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Abstract
This article investigates an enhanced optimal robust time-delay stabilizer for an autonomous underwater vehicle in the

descriptor model. Time-delay, model uncertainty, and actuator saturation constraint are some practical challenges in

autonomous underwater vehicle controller design. In this regard, an appropriate autonomous underwater vehicle de-

scriptor model is obtained, and sufficient stabilization conditions are determined in the terms of linear matrix inequality.

The obtained criterion guarantees the system to be regular, impulse-free, and stable. Meanwhile, the delay-dependent and

rate-dependent conditions are taken into account. Furthermore, uncertainty and time-delay are time-variant. This method

includes a tuning factor for practical design aspects and tradeoff among desired requirements. Also, as an essential general

requirement in non-linear systems, the maximal estimate of the attraction domain is proposed as an optimization problem.

Numerical examples and simulations illustrate that the proposed methods are effective and useful in less conservative

results. The technique can be generalized and applied to the most conventional autonomous underwater vehicles.
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1. Introduction

Today, many marine investigators have focused on AUVs all
over the world. AUVs receive widespread attention in many
applications such as search and rescue, photometric survey,
and environmental monitoring (Lei 2020). The controller
should be able to deal with fundamental problems like time-
delay, actuator saturation, uncertainty, and disturbances. In the
past decade, different methods have been developed for AUV
control ((Khodayari and Balochian, 2016) and (Khodayari
and Balochian, 2015)). Nevertheless, they have ignored the
impact of time-delays. Nowadays, many AUV’s missions
include regions as the nominal target rather than a particular
route. Therefore, paying attention to familiarity with the
bound of attraction region is very significant and should be
considered in the design procedures. In the rest of this article,
we hint at some main AUV stabilization problems.

Time-delay impact: In most industrial problems, natural
phenomenon, and circuit systems, time-delay can impose
a severe limitation on the controller design and even results
in instability. Recognizing time-delay stability is reasonably
hard because of its infinite dimension (Li et al., 2019).

Generally, time-delay is divided into two main bifurcations:
the delay-independent and delay-dependent. The delay-
dependent system is less conservative than the delay-
independent one. So, more investigations have been devoted
to it (Han et al., 2017). In the AUV structure, there are some
non-homogeneous primary delay sources such as delay of
Doppler Velocity Log (DVL), Medium Access Delay
(MAC), actuator delays, and thruster delay. One of the
essential delay origins is transmission data delay between
the control center and AUV in remote mode (Kim and Yoo,
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2018). From another aspect, because of the AUV trip, the
distance between AUV and the control station is time-
varying, inducing time-varying communication delays.

Actuator saturation constraint: on the other hand, most
dynamic systems encounter saturation constraints of their
actuators, adding an extra restriction on the AUV control
analysis. Inspired by this, various techniques have been
presented to handle saturation (Yan et al., 2018). However,
the Domain of Attraction (DOA) has not been explored
in these articles. Generally, the problem of actuator’s sat-
uration constraints can be solved using some primary
techniques such as poly-topic solution or anti-windup
techniques.

Descriptor (singular) systems: over the past decades,
much attention has been devoted to exploring descriptor
systems. Descriptor systems that are known by other names,
such as singular systems or semi-state systems, need ad-
missibility in addition to stability. It means that we need
stability, regularity, impulse free, and causality (Chen et al.,
2017). Descriptor time-delay systems are time-delay dif-
ferential equations that tighten with algebraic equations.
Hence, investigating these systems is much more compli-
cated than standard state-space systems (Zhou et al., 2019).
In singular time-delay system, due to its infinite dynamic
modes and non-dynamic modes, the uniqueness and exis-
tence of system solutions may not be guaranteed, and it may
have unexpected impulsive treatment.

Parameter uncertainty: AUV modeling is complicated
due to the hydrodynamic coefficients estimation and pa-
rameter coupling. Besides, these parameters vary in dif-
ferent velocities, missions, and environments. Therefore,
the theoretical methods are difficult to apply directly to the
AUV control problem. In practice, sometimes, the gap
between the practice and theory rises to 100%. The stability
problem of the singular time-delay system has been ex-
plored by a useful theorem in El Haouti et al. (2020) with
less conservative result; however, some practical vital issues
like uncertainty and actuator saturation have not been
considered simultaneously.

Different requirements concerning DOA are significant
in dynamic systems. In most of the practical systems,
a lower bound on DOA is an open issue. Most of the time,
these estimations are conservative and need more consid-
erations. Therefore, reasonable estimation on DOA be-
comes vital. For nonlinear time-delay systems, DOA has
been studied rarely despite their significant role in engi-
neering systems. DOA in nonlinear time-delay systems has
been studied in Scholl et al. (2020); however, it includes
only conventional state-space and does not cover singular
time-delay systems.

Here, we present two stages to solve the problem; the
first one transforms singular system into an equivalent

neutral one under a reasonable assumption. In the second
stage, delay-dependent stability criterion is proposed for
stability in terms of LMI (based on the Lyapunov–
Krasovskii Functional (LKF)) to tackle singularity, time-
delay, and compensation of actuator saturation impact with
time-variable parameter uncertainty.

Almost AUV control problems are categorized into two
main branches. The first issue is tracking and the second
one is stabilization. Depending on AUV missions, it can
include some nominal points that also are called as trim
points, so stabilization in each trim point is very vital in
this subject. To explore the stabilization methods, based on
Lyapunov theory, we can refer to Makhlouf (2018), and in
a more complex statement with mixed time-delay, it is
better to study Naifar et al. (2020). In Naifar et al. (2020),
quasiuniform stability for fractional-order systems has
been developed and can be enumerated as the new useful
method.

Based on our knowledge, the AUV stabilization in the
uncertain descriptor time-delay model by desired design
parameters in the presence of uncertainty and actuator
constraints has not been addressed adequately yet and
rare works have dealt with this. The present result can be
used in trial stability of singular time-delay systems,
retarded systems, and neutral ones with desired tuning
parameters that would be useful in desired practical
requirements.

The rest of this article is organized as follows: In Section
2, useful notations are presented. In Section 3, the problem
statement with some helpful definitions and lemmas is
expressed. In Section 4, numerical examples and compar-
ison of the proposed method with previous techniques are
given. In Section 5, AUV general equations in descriptor
form in-depth channel are provided, and some simulation
results for a REMUS100 (Remote Environmental Moni-
toring Units) AUV in-depth channel are given to verify the
effectiveness of the proposed algorithms. Finally, the article
is concluded in Section 6.

2. Notations

Symbol Explanation

T Matrix transposition

P > 0 P is symmetric and positive definite matrix

symf�g symfXg ¼ X þ XT

colf…g Column vector

diagf…g Block diagonal matrix

λðPÞ Maximal eigenvalue of matrix P

cof�g The convex hull of a set

ρ Spectral radius of the matrix
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3. Problem statement and preliminaries

In this section, some useful definitions and lemmas are
presented, a new theorem is proved, and another helpful
theorem is introduced.

3.1. Definitions, theorems, and lemmas

In this article, we consider the following singular time-delay
systems subject to norm-bounded uncertainties as follows

E _xðtÞ ¼ ðA0 þ ΔA0ÞxðtÞ þ ðAd þ ΔAdÞxðt � hðtÞÞ
þB satðuðtÞÞ

xðtÞ ¼ fðtÞ t2 ½�h,0� 0 ≤ hðtÞ ≤ hm _hðtÞ ≤ d1 < 1

8><>:
(1)

where xðtÞ 2Rn is the state, uðtÞ 2Rm is the control input
emitted from the designed controller, and E, A0, and
Ad 2Rn×n are known real constant matrices. We assume
rank E ¼ r ≤ n. hm > 0 is as maximum discrete time-delay.
ΔA0 and ΔAd represent norm-bounded uncertainty of the
system’s main matrices. The saturation function is defined
with the following equations

satðuðtÞÞ ¼ ½satðu1ðtÞÞ, satðu2ðtÞÞ,…satðumðtÞÞ�T
where satðuiðtÞÞ ¼ signðuiðtÞÞminfjuij,uig with ui > 0

(2)

The purpose of this article is to establish a delay-
dependent admissibility criterion, which can generate
acceptable bounds on a time-delay as large as possible.
Inspired by the neutral system, we try to transform system
(1) into an equivalent neutral form under specified limi-
tations. Before transformation, it is necessary to express
some useful definitions and lemmas.

Definition 1 (Li and Lin, 2017): The pair (E,A0) is regular if
det (SE-A0) is not identically zero; the pair (E,A0) is impulse
free if deg (det (SE-A0)) = rank (E).

Definition 2 (Dai, 1989): The singular time-delay system is
regular and impulse free if the pair (E,A0) is regular and
impulse free. The singular time-delay system is admissible
if it would be regular, impulse free, and stable.

Lemma 1 (Fridman, 2014): If the pair (E,A0) is regular and
impulse free, then the solution to the singular time-delay
system exists, and it is impulse free and unique on [0, ∞).

Lemma 2 (Schur complement) (Fridman, 2014): Given the
matrices A, B, and C, the following holds

M ¼
�
A B
BT C

�
≥ 05C ≥ 0 and A�BC�1BT ≥ 0 (3)

Assumption 1: Assuming that the pair (E,A0) is regular,
impulse free, and all eigenvalues of bCðtÞ are inside the
unit circle (Schur-Cohn), that is

ρ
�bCðtÞ� ¼ maxfjð1� d1ÞρðCÞj,jjð1� d2ÞρðCÞjjg< 1

(4)

Lemma 3 (Dai, 1989): Assume that in equation (1) the pair
(E,A0) is regular and impulse free, then there exist two
invertible matrices M ,N 2Rn×n such that

MEN ¼
�
Ir 0
0 0

�
¼ E, MA0N ¼

�
A1 0
0 In�r

�
¼ A (5)

Let

MAdN ¼ Ad ¼
�
Ad1 Ad2

Ad3 Ad4

�
, N�1xðtÞ ¼ μðtÞ ¼

�
μ1ðtÞ
μ2ðtÞ

�
(6)

where the partitions are compatible with the structure of E.
Then, the system given by equation (1) would be equivalent
to equation (7)

E _μðtÞ ¼ AμðtÞ þ Adμðt � hÞ (7)

Equation (7) is equal to equations (8) and (9)

_μ1ðtÞ ¼ A1μ1ðtÞ þ Ad1μ1ðt � hðtÞÞ þ Ad2μ2ðt � hðtÞÞ (8)

0 ¼ μ2ðtÞ þ Ad3μ1ðt � hðtÞÞ þ Ad4μ2ðt � hðtÞÞ (9)

By differentiating equation (9), we have

_μ2ðtÞ þ
�
1� _hðtÞ

�
Ad3 _μ1ðt � hðtÞÞ

þ
�
1� _hðtÞ

�
Ad4 _μ2ðt � hðtÞÞ ¼ 0

(10)

Using equations (8)–(10), we have the following equations

�
_μ1ðtÞ
_μ2ðtÞ

�
¼

�
A1μ1ðtÞ þ Ad1μ1ðt � hðtÞÞ þ Ad2μ2ðt � hðtÞÞ
�μ2ðtÞ � Ad3μ1ðt � hðtÞÞ � Ad4μ2ðt � hðtÞÞ

�
þ
�
1� _hðtÞ

�� 0 0

�Ad3 �Ad4

��
_μ1ðt � hðtÞÞ
_μ2ðt � hðtÞÞ

�
(11)

Let

bA ¼
�
A1 0

0 �In�r

�
, bAd ¼

�
Ad1 Ad2

�Ad3 �Ad4

�
,

C ¼
�

0 0

�Ad3 �Ad4

� (12)
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Moreover, define

C
_ðtÞ ¼

�
1� _hðtÞ

�
C (13)

Therefore, equation (11) is equivalent to the following
neutral system based on equation (14)

_μðtÞ � C
_ðtÞ _μðt � hðtÞÞ ¼ bAμðtÞ þ bAdμðt � hðtÞÞ,

μðtÞ ¼ φðtÞ t2 ½�h,0�
(14)

The transformation might introduce new dynamics,
leading to some conservative results, which should be
compensated in a complementary way. Hence, the asymp-
totical stability of equation (14) will guarantee the admis-
sibility of equation (1) and vice versa. Here, different choice
of M and N in equation (5) does not affect Assumption 1.
Now, we investigate the stability of the system given in
equation (15) instead of exploring the admissibility of the
system given in equation (1). The main problem changes to
equation (15) with additive norm-bounded uncertainty

_xðtÞ �
�
C
_ þ ΔbCðtÞ� _xðt � τðtÞÞ ¼

�bAþ ΔbA�xðtÞ
þ
�bAd þ ΔbAdðtÞ

�
xðt � hðtÞÞ þ BsatðuðtÞÞ

xðtÞ ¼ φðtÞ t2 ½�h,0�

(15)

In equation (15), τðtÞ and hðtÞ are known, bounded
function of time, and continuously differentiable with their
respective rates of change bounded as follows

0 < hðtÞ ≤ hm, 0 ≤ τðtÞ ≤∞, _hðtÞ ≤ d1, _τðtÞ ≤ d2, hm > 0,

d1 < 1 and d2 < 1

(16)

Generally, we suppose two independent values of
delay and get τðtÞ instead of hðtÞ in terms of
ðC_ þ ΔbCðtÞÞ _xðt � τðtÞÞ. Besides, we assume that un-
certainty is denoted as follows

½ΔA0ðtÞΔAdðtÞΔCðtÞ� ¼ DFðtÞ ¼ ½E0 E1 E2 � (17)

where D,E0,E1, and E2 are known constant real matrices
and FðtÞ 2Ri×j (i and j are integers) is an unknown real time-
varying matrix function of uncertain parameters with
Lebesgue-measurable elements such that FT ðtÞFðtÞ ≤ I . In
the following, we introduce a theorem that covers solving
equation (14). Then, we use a more sophisticated theorem
with a tuning factor. As mentioned before, here, the
main strategy to tackle the actuators’ saturation con-
straint is the poly-topic method (Gomes da Silva and
Tarbouriech, 2005).

Denoting the ith row of K by ki, we define a polyhedron

Γðk,uÞ ¼ fx2Rn : jkixj ≤ ui, i ¼ 1,…mg (18)

Let χ be the set of all diagonal matrices in Rm×m with
diagonal elements that are either 1 or 0. For example, if m =
2, then

χ ¼ fD1,D2,D3,D4g

¼
��

1 0

0 1

�
,

�
0 0

0 1

�
,

�
1 0

0 0

�
,

�
0 0

0 0

��
There are 2m elements Di in χ, and for every i ¼

1,:::2m, DibIm � Di is also an element in χ. The main
purpose of the poly-topic method is to embed sat
ðKxðtÞ,uÞ within a convex hull of a group of linear
feedbacks. Given two gain matrices K,H 2Rm×n, the
matrix set fDiKþ DiH , i ¼ 1,…,mg is formed by
choosing some rows of K and the rest from H: finally,
according to the lemma introduced in Li and Lin (2013),
the saturation function is expressed as follows

ðKxðtÞ,uÞ 2 cofDiK þ DiH , i ¼ 1,:::,mg (19)

It is guaranteed for all x2Rn that jhiðxÞj ≤ u, i ¼
1,…,m.

We consider the following control law obtained from
algorithm output

uðtÞ ¼ KxðtÞ (20)

According to equation (20), the closed-loop system of
equation (15) is as follows

_xðtÞ �C _xðt � τðtÞÞ ¼
X2m
j¼1

λjA
_

jxðtÞ þ A1xðt � hðtÞÞ (21)

A
_

j ¼ B
�
DjK þ Dj H

�
þ A0,

X2m
j¼1

λj ¼ 1 and λj ≥ 0

such A0 ¼ A0 þ DFðtÞE0, A1 ¼ A1 þ DFðtÞE1

and C ¼ C þ DFðtÞE2 (22)

Lemma 4 (Cao et al., 1998): For any x,y2Rn and a matrix
G > 0 with compatible dimensions, the following inequality
holds

2xTy ≤ xTGxþ yTG�1y (23)

Theorem 1: suppose that we have symmetric positive
definite matrices P ¼ PT > 0,Q ¼ QT > 0,R ¼ RT > 0, and
W ¼ WT > 0 and other matrices Mj and Ljj ¼ 1; 2 with
appropriate dimensions. If the following LMI holds, then
asymptotic stability of the system in equation (15) would
be guaranteed

4 Journal of Vibration and Control 0(0)



Proof: Here, we propose a LKF candidate (Fridman, 2014)

V ðtÞ ¼ xT ðtÞPxðtÞ þ
Z 0

�hm

Z t

tþθ

_xT ðsÞR _xðsÞdsdθ

þ
Z t

t�τðtÞ
_xT ðsÞW _xðsÞdsþ

Z t

t�hðtÞ
_xT ðsÞQ _xðsÞds

(25)

Due to P ¼ PT > 0,W ¼ WT > 0,Q ¼ QT > 0, and
R ¼ RT > 0, it is clear that LKF condition is met.

ðuðjfð0ÞjÞ ≤V ðt,fÞ ≤ νðkfkCÞÞ, such that kfkC ¼
maxjfðsÞj

s2½�h,0�
.

Now, it should be proved that the derivative of this LKF
along the system trajectory is not positive

_V ðtÞ ¼ 2xTðtÞP _xðtÞ � ð1� _τðtÞÞ _xT ðt � τðtÞÞW _xðt � τðtÞÞ
þ _xT ðtÞW _xðtÞ þ _xT ðtÞQ _x�

�
1� _hðtÞ

�
xTðt � hðtÞÞ

Q _xðt � hðtÞÞ þ hm _x
TðtÞR _xðtÞ �

Z
t�hm

t

_xT ðsÞR _xðsÞds

(26)

From equation (16), it is evident that hm ≥ hðtÞ and it was
assumed that R > 0; hence

Z t

t�hm

_xTðsÞR _xðsÞds ≥
Z t

t�hðtÞ
_xT ðsÞR _xðsÞds0

�
Z t

t�hm

_xT ðsÞR _xðsÞds ≤�
Z t

t�hðtÞ
_xTðsÞR _xðsÞds

(27)

Now, the Leibniz–Newton formula provides

xðt � hðtÞÞ ¼ xðtÞ �
Z t

t�hðtÞ
_xðsÞds00 ¼ xðtÞ

�
Z t

t�hðtÞ
_xðsÞds� xðt � hðtÞÞ

(28)

With an appropriate dimension of slack matrices,
Mjðj ¼ 1; 2Þ, equation (29) is established

2
�
xT ðtÞM1 þ xTðt � hðtÞÞM2

	
×

24xðtÞ � Z t

t�hðtÞ
_xðsÞds� xðt � hðtÞÞ

35
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b0

¼ 0 (29)

Introducing the augmented matrix ζ ðtÞ ¼
�
xðtÞ
xðt � hðtÞÞ

�
,

we have a different form of equation (29)

0 ¼ 2ζ T ðtÞ
�
M1 �M1

M2 �M2

�
ζ ðtÞ � 2ζ T ðtÞ

�
M1

M2

� Z t

t�hðtÞ
_xðsÞds

(30)

According to Lemma 4 and equation (30), we have

� 2ζ T ðtÞ
�
M1

M2

� Z t

t�hðtÞ
_xðsÞds ≤ hðtÞζ T ðtÞ

�
M1

M2

�
R�1

�
MT

1 MT
2

�
ζ ðtÞ þ

Z t

t�hðtÞ
_xT ðsÞR _xðsÞds (31)

It meansZ
t�hðtÞ

t

_xT ðsÞR _xðsÞds ≤ hðtÞζ T ðtÞ
�
M1

M2

�
R�1

�
MT

1 MT
2

�
ζ ðtÞ

� 2ζ T ðtÞ
�
M1

M2

� Z t

t�hðtÞ
_xðsÞds

(32)

Now, we consider other slack variables L1,L2. For any
Ljðj ¼ 1; 2Þ ≠ 0, we have equation (33)

2
�
xT ðtÞL2 þ _xTL2

	
×

"X2m
j¼1

λjA
_

j xðtÞ þ A1xðt � hðtÞÞ � _xðtÞ þ C _xðt � τðtÞÞ
#

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a0 closed loopð21Þ

¼ 0

(33)

We add equation (33) on the right hand of equation (26)
( _V ðtÞ) and substitute equation (32) into equation (26) using
equation (27). The derivative of equation (26) will change,
resulting in the following

2666666666664

f11ðiÞ ∗ ∗ ∗ ∗

f21ðiÞ f22 ∗ ∗ ∗

f31ðiÞ f32 f33 ∗ ∗

C
T
LT
1 C

T
LT
2 0 �ð1� d2ÞW ∗

hmM
T
1 0 hmMT

2 0 �hmR

3777777777775
< 0, i ¼ 1,…,2m

f11ðiÞ ¼ QþM1 þMT
1 þ L1A

_

i þ A
_T

i L
T
1 , f21ðiÞ ¼ �LT

1 þ L2A
_

i þ P, f22 ¼ hmRþW � L2 � LT
2

f31 ¼ A
T

1L
T
1 �MT

1 þM2, f32 ¼ A
T

1L
T
2 , f33 ¼ �ð1� d1ÞQ�M2 �MT

2

(24)
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_V ðtÞ≤2xT ðtÞP _xðtÞþ hm _x
T ðtÞR _xðtÞ� ð1� d1ÞxT ðt� hðtÞÞ

Qxðt� hðtÞÞþ xT ðtÞQxðtÞ� ð1� d2Þ _xTðt� τðtÞÞ
W _xðt� τðtÞÞþ _xTðtÞW _xðtÞþ 2

�
xTðtÞL1 þ _xTðtÞL2

	
×

"X2m
j¼1

λjA
_

jxðtÞþA1xðt� hðtÞÞ� _xðtÞþC _xðt� τðtÞÞ
#

þ 2ζ T ðtÞ
�
M1 �M1

M2 �M2

�
ζ ðtÞ

þ hmζ
T ðtÞ

�
M1

M2

�
R�1

�
MT

1 MT
2

	
ζ ðtÞ

(34)

Hence, if inequality of equation (35) holds

hmξ
T ðtÞ

�
M1

M2

�
R�1

�
MT

1 MT
2

	
ξðtÞ þ ξTψξT < 0 (35)

Such that

ξT ðtÞ ¼ �
xT ðtÞ _xT ðtÞxT ðt � hðtÞÞ _xðt � τðtÞÞ	 (36)

ψ ¼

26666664
f11ðjÞ ∗ ∗ ∗

f21ðjÞ f22 ∗ ∗

f31ðjÞ f32 f33 ∗

C
T
LT
1 C

T
LT
2 0 �ð1� d2ÞW

37777775 (37)

Then, by applying Lemma 2 to equation (35), we obtain
equation (24), and the proof is complete.
Theorem 1 handles time-delay neutral systems with un-
certainty in parameters and input actuators saturations.
However, in some practical problems, we need to qualify
some other functional requirements. Moreover, we require
a tuning factor to cope with the issue in a better and desired

way and a tradeoff between different desires. One of these
concepts refers to better estimation of the attraction region.
Thus, another useful theorem is introduced in the following.
Based on our knowledge, in some missions, DOA is one
of the most significant performance indexes for system
assessment.

Theorem 2 (Fezazi et al., 2016): If there exist symmetric
positive definite matrices P,Q,R, appropriately sized ma-
trices X ,Y 1, Y 2,M ,U , a diagonal matrix S of appropriate
dimension, positive scalars ε, β, δ, and a real scalar α sat-
isfying conditions (38)–(40)

V11 ¼ AX T þ XAT þ BU þ UTBT þ YT
1 þ Y1 þ Q,

V21 ¼ �X þ αAX T þ αBU þ P þ Y 2

V22 ¼ �αX � αX T þ hmRþW , V31 ¼ XAT
d � Y

T

1 ,

V32 ¼ αXAT
d � Y

T

2 , V33 ¼ �ð1� dÞQ
V41 ¼ �Y

T

1 , V42 ¼ �Y
T

2 , V44 ¼ � R

hm
, V51 ¼ XCT ,

V52 ¼ αXCT , V55 ¼ �ð1� dÞW
V61 ¼ M � SBT , V62 ¼ �αSBT , V66 ¼ �2ST

"
P ∗

Ui �Mi βu20i

#
≥ 0 i ¼ 1,…,m (39)

�
λ
�
X�1P X�T

�
þ hmλ

�
X�1QX�T

��
kfðθÞk2c

þ
�
h2m
2
λ
�
X�1RX�T

�
þ hmλ

�
X�1WX�T

��
k _fðθÞk2c ≤ β�1

(40)

Then the system of equation (15) with control law U ¼
KX�T is robustly stable, and the trajectory remains within
the region of attraction. K is the output result of equations
(38)–(40).

ψ ¼

2666666664

V11 þ εDDT ∗ ∗ ∗ ∗ ∗ ∗
V21 þ σεDDT V22 þ σ2εDDT ∗ ∗ ∗ ∗ ∗

V31 V32 V33 ∗ ∗ ∗ ∗
V41 V42 0 V44 ∗ ∗ ∗
V51 V52 0 0 V55 ∗ ∗
V61 V62 0 0 0 V66 ∗
E0X

T 0 E1X
T 0 E2X

T 0 �εI

3777777775
< 0 (38)
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3.2. Optimization problem

DOA optimization can be carried out by putting the con-
ditions on the maximal eigenvalues X�1

1 PX�T
1 , X�1

1 QX�T
1 ,

X�1
1 RX�T

1 , andX�1
1 WX�T

1 . In other words, with positive
scalars σ1:::σ4, we have the following terms in LMI form

24 σ1I X�1
1

X�T
1 P

�1

35 ≥ 0,

24 σ2I X�1
1

X�T
1 Q

�1

35 ≥ 0,

24 σ3I X�1
1

X�T
1 R

�1

35 ≥ 0,

24 σ4I X�1
1

X�T
1 W

�1

35 ≥ 0

(41)

If the following LMI (42) holds, equation (41) will meet

�
σ1 þ hmσ2 þ h2m

2
σ3 þ hmσ4

�
δ2 ≤ β�1 (42)

Where

δ2 ¼ max
kfðθÞk2C,k _fðθÞk2C� (43)

Now, we make an optimization problem as follows:
Minimize Trace ðPP�1 þ QQ�1 þWW�1 þ RR�1þ

ðX þ XT ÞðX�1 þ X�T ÞÞ.
Subject to σi¼1…4 > 0, δ> 0, β > 0, and LMI (38)–(41)�
X þ XT ∗

I X�1 þ X�T

�
≥ 0,

"
Q ∗

I Q�1

#
≥ 0,"

P ∗

I P�1

#
≥ 0,

"
W ∗

I W�1

#
≥ 0,

"
R ∗

I R�1

#
≥ 0

(44)

The new LMIs are solved by the complementarity al-
gorithm (Peng et al., 2007) using the following procedure:

1. By determining, hm, β, and constant initial value α ¼
α0, and choosing a sufficiently large initial δ such that
there exists a feasible set of variable matrices, set α ¼
α0 and δ ¼ δ0.

2. Find a set of feasible matrices that satisfies
ðP,Q,R,W ,X ,P�1,Q�1,R�1,W�1σi¼1,…,4Þ0.

3. Solve the following LMI minimization problem.

Minimize Trace�
PP�1þQQ�1þWW�1þRR�1þ

XþX T
�
X�1þX�T

��
þ…þP0P

�1þQ0Q
�1þW 0W

�1þR0R
�1

þ
X0þX T

�
X�1
0 þX�T

0

�
(45)

Subject to LMIs (44).

4. Substitute the new matrix variables from Step 3 into
equation (44). If the result is feasible, then set α ¼ α0,
δ ¼ δ0, and return to Step 3. If not, set the newmatrices to
be

ðP,Q,R,W ,X ,P�1,Q�1,R�1,W�1σi¼1,:::,4Þ and return to
Step 3. Superiority and numerical examples of this method
are depicted in Section 4.

4. Illustrative examples

In this part, at first, the performance of proposed theorems is
investigated by some examples in the literature. In the
second part, the performance of the proposed method is
explored on the AUV model in descriptor form.

4.1. Numerical examples

Example 1: Consider the singular system by equation (1)
with

E ¼
�
1 0
0 0

�
, A0 ¼

�
0:5 0
�1 �1

�
,

Ad ¼
��1 0
0 0

�
, ΔA0 ¼ ΔAd ¼ d1 ¼ B ¼ 0

According to Definition 1, it is easily derived that the pair
(E,A0) is regular and impulse free. Let invertible matrices be
as follows:

N ¼
�

1 0
�1 �1

�
,M ¼

�
1 0
0 1

�
such that

MEN ¼
�
1 0
0 0

�
,MAN ¼

�
0:5 0
0 1

�
,

MAdN ¼
�
0:5 0
0 1

�
Besides,

A
_ ¼

�
0:5 0
0 �1

�
, A
_

d ¼
��1 0

0 0

�
,C
_ ¼

�
0 0
0 0

�
.

The maximum value of h is given in Table 1.
Hence, our result (1.128s) is very close to the analytical

bound hmax = 1.2092 (Fridman, 2002). In comparison with
Zhi et al. (2018), that has been reached 1.208s, this remark
should be mentioned that in Zhi et al. (2018), maximization
of DOA and uncertainty constraints have not been

Table 1. Results and conditions of example 1.

Upper bound of h, s Analytical bound (Fridman, 2002) α

1.128 hmax= 1.2092s 2.015
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considered, so it is logical and reasonable that the result of
Zhi et al. (2018) led to less conservatism compared to that of
our method, even in the tiny gap.

Example 2 (Gomes da Silva et al., 2005): Consider the
neutral time-delay system in equation (15) where

u ¼ 15, h ¼ 1s, d1 ¼ 0:1A
_ ¼

�
1 1:5
0:3 �2

�
,

A
_

d ¼
�
0 �1
0 0

�
, C

_ ¼
�
ε 0
0 ε

�
, B ¼

�
10
1

�

According to Figure 1, the maximal estimate of DOA
with ε ¼ 0:2 is 108.5288 indicating the performance of our
method with respect to the traditional ones. The gain of the
state feedback controller is K ¼ ½�0:1388 �0:0302 �.

Next, consider the system in Example 2 in retarded form
ðε ¼ 0Þ (Tarbouriech and Gomes da Silva, 2000) with some
available results given in Table 3. If we set C ¼ 0, the
system reduces to a retarded type time-delay system.
Tarbouriech and Gomes da Silva (2000) and Fridman et al.
(2003) are based on the poly-topic approach (like us),
whereas Gomes da Silva et al. (2011) are based on the sector

Figure 1. Comparing the results of Example 2 (ε ¼ 0:2) with other literature in the neutral form.

Table 2. Domain of attraction of example 2 with ε ¼ 0:2 (neutral model).

Methods Max radius K

(Gomes da Silva et al., 2005) 12.8800 [–0.2780–0.1390]

(Gomes da Silva et al., 2011) 70.7400 [0.1325 0.0153]

(Chen et al., 2015) 76.2262 [–0.2359–0.0453]

Proposed method 108.5288 [–0.1330–0.0246] α ¼ 0:800001

Table 3. Domain of Attraction of Example 2 with ε ¼ 0 (retarded model).

Methods Max radius K

(Cao et al., 2002) 67.0618 Not reported

(Fridman et al., 2003) 79.4300 [–7.9130 0.7323]

(Gomes da Silva et al., 2011) 83.5500 [–0.1950 0.0649]

(Chen et al., 2015) 84.6074 [–0.2223–0.0246]

Proposed method 114.1750 [–0.1300–0.0206] α ¼ 0:800001
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bounding approach. Table 2 and Table 3 give the present
results.

As the last example, from Dey et al. (2014) we have the
following problem statement

A
_ ¼

�
0:5 �1
0:5 �0:5

�
, A

_

d ¼
�
0:6 0:4
0 �0:5

�
, C

_ ¼
�
0 0
0 0

�
,

B ¼
�
1
1

�
, d1 ¼ d2 ¼ 0 and ui ¼ 5

The maximum tolerability of hmax in the literature is
3.310s, and we reached 3.3138s with α ¼ 709. A compar-
ative result with other traditional methods is given in Table 4.

Remark 3: Note that, in optimization problem, weighting
parameters α should be chosen such that a suitable situation is
obtained. Generally, selecting such a setting is an ad-hoc way
and might vary based on system specifications and structure.
For other way solutions, one may use numerical or intelligent
methods, such as the genetic algorithm, to get maximized the
DOA in addition to thementioned optimization problem. The
proposed method produces less conservative results in both

neutral and retarded systems for the upper bound of time-
delay and estimating the maximum DOA, simultaneously.

5. AUV descriptor (singular) model

According to Figure 2, the AUV is determined uniquely by
6-DOF. Notably, for using the AUV, two coordinate systems
are implemented for convenience. In Figure 2, both co-
ordinate systems inertial reference frames (IRF) and body
reference frame (BRF) are depicted. Assuming that the
center of AUV coincides with the origin of BRF.

REMUS100 consists of four actuators and control fins.
We explored AUV modeling in the state-space form in our
previous works, and the reader can refer to Khodayari and
Balochian (2016) and Khodayari and Balochian (2015) for
more details. Here, we only focus on the descriptor model.

Assumption 2: The AUV is symmetric about three planes.
In this literature, the environmental assumptions and
vehicle/dynamics assumptions are according to Khodayari
and Balochian (2016) and references in it, in SI units.
Motion dynamics in the longitudinal and rotational vectors
are described as follows

η1 ¼ ½ x y z �T Positions vector
ν1 ¼ ½ u v w �T Linear velocities vector
τ1 ¼ ½X Y Z �T External forces vector
η2 ¼ ½f θ ψ �T Euler angles vector
ν2 ¼ ½ p q r �T Angular velocities vector
τ2 ¼ ½K M N �T External moments vector

To reach a singular model, we introduced augmented
states as follows. Here, ξ,ξr,ξe are depth, desired depth, and
depth error, respectively. We can attain to the following
descriptor model:

Heave

m
�
_ω�uqþ νp� zg


p2 þ q2

�þ xgðrp� _qÞ þ ygðrpþ _pÞ	
¼ 0:5 ρL4


Z _q _qþ Zppp

2 þ Zqjqjqjqj þ Zrprp
�

þ 0:5 ρL3

Z _ω _ωþ Zvpvpþ Zωjqjωjqj þ Zuquq

�
þ 0:5 ρL2


Zuuu

2 þ Zuwuwþ Zωjωjωjωj
�

þ 0:5 ρL2ZδSu
2δS þ ðW � BÞcos θ cosf

(46)

Trim (pitch)

Iy _qþ ðIx � IzÞrpþ m
�
zgð _uþ ωq� νrÞ � xgð _ωþ vp� uqÞ	

¼ 0:5 ρL5
�
M _q _qþMppp

2 þMrrr
2 þMrprpþMqqqjqj

	
þ 0:5 ρL4

�
M _ω _ωþMvrvr þMvpvpþMuquqþMjwjqjωjq

	
þ 0:5 ρL3

�
Muuu

2 þMuωuωþMωjωjωjωj
	

þ 0:5 ρL3MδSu
2δs þ ZBB sinðθÞ

(47)
Figure 2. The reference frame of REMUS100 and its position and

orientation (Wu et al., 2018).

Table 4. The maximum and permitted upper bound ðhmaxÞ.
Methods hmax(s) K

(Cao et al., 2002) 0.350 Not reported

(Fridman et al., 2003) 1.854 [–25.8809–4.9315]

(Zhang et al., 2008) 2.248 Not reported

(Chen et al., 2015) 1.854 [–2.2346 0.0580]

(Dey et al., 2014) 3.310 [–605.9023–401.8906]

Proposed method 3.3138 [–0.1296–0.0169] α ¼ 709
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_ξ ¼ dðξr � ξÞ
dt

¼ � _ξ (48)

_θ ¼ q cos θ � r sinf (49)

_ξ ¼ �u sin θ þ v cos θ sinfþ ω cos θ cosf (50)

The definitions of hydrodynamic coefficients and their
values are according to Khodayari and Balochian (2016)
and references in it. Using the Maclaurin expansion of the
trigonometric terms with first-order approximation and
linearization around trim point ðθ ¼ ω ¼ q ¼ ζ e @ 0 u0 ¼
1:54m=sÞ, we have

E _x�ðtÞ ¼ ASx
�ðtÞ þ BSuðtÞ þ f � (51)

f ∗ is the error in simplification and linearization, and
here, u (t) is the stern plane δs of the AUV. Finally, using
state vector xðtÞ ¼ ½ ζ e ω q θ �T and input δs, the
system is achieved as follows. By considering values
of REMUS100 parameters and also considering u0 ¼
1:54m=s, we have the following

E ¼

2664
0 0 0

0 65:98 1:93 0
0 1:93 8:33 0
0 0 0 1

3775,

As ¼

2664
0 �1 0 1:54
0 �44:04 �8:04 0
0 36:96 �3:08 0
0 0 1 0

3775, Bs ¼

2664
0

�14:585
�14:585

0

3775
(52)

As we can see in equation (52), rankðEÞ ¼ 4. Never-
theless, if we have some parameter uncertainty or the linear
system in different equilibrium points or a total change of
shaping or some reasons that have been discussed before,
we could have a singularity in the system. For example, here
E11 or E44 are close to zero and could cause singularity.
According to Definitions 1 and 2, the determined AUV
system matrix is regular and impulse free. The exact value
of Ad is out of this study scope. Based on Lemma 2 and
considering proper matricesM and N , the newly transferred
matrices are

A
_ ¼

2666664
�1:9589 2:9991 �1:1485 2:8776

0:1171 �0:3628 1:0685 0:0115

�0:1809 0:0520 �0:2069 0:4908

�1:907 1:888 �1:2651 1:3833

3777775,

B ¼

2664
0

�14:585
�14:585

0

3775

A
_

d ¼

2664
�0:5 0:2 �0:39 0:1
0:5 �0:2 0:68 0:3

�0:054 �0:001 0:02 0:0
�0:015 0:01 0:001 0:03

3775,

C
_ ¼

2664
0 0 0 0
0 0 0 0

�0:054 �0:001 0:02 0:0
�0:015 0:01 0:001 0:03

3775,

Figure 3. States situations and control effort for h=1s by k= [0.3726 0.4518 0.4184 0.9331].
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Ad ¼

2664
�0:3 �16:5 �1:7 �0:15
�0:24 �21:28 �1:7 �0:3
�1:5 �10:5 �9:8 �1:47
0:86 5:7 5:1 0:78

3775 (53)

5.1. AUV simulations

According to the model in equation (53) in-depth channel
and coupling parameter of w,q, and θ, the AUV simulation

treatment in different situations is according to the fol-
lowing figures. Here, the state is xðtÞ ¼ ½ ζ e ω q θ �T .
For the first scenario, we investigate the effect of delay on
AUV stability. In the following simulations, to make the
time-variant uncertainty, FðtÞ ¼ cosðtÞ was used, and
a different initial continuous differentiable function is
proposed for each state. These initial arbitrary functions are
considered as sinðtÞ, cosðtÞ, expðtÞ, and ones for states 1 to
states 4, respectively.

AUV Example 1: This example investigates the impact
of the length of time-delay on stabilization. The main

Figure 5. States situations on h = 4s without uncertainty by k= [-0.0115 0.1874 0.0420 0.2751].

Figure 4. States situations and control effort for h=6s by k= [0.5987 0.2588 0.6618 0.8813].
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matrices are selected according to equation (53), and other
parameters are as follows

ui ¼ 2, d1 ¼ d2 ¼ 0, α ¼ 10,D ¼ ½ 0:4 0:2 0 0:2 �;
E0 ¼ ½ 1 0 1 1 �; E1 ¼ ½ 0:5 0:6 0:3 1 �;
E2 ¼ ½ 1 0 2 1 �

As we can see in Figures 3 and 4, the control efforts are
0.1247 and 0.2783, respectively, in the Integral Absolute
Error (IAE) performance index unit. It shows that in longer
time-delay, there is more control effort. By increasing time-
delay, some parameters like rise time, undershoot and
overshoot increase, and the system encounter more control
effort. However, the amplitude of u (t) remains in the range
of saturation bound ðui ¼ 2Þ, and all states are stabilized.

AUV Example 2: This example investigates the effect of
system uncertainty. Consider this initial situation:
ui ¼ 2, d1 ¼ d2 ¼ 0, α ¼ 10, h ¼ 4 s.

D2 ¼ ½0 0 0 0 �; E0¼ ½0 0 0 0 �; E1¼ ½0 0 0 0 �;
E2¼ ½0 0 0 0 � without uncertainty.

D1 ¼ ½ 0:4 0:2 0 0:2 �; E0 ¼ ½ 1 0 1 1 �;
E1 ¼ ½ 0:5 0:6 0:3 1 �; E2 ¼ ½ 1 0:6 2 1 �with
uncertainty.

According to Figures 5 and 6, the system is stabilized in
both situations in the range of saturation domain. Control
efforts in stages 1 and 2 are 0.1024 and 1.4800 in the unit,
respectively. It is logical that in the system with uncertainty
in parameters, we encounter more control effort and worse
stabilization. From a practical point of view, besides some
items like overshoot and undershoot, we should pay at-
tention to the maximum frequency on actuators. Depending
on the type of actuators (electrical (almost up to 1∼7Htz),

hydraulic, or pneumatic), this frequency should be pro-
portionate. According to our practical desired, all of the
simulations can be done by different values of α finding
other consequences in a tradeoff between our desires.

6. Conclusion

This article addresses the admissibility problem of de-
scriptor AUV systems with time-delay via the neutral model
transformation. A non-linear AUV model was obtained in
the descriptor model. According to introduced theorems and
lemmas, some delay-dependent and rate-delay-dependent
stability criteria were presented. Also, the Domain of Attraction
optimization was developed to improve the estimation of
the region of attraction. The effectiveness and performance
of the proposed method was demonstrated by numerical
examples in the literature. In this method, a tuning factor has
been considered for practical trials and making desirable
situations. This method covers both retarded and neutral
systems. Constraints such as input saturation of actuators,
parameter uncertainty, time-varying rate of delay, and
significant constraints of descriptor systems for admissi-
bility were considered simultaneously besides DOA max-
imization. Results show that the presented approach is
promising for autonomous manipulations and represents an
essential passage toward developing a higher level of au-
tonomy for intervention AUVs. In the future work in this
field, less conservative conditions can be investigated by
adding admissible disturbances to the problem statement.
Also, this method can be extended to the discrete time-delay
system and as a complementary activity; the issue can be
investigated in switched systems.

Figure 6. States situations on h = 4s with system uncertainty by k= [1.5514 0.4654 1.6111 1.7771].
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