
pothesize that the greater violation of the rhythmic structure 
elicits stronger late oscillatory activities following the MMN 
(which in turn reflects the prediction error), which is related 
to the update of the neural model of the rhythmic structure.

2  |   METHOD

2.1  |  Participants

Fourteen healthy right-handed volunteers (age 20 ± 2 years, 
7 females) participated in the study after providing written in-
formed consent. Participants were non-musicians with a simi-
lar educational background (undergraduates or MSc students, 
with less than 3 years of musical activity), normal hearing, 
and normal or corrected-to-normal vision. They reported nor-
mal nocturnal sleep patterns (7–9 hr starting between 10 p.m. 
and 12 a.m.) for the week before the experiment. They had 
not used caffeine, nicotine, or energy drinks on the day of the 
experiment and had not performed excessive exercise within 
the previous 24 hr. As assessed by a questionnaire, partici-
pants had no history of neurological or psychiatric disorders.

2.2  |  Auditory stimuli and the 
experimental paradigm

The stimulus material consisted of an auditory rhythm in 
2/4 meter on one chord that was presented repeatedly and 
continuously at 100 bpm with a piano sound. The standard 
rhythm consisted of a C Major chord (three tones, 261.6, 
329.6, 392 Hz) with a duration of a quarter note (600 ms) 
at the beginning of each bar followed by two eighth note 
chords (300 ms, similar to the first chord in frequency con-
tent). The rhythmic changes (rhythm deviant) consisted of 
replacing the two eighth note chords with one sixteenth note 
chord (150 ms), one eighth note chord, and one sixteenth 
rest (Figure 1). The frequency content of the chords did not 
change either between the rhythm standard and deviant con-
ditions, or between different trials. The omission deviant 
was created by silencing only the last chord of the standard 
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condition (Figure S1). Analyzing a rhythmic sequence, one 
can imagine a "tree" structure, corresponding to the hierar-
chical representation of a sequence of timed events (notes 
in music). In this tree, the "root" node at the highest level 
of the hierarchy is considered as the whole bar, the nonter-
minal nodes signify the lower level metrical units, and the 
terminal nodes of the tree are all either (sounded) notes or 
rests (Longuet-Higgins & Lee,  1984). Three rhythm trees 
are presented in Figure S1 showing the rhythmic structure 
of the standard stimulus and the rhythm and omission devi-
ants. This figure shows how the rhythm deviant induces a 
new branch in the tree.

We distracted the participants from the main objective 
of the experiment by adding two other deviant conditions. 
The last chord was changed to a B diminished chord on three 
tones (246.9, 293.7, 349.2 Hz, Figure 1) to create a pitch de-
viant. Finally, we included a timbre deviant, for which one 
chord during the bar (randomly defined) was played by a vi-
olin sound. Subjects were instructed to watch a silent movie 
(March of the Penguins, Warner, ASIN B000BI5KV0) and 
press a button whenever they detected a timbre deviant 
(subjects recognized the timbre deviant with an accuracy 
of 97.4  ±  1.2%). The purpose of including the aforemen-
tioned two deviants was not to have the attentional focus of 
the subjects aimed toward the rhythm manipulations in the 
experiment.

Stimuli were constructed using open-source MuseScore 
2 software and exported as wav-files. A dynamic accent of 
25 percent above the general intensity was induced on the 
first beat of each stimulus (of the measure) to reinforce the 
perceived meter (Geiser et al., 2009). This accent is indicated 
by a ‘‘>’’ in Figure 1b, in which the stimuli and experimental 
protocol are depicted.

In the main experiment, the stimuli were delivered in the 
context of an oddball paradigm. The experimental session 
included high-probability standard stimuli (p = 85%, 2,850 
trials) interspersed with four infrequent deviant patterns, ac-
counting for the remaining stimuli (p = 15%, 150 trials of 
the timbre deviant, and 105 trials for the rhythm, omission, 
and pitch deviants each). The choice of a slightly more fre-
quent appearance of the timbre trials was to have a balanced 
distribution of distractors among standard and deviant trials 
(Koelsch et al., 2013). The order of the four deviant stimuli 
was pseudorandomized among the standard trials, enforcing 
three to seven standard stimuli between successive deviant 
trials. Control stimulus blocks, corresponding to rhythm and 
omission deviants, presented 200 times continuously without 
any standard trial in between, were used to evaluate the re-
sponse to the rhythm and omission deviant trials in the main 
experiment. The presentation order for these blocks was ran-
dom during the experimental protocol and counterbalanced 
among subjects, in order to avoid biasing the neural response 

F I G U R E  1   (a) The Experimental protocol. (b) The standard and deviant stimuli
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by repetitive presentation of the trials in the control blocks 
at a specific time during the experiment. This strategy has 
been employed previously (Ladinig et  al.,  2009; Winkler 
et al., 2009), and assumes that repetitive representation of the 
standard stimuli after the control block resets the experiment 
conditi

on from the one of the control blocks to that of the main 
experiment.

We then performed a control experiment during which 
the rhythm deviant stimulus replaced the standard condition 
and the deviant condition consisted of silencing its last chord 
in the context of an oddball paradigm. This experiment was 
conducted to take the impact of the difference in the duration 
of the penultimate chord between the standard and rhythm 
deviant conditions into consideration, and allowed us to fur-
ther explain the variation in the neural response due to the 
omission of the tone from that observed in the rhythm deviant 
condition. More precisely, in the main experiment paradigm, 
the expectation was violated 150  ms after the penultimate 
chord by earlier arrival of the last chord in the rhythm deviant, 
whereas the violation arrived 300 ms after the penultimate 
chord in the omission deviant by absence of the last expected 
chord (see Figure S1). Therefore, considering the latency of 
the neural response to the penultimate chord and the arrival 
times of the violations of expectation, the control experiment 
was required to address the role of the two different durations 
in modulation of the mismatch response characteristics (see 
SI for more details).

Stimuli were delivered through two speakers at 65 dB SPL 
using Psychtoolbox MATLAB. The total duration of the exper-
iment was ~78 min. The neural response to the timbre deviants 
was not analyzed, whereas the response to the pitch deviants is 
reported and discussed in SI (see Figure S7 and S8).

2.3  |  EEG acquisition and preprocessing

High-density EEG Data were acquired using a high im-
pedance amplifier Net Amp 300 and Net Station 5 with a 
sensor net consisting of 128 electrodes (Geodesic Sensor 
Net, Electrical Geodesics, Inc., USA). Impedances were 
kept below 50 kΩ. The EEG was digitized at a 1,000-Hz 
sampling rate, with a Cz vertex electrode as reference. 
The recorded signals were analyzed with MATLAB® 
software (The MathWorks, Inc., Natick, Massachusetts, 
United States), using FieldTrip (Oostenveld et al., 2011), 
EEGLAB (Delorme & Makeig,  2004), and custom 
MATLAB functions and codes. A two-pass 0.5–100  Hz 
finite impulse response (FIR) bandpass filter (order =  3 
cycles of the low-frequency cut-off) from the EEGLAB 
toolbox was applied to remove low and high-frequency ar-
tifacts from the EEG signals. Artifact-ridden channels were 
removed and interpolated. Also, a 50-Hz notch filter was 

applied to remove the line noise. Artifacts (e.g., eye-blink, 
eye-movement, and muscle activity) were then removed by 
independent component analysis (ICA) using the EEGLAB 
toolbox. The preprocessed data were later epoched starting 
650 ms before the onset of the deviant chord and ending 
800 ms after. Epochs were excluded if the standard devia-
tion of amplitude exceeded 25 μV within two moving win-
dows of 200 and 800 ms or any sampling point exceeded 
75  μV at any electrode location. EEG data were later 
re-referenced to the average reference. After artifact re-
jection, the number of remaining trials for different condi-
tions was 87.98 ± 13.47 (rhythm deviant), 176.58 ± 18.24 
(rhythm control), 87.15  ±  14.78 (omission deviant), and 
167.4 ± 23.93 (omission control).

2.4  |  Event-related potential (ERP)

A 25-Hz low-pass FIR filter (13 cycles) was applied to cal-
culate the ERP response. For each trial, zero was set at the 
onset of the third chord (the expected location of the third 
chord for the omission condition), with the baseline being set 
at −500 to −300 ms and −650 to −450 ms for the rhythm and 
omission deviants, respectively (for both conditions the base-
line was set at 250–450 ms from the onset of the first chord, 
which was after the disappearance of the response to the first 
chord). Event-related potentials were computed by averaging 
the EEG trace of the remaining trials for each condition after 
baseline correction. A nonparametric cluster-based permu-
tation procedure (5,000 permutations), implemented in the 
FieldTrip toolbox (Maris & Oostenveld, 2007), was applied 
to search for significant changes in the deviant condition rela-
tive to the control condition (see SI for details). The initial 
threshold for cluster definition and the minimum number of 
neighbors were set to p < .05 and four, respectively. Finally, 
the final significance threshold for summed t values within 
clusters was set to p < .05.

2.5  |  Time-frequency representation (TFR)

TFRs were calculated per event epoch (‘mtmconvol’ func-
tion of the FieldTrip toolbox) for frequencies from 4 to 30 Hz 
(using Hanning tapers) and from 30 to 100  Hz (using dis-
crete prolate spheroidal sequence tapers) in steps of 0.25 Hz. 
The TFR was calculated using a sliding window with a 
variable frequency-dependent length that always comprised 
a full number of cycles (at least two cycles and an at least 
100-ms window length). Time-locked TFRs of all epochs 
were then baseline corrected and averaged per participant. 
Statistical analysis was used to check for significant power 
changes corresponding to the deviant condition relative to the 
control condition. The cluster-based permutation procedure 
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(5,000 permutations), implemented in the FieldTrip toolbox, 
was applied to correct for multiple comparisons (see SI for 
details). The initial threshold for cluster definition and the 
minimum number of neighbors were set to p < .05 and four, 
respectively. Finally, the final significance threshold for 
summed t values within clusters was set to p < .05.

2.6  |  Phase amplitude coupling (PAC)

We applied a method introduced by (Tort et al., 2010) to si-
multaneously assess PAC for a large number of frequency 
pairs. For a given frequency pair, extracted 3.6-s epochs 
(including three trials: the target trial, and the preceding 
and following trials)—sufficiently long to prevent any edge 
effects during filtering—were filtered in both frequency 
ranges. Lower frequencies ranged from 6 to 15  Hz (0.25-
Hz increments, the bandwidth was gradually increased from 
0.75 to 1.875 Hz) and higher frequencies ranged from 60 to 
100  Hz (0.25-Hz increments, the bandwidth was gradually 
increased from 7.5 to 12.5 Hz). The time series of the lower 
frequency phase and the higher frequency amplitude were 
then extracted using the Hilbert transform. The deviant re-
sponses (the third chord for the rhythm deviant, and the ex-
pected interval of the third chord for the omission condition) 
were concatenated and the lower-frequency phases binned 
into eighteen 20° bins spanning the [−π, π] interval and the 
corresponding mean amplitude of the higher frequency was 
computed for each phase bin and then normalized by divid-
ing it by the sum over all bins. Next, the deviation of the 
PAC profile from a uniform distribution was quantified by 
defining the modulation index (MI) in terms of the Kullback-
Lieber distance between the amplitude distribution P and a 
uniform distribution U, D

KL (P, U) = log (nbins) − H (P) , 
where the Shannon entropy H of the distribution P is 
H (P) = −

∑N

bin= 1
P (bin) × log [P (bin)]. Briefly, the MI 

of (Tort et al., 2010) specifically measures deviations from 
a uniform distribution; if the high-frequency EEG mean 
amplitude shows no systematic relationship with the low-
frequency phase, the high-frequency amplitude in each low-
frequency phase bin will tend toward the overall average 
high-frequency amplitude, resulting in a flat or uniform dis-
tribution. The MI ranges from 0 to 1; a value of 0 shows that 
the mean amplitude is uniformly distributed over the phases 
and an MI of 1 shows that the mean amplitude has a Dirac-
like distribution.

For statistical analysis, the cluster-based permutation pro-
cedure, implemented in the FieldTrip toolbox, was used to 
compare the deviant comodulogram with that corresponding 

to the control data at the group level. The initial threshold for 
cluster definition and the minimum number of neighboring 
were set to p < .05 and four, respectively. The final thresh-
old for significance of the summed t value within clusters 
was set to p < .05. In addition, surrogate chance level PAC 
data were created over the region of interest (as average over 
certain electrodes, based on the comparison between deviant 
and control conditions, see also Section 3.3) by random shuf-
fling the phase time series (500 times) and then calculating 
the MI value between the shuffled phase time series and the 
original amplitude time series. We obtained a surrogate MI 
value for each frequency band and then subject over the ROI. 
Finally, the cluster-based permutation procedure was used to 
compare the empirical MI with that corresponding to the sur-
rogate data at the group level for rhythm deviant conditions 
in the main and control experiment. The initial threshold for 
cluster definition and the final threshold for significance of 
the summed t value within clusters were both set to p < .05.

We further investigated the nesting of theta-gamma ac-
tivity (6.5–8.5 Hz for the phase frequency and 61–78 Hz for 
the amplitude-frequency, the choice of the phase/amplitude 
frequencies was made based on the results of the comodu-
logram analysis) in the time course of the deviant response 
by calculating the PAC over a sliding window of 200 ms in 
steps of 5  ms. We thus concatenated the 200-ms windows 
corresponding to each trial (the epochs were cut after apply-
ing the filter and Hilbert transform) and performed the afore-
mentioned method to calculate the MI. This procedure was 
repeated at each time step, which resulted in a MI time-series 
with a resolution of 5 ms. For statistical analysis, the cluster-
based permutation procedure was implemented.

2.7  |  Statistical analyses

Normality of data distribution was verified by the Lilliefors 
test, which is an improved approach compared to the 
Kolmogorov test (Lilliefors,  1969). We examined the sig-
nificance of ERP amplitude and latency between the rhythm 
deviant and omission conditions using a two-tailed paired-
samples t test. Toward this, we calculated the peak and la-
tency over a predefined time window and a fronto-central 
region of interest (ROI, ERP amplitudes were computed 
from the average of the electrodes presented in Figure S4A), 
which was the same for both conditions. For time-frequency 
statistics comparing rhythm and omission conditions, the 
power was defined as the maximum power over a specific 
time window (50–300  ms), averaged over the frequency 
range 4–10  Hz and over a predefined fronto-central ROI 
(Figure S4B). The emergence time of the oscillatory activity 
was defined as the time when the power reached 30% of its 
maximum value. The time-frequency characteristics (power 
and latency) were compared between the rhythm deviant and 

MI =
D

KL (P, U)

log (nbins)
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omission conditions using two-tailed paired-samples t test 
and Wilcoxon signed-rank test. The relationship between 
high-frequency power and P3a amplitude was investigated 
via Spearman correlation.

3  |   RESULTS

Our results, presented in detail below, show that both small 
and large rhythmic deviations induced a neural response 
with a time course and topographical distribution typical of 
MMNs. They further demonstrate a significant difference 
in the amplitude of the MMN between the two conditions. 
Interestingly, we only observed a P3a for the rhythm devi-
ants, which followed the MMN and was concurrent with 
the emergence of gamma activity over the left frontal area. 
In this paper, the statistical analyses were based on cluster-
based permutation to deal with the high spatial, temporal 
and spectral dimension of the data and to correct for mul-
tiple comparisons. However, it needs to be taken into con-
sideration that cluster-based methods can underestimate the 
latency, spatial, or frequency extent of effects (Sassenhagen 
& Draschkow, 2019).

3.1  |  Event-related potentials

The ERP response to the rhythm and omission deviants are 
depicted in Figure 2a and b. We considered the baseline time 
window [−500 to −300  ms] for the rhythm and [−650 to 
−450 ms] for the omission condition (that is [250–450 ms] 
from the onset of the first chord in both conditions). The 
grand average ERPs showed enhanced early (~100–200 ms) 
frontal negativity, consistent with the typical time win-
dow of MMN, for both deviant conditions with respect to 
the control conditions (Figure 2). For the rhythm condition 
only, the MMN was followed by a subsequent positive de-
flection in the 200 to 300-ms time window, indicative of a 
P3a (Figure 2a). Through visual inspection, both components 
were more pronounced over the frontal and fronto-central 
electrodes and demonstrated an inverting polarity over the 
posterior electrodes.

Cluster-based statistics revealed four spatio-temporal 
clusters for the rhythm condition (their time intervals are 
specified by the thick black lines in Figure 2a): (1) a neg-
ative cluster (p =  .0036, corrected) comprising frontal and 
fronto-central electrodes and extending approximately over 
120–202-ms post-final chord, (2) a temporo-posterior posi-
tive cluster (p = .0008, corrected) synchronous with the first 
cluster, 114–204-ms post-final chord, (3) a negative posterior 
cluster (p = .0376, corrected) extending approximately over 
221–290-ms post-final chord, and (4) a positive frontal clus-
ter (p = .0328, corrected) synchronous with the third cluster, 

217–294-ms post-final chord. Spearman correlation analysis 
revealed a significant correlation between the MMN ampli-
tude, averaged over 130–180 ms, and the P3a amplitude, av-
eraged over 200–300 ms (r = 0.8909, p =  .0014), over the 
fronto-central cluster. Cluster-based statistics revealed two 
spatio-temporal clusters for the omission condition (their time 
intervals are specified by the thick black line in Figure 2b): 
(1) a negative cluster (p = .0004, corrected) comprising fron-
tal and fronto-central electrodes and extending approximately 
over 133–221-ms post-final chord and (2) a posterior positive 
cluster (p = .0112, corrected) synchronous with the first clus-
ter, 137–215-ms post-final chord. The topographical distribu-
tion of the clusters corresponding to different time windows 
in the course of the deviant response is shown in supplemen-
tary Figure S2 (electrodes belonging to each cluster are pre-
sented in Figure S3). In addition, the supplementary movie 
illustrates the evolution of the ERP response over the scalp 
during the course of the deviant response for both rhythm and 
omission conditions.

The MMN amplitude (considered as the peak over a 
fronto-central ROI, Figure S4 A, over 100–250 ms), corre-
sponding to the rhythm condition, was significantly larger 
than that of the omission condition, as shown by a paired 
sample t test (t = 2.4214, p = .0339). There was no significant 
difference between the latency of MMN corresponding to the 
two conditions (t = 1.6769, p = .1217). We also performed a 
control experiment during which the rhythm deviant stimulus 
replaced the standard condition in the context of an oddball 
paradigm and the deviant condition consisted of silencing 
its last chord. The aim of this experiment was to show that 
having the omission MMN being smaller compared to the 
mismatch corresponding to the rhythm deviant is not related 
to the relative distance of the chord being omitted to the pen-
ultimate chord (see SI for more details). During this control 
experiment, omission of the last chord in Dv1 (Figure  S1) 
resulted in a smaller MMN than the rhythm deviant response 
in the main experiment and it was not followed by the signif-
icant P3a that was observed in the rhythm deviant condition 
during the main experiment (Figure S5a). The results of this 
control study confirm that the omission condition results in a 
relatively smaller MMN and does not elicit a significant P3a 
component. These results support the results corresponding 
to the main experiment and the difference observed between 
the omission and rhythm deviant conditions.

3.2  |  Time-frequency representation

For each participant, we calculated the TFR over 4 to 30 Hz 
and 60 to 100 Hz and set the zero to the onset of the devi-
ant condition to determine the power modulation during the 
time course of the deviant response (Figure  3). The mean 
TFRs over the left, middle, and right frontal electrodes were 
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computed to show the spatial dynamic of power fluctuations 
in the low- (4–30 Hz) and high-frequency (60–100 Hz) ranges 
for the rhythm and omission conditions (deviant minus con-
trol), respectively (Figure 3a and b).

As illustrated, the pronounced oscillatory power over the 4 
to 10-Hz frequency range coincided with the temporal location 
of MMN, in agreement with the modulation of low-frequency 
power during ERP components (Fuentemilla et  al.,  2008; 
Kaser et al., 2013; Pearce et al., 2010). Cluster-based statis-
tics revealed a spatio-temporal cluster over 90 to 228 ms (p 
= .0008, corrected) for the rhythm condition and over 140 to 
283 ms (p = .0002, corrected) for the omission condition over 
the 4- to 10-Hz frequency range, comprising the frontal and 
frontocentral electrodes (clusters are presented in Figure 3). 
The power corresponding to the rhythm condition was larger 
than the omission condition (calculated as the peak value be-
tween 50 and 300 ms of the averaged frequency response be-
tween 4 and 10 Hz), however the difference failed  to reach 

statistical significance (t = 1.779, p =  .1028, paired-sample 
t test). There was no significant difference between the emer-
gence times of the low-frequency response corresponding to 
the two conditions (p =  .0957, Wilcoxon signed-rank test). 
However, the latency of the power corresponding to the omis-
sion condition was significantly larger than the rhythm condi-
tion (t = 3.0506, p = .0110, paired-sample t test).

In the rhythm deviant trials, TFR analysis over the 70- 
to 100-Hz frequency range (Figure 3a) showed pronounced 
high-frequency oscillatory power over the left frontal elec-
trodes. The significant difference relative to the control 
condition was restricted to the 260 to 289-ms time window 
(p =  .0142, corrected) after the onset of the deviant chord 
(Figure 3a), concurrent with the descending slope of the P3a 
component. Interestingly, the high-frequency oscillatory 
power, as averaged between 200 and 300 ms, correlated with 
the P3a amplitude over the left frontal cluster (r = 0.6909, 
p = .0231), as revealed by Spearman correlation analysis.

F I G U R E  2   Event-locked analysis of rhythm and omission conditions. The onset of the deviant chord was set to zero and the next trial started 
at 450 and 300 ms for the rhythm and omission conditions, respectively. For both conditions, the baseline was set to 250 to 450 ms from the onset 
of the first chord. (a) Grand average of ERP (-SE) for the rhythm deviant condition, the control condition, and their difference over frontal and 
parietal clusters. (b) Same as (a) for the omission condition. Both rhythm and omission deviants elicited an MMN. However, a P3a followed the 
MMN for only the rhythm deviants. The black bars over the ERP figures represent the time intervals of significant difference between the deviant 
and control conditions (p < .05, corrected, marked according to cluster-based permutation analysis). The topography of each significant time 
window is shown in the boxes: above for the MMN corresponding to the rhythm and omission deviant conditions and below for the P3a in the 
rhythm and omission (not significant) deviant condition
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F I G U R E  3   Event-locked analysis of the rhythm and omission deviant conditions. The average TFR locked to the beginning of the rhythm 
deviant (a) and omission deviant (b) trials. The corresponding ERP of the ROI is superimposed on each TFR to better illustrate the results. The 
statistically significant changes from the control condition are indicated by a white contour. Rhythm deviant: low-frequency cluster: 90 to 228 ms, 
p = .0008, corrected; high-frequency cluster: 260 to 289 ms p = .0142, corrected. Omission deviant: low-frequency cluster: 140 to 283 ms, 
p = .0002, corrected; high-frequency cluster: 307 to 330 ms, p = .048, corrected. The figures below the high-frequency TFRs show the uncorrected 
p values corresponding to the comparison between the deviant and control conditions (paired-sample t test). The topographical distributions of the 
electrodes belonging to the significant low- and high-frequency clusters are specified on the head map on top. The topographical distribution of the 
average power over the frequency and time window corresponding to each cluster is presented in the boxes (above for the low-frequency and below 
for the high-frequency TFR). (c) Comodulograms of phase-amplitude coupling analysis over the 450-ms window corresponding to the rhythm 
deviant condition. Comparison of the rhythm deviant condition with the control condition showed a single cluster with significant MI (p = .0318, 
corrected). (d) The difference between the rhythm deviant and control conditions in low-frequency TFR, high-frequency TFR, and time-varying 
PAC over the time course of the rhythm deviant condition is shown. The significant cluster observed when comparing the two conditions is marked 
in all the three figures. The time-varying PAC is presented as the mean ± SE



10 of 17  |      EDALATI et al.

In the omission deviant trials, TFR analysis over the 60- to 
80-Hz frequency range (Figure 3b) showed a non-significant 
increase in high-frequency oscillatory power over the right 
frontal electrodes between 100 and 300  ms, followed by a 
significant decrease comprising five right frontal electrodes 
and extending approximately from 307 to 330 ms (p = .048, 
corrected, Figure 3b), which coincided with the onset of the 
next standard trial.

3.3  |  Phase amplitude coupling

To further address the underlying mechanisms of rhythm 
perception and investigate the inter-relationships of oscilla-
tory activities during the processing of rhythm deviations, we 
evaluated PAC across a broader frequency range by applying 
the comodulogram analysis (Tort et al., 2010). The modula-
tion index (MI) reflects the degree to which the amplitude of 
the higher (modulated) frequency varies as a function of the 
phase of the lower (modulating) frequency. We performed 
the PAC analysis over all electrodes for both deviant con-
ditions, with the phase frequency ranging from 6 to 15 Hz 
and the amplitude frequency ranging from 60 to 100 Hz, as 
explained in Materials and Methods. Cluster-based statistics 
revealed a significant cluster (p =  .0318, corrected) when 
comparing the 450-ms window between the rhythm devi-
ant condition with the control condition. This cluster dem-
onstrated the presence of significant PAC for the rhythm 
deviant condition, in which the power of the 60- to 75-Hz 
frequency range was modulated by the phase of the 6.5- to 
8.5-Hz frequency range (Figure 3c). In addition, we assessed 
the statistical significance of the observed CFC by comparing 
the results with those generated with the shuffled surrogate 
data—the same data as for the original PAC analysis, and 
with exactly the same spectral power characteristics. This 
was carried out over the average of electrodes over the left 
frontal region, leading to a significant cluster in the compari-
son performed over the PAC between rhythm deviant and 
control conditions. This procedure showed a single positive 
cluster (p = .002, corrected, Figure S6). This cluster corre-
sponded to the theta-gamma PAC. The same procedure was 
carried out over the same region of interest, but for the data 
corresponding to the rhythm deviant condition in the follow-
up control experiment (conducted over a different group of 
participants, see also the SI). Over the same region of inter-
est, the procedure led to a single positive cluster (p = .023, 
Figure S6), however, the strength of the theta-gamma PAC 
was smaller compared to the theta-gamma coupling observed 
during the main experiment. The different number of par-
ticipants in the two experiments as well as the variations in 
the experiment design might have played a role in the dif-
ferences observed between the two aforementioned analyses. 
Together, the two comparisons showed that the pronounced 

theta-gamma coupling in the rhythm deviant condition was 
significantly stronger from both a random non-significant 
condition (surrogate data), and the control condition. There 
was no significant cluster, when comparing the omission de-
viant and control conditions.

We further investigated the temporal pattern of PAC 
during the time course of the deviant response. The mean 
time-varying PAC over subjects for the rhythm deviant con-
dition is illustrated in Figure 3d. The plotted MI is the time-
varying deviant MI minus the time-varying control MI over 
6.5 to 8.5 Hz for the phase frequency and 61 to 78 Hz for the 
amplitude-frequency. The difference between the two condi-
tions was significant and increased over a time window from 
170 to 260 ms (p = .0459, corrected) from the onset of the 
deviant chord. Interestingly, the timing of the PAC for the 
deviant condition was concurrent with the late parts of the 
low-frequency TFR cluster and coincided with the signifi-
cant high-frequency TFR cluster. These PAC results not only 
corroborate the main findings from our event-based analy-
sis but also highlight that the observed late high-frequency 
oscillatory activity in the TFR analysis was nested in the 
low-frequency oscillations in the theta range. There was no 
significant difference between the PAC corresponding to the 
omission deviant condition compared to the control condition 
in the time course of the deviant response.

4  |   DISCUSSION

Both rhythm and omission deviations induced a typical 
MMN, similar in time course and topographical distribution, 
with a significantly higher amplitude for rhythm deviations. 
In addition, a significant P3a was elicited only for the rhythm 
deviant. Furthermore, rhythm violation through modulation 
of the rhythmic structure elicited significant late gamma-
band activity over the left superior frontal area, which oc-
curred concomitantly with the P3a component. This gamma 
oscillation was nested in theta oscillations, resulting in sig-
nificant phase-amplitude coupling. The power of the gamma 
oscillation correlated with the amplitude of the P3a compo-
nent over the same ROI for the rhythmic deviant condition 
only. Omission of the last chord in the rhythmic sequence 
also elicited an MMN, but this component was not followed 
by a later P3a-positive component in the left frontal area and 
did not elicit a significant gamma-band response.

Rhythm perception consists of extracting regularities 
from the sound stream and shaping temporal expectations 
about the future events. It is considered to be a Bayesian 
process (Elliott et  al.,  2014; Koelsch et  al.,  2019; Lumaca 
et  al.,  2019), which fits with the framework of predictive 
coding (Friston,  2005). Here, we presented two types of 
deviant conditions: rhythm and omission, in which the for-
mer condition was created by the last chord arriving earlier 
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than expected and the latter by omission of the last chord. 
Exposure to the rhythmic deviant condition changes the 
“tree” structure, with the addition of a new branch, which 
requires updating of the neural model. Conversely, omission 
of the last chord maintains the tree structure and therefore 
results in a relatively smaller violation than the rhythmic vi-
olation and a relatively smaller prediction error, which might 
not require modulation of the neural model. Studies of the 
neural correlates of novelty responses show that a significant 
MMN is elicited by both small and large deviants, whereas a 
significant P3a is elicited only by large deviants (Friedman 
et  al.,  2001). It has been shown that MMN is sensitive to 
sensory or lower-level violations, reflecting the detection of 
deviant events, whereas the later responses arrive only when 
there is a higher-level violation of the regularity of the under-
lying structure (Chennu et al., 2013; Wacongne et al., 2011). 
The P3a component is associated with the evaluation of the 
deviant events (Lumaca et al., 2019) and reflects updating of 
the prediction model, which involves a broad fronto-parietal 
network (Wacongne et al., 2011). The P3a has been linked 
to musical expectancy, being sensitive to large violations of 
rhythmic (Vuust et al., 2009), metric (Jongsma et al., 2004), 
melodic (Trainor et al., 2002), and harmonic (Janata, 1995) 
structure. In our study and during first-level processing, the 
MMN was sensitive to the prediction error being larger for 
the rhythm deviant than the omission deviant, for which the 
rhythmic tree structure was changed. We suggest that vio-
lation of the rhythmic tree structure in the rhythm deviant 
elicited a larger MMN, which moved to higher areas in the 
chain of auditory processing, leading to integration with the 
higher areas and then updating of the predictive model of the 
rhythmic structure in the higher levels of the hierarchy. This 
hypothesis is supported by the (i) occurrence of the P3a com-
ponent, the amplitude of which correlated with that of the 
MMN, and (ii) by the gamma-band activity nested in the P3a 
component, with its power being correlated with the P3a am-
plitude. It has to be noted however that it was not necessarily 
the specific new metrical level used in this study (induced by 
the rhythm deviant) that elicited the neural response. Other 
large enough violations of the rhythmic structure, by other 
degrees of changes in chord durations could have elicited 
similar neural responses.

The observed late induced gamma activity in response 
to the rhythm deviant condition, in contrast to the control 
condition, reflects focal synchronized neural activity (in 
contrast to observed earlier wide-spread effects) at the left 
frontal electrodes (Figure  3). Gamma-band activity is in-
vestigated in processes related to the auditory system and 
is suggested to reflect attention, anticipation, and expec-
tation (Snyder & Large,  2005; Sokolov et  al.,  2004; Zanto 
et  al.,  2005); (Bhattacharya et  al.,  2001). Induced “late” 
gamma activity, which typically emerges later than 200 ms, 
even in concomitance with the P3 component (Başar-Eroglu 

& Başar, 1991), is suggested to be a signature of processes 
such as response selection or context updating (Herrmann 
et  al.,  2004). During the creation of a phonetic mismatch 
response, induced gamma activity (84–88  Hz) follows the 
evoked mismatch response by 130 ms over the left inferior 
frontal cortex (Kaiser et al., 2002). Focal increased gamma 
activity (50–90 Hz) has also been observed over the left su-
perior frontal area in response to an acoustic mismatch in the 
context of an oddball audiovisual paradigm, suggested to re-
flect higher-order auditory functions following the mismatch 
response (Kaiser et  al., 2003, 2005). It has been proposed 
that the late gamma activity is specifically related to the 
match between stimulus-related information and top-down 
factors, as well as the emergence of an object representation 
(Noesselt et al., 2003; Tallon-Baudry & Bertrand, 1999). We 
suggest that the observed induced late gamma-band activity 
in this study reflects the integration of bottom-up and top-
down processing toward refining the predictions of the neural 
model corresponding to the temporal structure of the events 
in higher-level cortical areas.

Although, the observed gamma activity can be interpreted 
as a neural correlate of rhythm deviation, the results have to 
be interpreted with caution, considering the small population 
size. In addition, the study design permitted the comparison 
only between the omission and rhythm conditions. Future 
work must manipulate the attentional state of the subjects as 
well as the degree of deviation from the rhythm structure and 
investigate high-frequency power modulation and CFC as a 
function of the deviations.

Recent studies in humans using ECoG, EEG, MEG, 
and fMRI have demonstrated that local error signals are 
restricted to the primary auditory cortex, whereas error 
signals corresponding to the violation of the global struc-
ture propagate to distributed areas in the frontal cortex 
(Bekinschtein et  al.,  2009; Chennu et  al.,  2013; El Karoui 
et al., 2015; Wacongne et al., 2011). The frontal cortex en-
codes the global and abstract characteristics of a sequence 
(Dehaene et  al.,  2015; Wang et  al.,  2015). Signals reflect-
ing the update of the neural model are primarily found in the 
prefrontal cortex and dorsolateral prefrontal cortex, areas 
important for working memory-related processing (Curtis 
& D'Esposito,  2003; Gilbert & Kesner,  2006). Chao et al. 
suggested that these brain structures “generate and hold an 
internal representation of the entire sequence of stimuli” and 
therefore can later generate error signals when an unexpected 
novel sequence is heard (Chao et al., 2018). We suggest that 
the elicited gamma-band activity over the left frontal cortex 
may reflect the underlying mechanisms involved in updating 
of the neural model of the entire rhythmic structure over the 
frontal areas.

An interpretation for the increased focalized PAC in our 
results may be that the lower-frequency theta oscillations 
synchronized the synaptic input toward refinement of the 
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predictive model of the temporal pattern of the music struc-
ture, which elicited the local high-frequency gamma activity 
at the time of the P3a component. However, this hypothesis is 
speculative at present and requires further studies. The gamma-
band activity was nested in the late theta activity. Although 
the low-frequency oscillatory activity was observed for both 
the omission and rhythm conditions, the elicited nested 
gamma activity and significant PAC were only observed for 
the rhythm deviant. Interestingly, in agreement with the ob-
served gamma-band activity, the PAC index became signif-
icant only at the time of the emergence of the gamma-band 
activity and in coalescence with the P3a component. PAC 
is a potentially useful measure of coupling between neural 
oscillations on different timescales. The mechanisms under-
lying PAC have recently received much attention in both ex-
perimental and theoretical studies. It has been suggested that 
PAC supports the encoding, storage, and retrieval of informa-
tion (Bergmann & Born, 2018; Fell & Axmacher, 2011). PAC 
translates as precise temporal relationships between modulat-
ing and modulated frequencies in (for example) the thalam-
ocortical and hippocampal networks during sleep (Staresina 
et  al.,  2015), in the hippocampus during the operation of 
multi-item working memory (Axmacher et  al.,  2010), and 
in the cortical networks during cognitive functions (Canolty 
et al., 2006; Chacko et al., 2018; Combrisson et al., 2017). It 
has been hypothesized that the phase of the slower oscillation 
generally reflects greater excitability among postsynaptic 
neurons, which in turn synchronizes the synaptic input (as 
reflected by an increase in the amplitude of the faster oscil-
lation) (Bergmann & Born, 2018). The precise PAC between 
the theta oscillations and the elicited gamma-band activity 
may reflect local spiking activity, which probably occurs for 
the revision of the predictive model developed in the higher 
levels of the hierarchy, which is locked to the phase of the 
slow theta oscillations, during the period in which the ex-
citability of the neural population is higher, hence signaling 
the time window for updating the model. Further studies to 
address the information flow between the cortical structures 
are required to confirm this hypothesis.

Investigating the neural response to omission of tones is 
of specific interest in the framework of predictive coding, 
since it reflects an elicited response to violation of a se-
quence without any feedforward propagation of a sensory 
input (Bekinschtein et al., 2009), and therefore the neural re-
sponse can be considered to reflect pure prediction (Chennu 
et al., 2016; SanMiguel et al., 2013). A recent study by (Chennu 
et al., 2013) showed that the elicited mismatch response can 
be best explained when assuming top-down driven inputs in 
the dynamic causal modeling in higher-order cortical areas. 
Interestingly, it has been demonstrated that evoked omission 
responses are sensitive not only to the timing of the stimulus, 
but also to its predicted identity (Auksztulewicz et al., 2018). 
Our results on the neural correlates of the omission response 

do not contradict previous findings related to the omission 
response. In the previous studies both the deviant and omis-
sion stimuli involved manipulation at the same hierarchical 
level of the stimulus structure (Chennu et  al.,  2013, 2016; 
Wacongne et al., 2011), which made the comparison between 
the presence and absence of a feedforward input feasible. 
In our study however, the omission or manipulation of the 
last chord affected the rhythmic structure differently. As the 
omission deviant was delivered in the context of an oddball 
paradigm and was only different in the absence of the last 
chord, the elicited MMN reflects an error, which was not pro-
ceeded by later ERP, and oscillatory activities that reflect a 
model update.

We presented the results corresponding to pitch deviants 
in the SI, where as illustrated the mismatch was not followed 
by either a P3a component, or significant high-frequency os-
cillatory responses. The authors do not intent to suggest that 
the observed effect is exclusive to rhythm deviations. The re-
sults presented for pitch deviant have to be considered with 
caution, since a conclusion on the lack of the aforementioned 
effects cannot be made without studying the modulatory role 
of stimuli characteristics and paradigm design.

Considering the population size of the study, the results 
of the exploratory statistical tests have to be considered with 
caution. In addition, the design of the follow-up control study 
did not allow the repetition of all the analyses (in terms of 
comparisons between deviant and control conditions). Even 
though comparisons with the surrogate condition were per-
formed for both the main and control experiments, this has 
to be replicated in further control studies with the same ex-
perimental conditions. Future experiments in a large number 
of subjects can lead to more confidence regarding the role of 
high-frequency responses in terms of both modulatory power 
and PAC, in predictive coding and its relationship with the 
P3a component. In the experiment design the instrumental 
piano tones were used for creating the stimuli. Although 
the chords faded out after the initial chord attack, the neural 
response might be impacted by the modulation of the dura-
tion of the penultimate chord. This is a factor that cannot be 
ruled out in the current context of the experiment design. The 
computed MI that explains the degree of coupling between 
different oscillatory activities of different frequency depends 
on different factors, including the technique that is used for 
quantification of this phenomenon (Tort et  al.,  2010), the 
neural signals that are being analyzed (e.g. EEG versus local 
field potentials that can lead to a better quantification of the 
coupling between oscillators, depending on the underlying 
mechanisms and neural structures), and the neural activity 
that is being studied (e.g. a cognitive task versus coupling in 
the thalamocortical networks during sleep). All these factors 
can lead to different MIs that define the degree of CFC and 
demonstrate the necessity for comparison of the observed 
effect with suitable control conditions or surrogate data.
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This study addressed the neural oscillatory activity under-
lying rhythm processing. The results also proposed mecha-
nisms that can be involved in predictive coding in terms of 
how the predictive error signal is processed and how the in-
ternal model is updated when confronting an input that vi-
olates the abstracted regularities. An interesting addition to 
this study which can be realized in future studies would be 
to address the role of the precision of predictions (Koelsch 
et al., 2019) in modulation of the high-frequency oscillatory 
activity, observed presumably during the update of the model. 
Future studies need to be conducted to take into account the 
complexity of the temporal patterns (and as a result the as-
signed precision), which might modulate the prediction error 
and its processing. Further studies are required to address 
how this mechanism functions in processing temporal struc-
tures through other sensory modalities and the causal inter-
actions in the neural networks that give rise to the observed 
activity. In addition, it has been shown that newborn infants 
develop expectation for the onset of rhythmic cycles and cre-
ate a mismatch response to omission of the downbeat. An 
interesting question is how the mechanisms involved in the 
predictive coding of temporal structures, which are widely 
acknowledged to be an important feature of both music and 
language, evolve in the course of development and what are 
the differences between adults and newborns in terms of the 
mechanisms involved in creating a mismatch response.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.
FIGURE S1 Rhythm tree and the corresponding events for 
the three standard (St), rhythm deviant (Dv1), and omission 
deviant (Dv2) conditions. The green lines represent the po-
sition of the chords corresponding to different conditions. 
The corresponding sound waveform is presented below each 
condition (values are in seconds). Sound waveforms are pre-
sented as supplementary material (sound.wav)
FIGURE S2 Topographical distribution of the clusters. 
Columns correspond to each time window from 75 to 300 
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ms and rows correspond to the ERP, low-frequency TFR, and 
high-frequency TFR, respectively. (A) Topographical distri-
bution of the clusters corresponding to the rhythm deviant. 
(B) Topographical distribution of the clusters corresponding 
to the omission deviant
FIGURE S3 Rhythm and omission ERP significant clusters. 
(A) MMN frontal and temporo-posterior clusters of rhythm 
deviant. (B) P3a frontal and posterior clusters of rhythm de-
viant. (C) MMN frontal and posterior clusters of omission 
deviant
FIGURE S4 Electrodes selected for additional ERP (A), and 
TFR (B) statistics analysis
FIGURE S5 Event-locked analysis of control blocks. (A) 
Event-locked analysis of rhythm and omission II conditions. 
The onset of the deviant chord was set to zero and the next 
trial started at 450 ms. For all conditions, the baseline was 
set to 250 to 450 ms from the onset of the first chord. In the 
follow-up control experiment, the rhythm deviant condition 
again elicited an MMN response followed by a P3a compo-
nent. However, the omission II deviant only elicited an MMN 
response with its timing matching the MMN of rhythm devi-
ant, without a P3a component. (B) Event-locked analysis of 
each block separately. The onset of the deviant chord was set 
to zero and the next chord started at 450 ms for rhythm de-
viant, omission II deviant, and rhythm as standard condition, 
and at 300 ms for omission I and standard conditions
FIGURE S6 Cluster-based permutation results on phase-
amplitude coupling over the 450-ms window, comparing the 
rhythm deviant condition in the main (p = .002, corrected) 
(A), and control (p = .023, corrected) (B) experiment with 
shuffled surrogate data. The grey regions correspond to fre-
quency pairs for which the permutation analysis did not show 
significant PAC
FIGURE S7 Grand average of ERP (-SE) for the pitch de-
viant condition, the control condition, and their difference 
over frontal and parietal clusters. The onset of the deviant 
chord was set to zero and the next trial started at 300 ms. 

For this condition, the baseline was set to 250 to 450 ms 
from the onset of the first chord. The black bars over the 
ERP figures represent the time intervals of significant dif-
ference between the deviant and control conditions (p = 
002 for frontal cluster and p = .004 for the posterior cluster, 
marked according to cluster-based permutation analysis). 
The topography of significant time window is shown in the 
box
FIGURE S8 Event-locked analysis of the pitch condition. 
The average TFR locked to the beginning of the pitch de-
viant. The corresponding ERP of the ROI is superimposed 
on each TFR to better illustrate the results. A white contour 
indicates the statistically significant changes from the control 
condition. Low-frequency cluster: 98 to 336 ms, p = .001, 
corrected. The figures below the high-frequency TFRs show 
the uncorrected p values corresponding to the comparison 
between the deviant and control conditions (paired-sample 
t-test). The electrodes' topographical distributions belonging 
to the significant low-frequency cluster are specified on the 
head map on top. The topographical distribution of the aver-
age power over the frequency and time window correspond-
ing to each cluster is presented in the box
Video S1
Audio S1
Audio S2
Audio S3
Audio S4
Audio S5

How to cite this article: Edalati, M., Mahmoudzadeh, 
M., Safaie, J., Wallois, F., & Moghimi, S. (2021). 
Violation of rhythmic expectancies can elicit late 
frontal gamma activity nested in theta oscillations. 
Psychophysiology, 00e1–17. https://doi.org/10.1111/
psyp.13909

https://doi.org/10.1111/psyp.13909
https://doi.org/10.1111/psyp.13909

