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Abstract

The fuzzy support vector machine is one of the most exceptional methods to deal with uncertainty in the classification
problem. The membership function is a proper way to model uncertainty. The goal of the membership function is to
distinguish the different points in terms of their importance. The ordinary design of the membership function relies on
the distance of the observations to the class center. However, the class center is affected by the presence of outliers. To
prevent this effect, we utilized an unsupervised learning method called the Gaussian mixture model in the structure of
the membership function. The proposed membership function is presented in two different categories distance-based and
Bayes-based. Unlike the classical membership function, the contribution of outliers in the training phase decreased by
diminishing their degree of importance. Hybridizing the classic fuzzy support vector machine classifier with the Gaussian
mixture model will enhance the classification accuracy and also will prevent overfitting problems. The superiority of
the proposed methods assessed by the synthetic and benchmarking dataset. The statistical significance is assessed by
using the non-parametric Friedman and post-hoc Nemenyi tests.

Keywords: Support vector machine, outliers, noise, fuzzification, gaussian mixture model, distance-based membership
function, bayes-based membership function.

1 Introduction

The support vector machine (SVM) is categorized as one of the supervised learning algorithms. It aims to find an optimal
separating hyperplane with the maximum margin between classes. Despite SVM’s ability to deal with problems such
as small samples, non-linearity, high dimensions, and local minima, it suffers from some drawbacks. But the factor that
causes the decline in its effectiveness is the impact of outlying points and the same consideration of all observations
[3, 5, 11, 18, 19, 20, 25, 38, 39]. It does not make any distinction between the outliers and other data points. To
get a clearer picture of the outlying observations one can refer to the definition provided by Grubbs [9] “An outlying
observation, or outlier, is one that appears to deviate markedly from other members of the sample in which it occurs”.
The existence of outliers within the data set always attracted a great deal of interest. The process of identification of
these observations is known as “outlier detection”.
In the classification problem, outliers are the data points located in a place that certainly cannot be assigned to a
particular class. For example, one specific observation xi most likely 90% belongs to one specific class. It means that
this observation is of great importance in this class. Conversely, this observation 10% can be considered meaningless or
less important in this respective class. However, the SVM model is created based on the subset of specific observations
located on the closest distance to the margin called “support vectors”. Contamination of these observations with the
outliers and noise will lead to obtaining the inefficient model and subsidence of classification accuracy [11, 17, 19, 20,
26, 32, 33, 38, 39]. As can be deduced from the above statement, the impact of the training set on the learning process
varies, in a way that some points are more important than others. In the other words, different points have different
contribution to the learning process [31]. For example, support vectors that their correct classification is crucial. On
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the other hand, there are also some insignificant observations in the classification process. Hence, equally treating all
instances such as noise and outlying points may cause the overfitting problem [3, 19]. In this regard, designing a method
to distinguish points in terms of their contribution to the learning process will be essential.
Fuzzy support vector machine (FSVM) that independently proposed by Lin and Wang [19] and Huang and Liu [20]
can overcome the equal treating of the observations in the learning process. The basis of the FSVM in terms of the
maximization of the margin is similar to the SVM. But there is a difference between the fuzzy perspective and classic
SVM that prevents the margin from becoming narrower under the influence of outliers. This importance can be feasible
by deploying a critical component of fuzzy logic called “membership function”.
By using the membership function, allocation of specific credit to each observation and adjustment of their effect,
depending on their degree of importance in the problem would be possible. The employment of the fuzzy theory
in the SVM has inspired many researchers. An and Liang [3] proposed a new FSVM algorithm which incorporated
minimum within-class scatter in the Fisher discriminant analysis into FSVM. Their proposed algorithm finds an optimal
hyperplane in such a way that not only maximizes the margin but also minimizes within-class scatter. Another work
has been done by Hang et al. [10] which is related to the multi-class FSVM classifier based on the one-against-other
scheme. They deployed a kernel fuzzy c-means clustering algorithm to calculate fuzzy membership values of training
samples for a multi-class FSVM classifier. An anti-noise performance algorithm has been introduced in the work of
Yuan et al. [37]. They proposed a piecewise linear fuzzy weight computing method to overcome the outlier problem.
They proposed a method in which the support vectors were given a higher value of membership degree than the samples
far from the mean vector. Moreover, a new fuzzy membership function calculation method is proposed by Wang et al.
[30]. They utilized a heuristic function that is derived from the centered kernel alignment for calculating the dependence
between a data point and its associated label.
However, choosing the proper membership function is a fundamental step in the fuzzy support vector machine [19].
Generally, the construction of the fuzzy membership function drew on the Euclidean distance of the observations to the
center of their respective classes. The farthest point to the center gains less weight; hence, it has less contribution to
the training phase. However, the sensitivity of the center to the presence of outliers, force the center wrongly disposed
toward them. Accordingly, as shown in our previous study [24], due to the masking effect, the regular points will
move away from the center and outlying data will get closer. This phenomenon will lead to assigning low membership
value to the ordinary points and high membership value to the outliers that do not deserve to. Thus, identification
and elimination of the outlying points is a crucial preliminary step to prevent the overfitting problem. More details of
FSVM have been given in Sect. 2.2. In the following subsection, a theoretical framework for the existence of outliers
in the dataset will be used. Then we will describe our intentions to use Gaussian mixture model (GMM) clustering for
the aim of outlier detection.

Theoretical framework for the presence of outliers

However, the presence of outliers in the data can be theoretically determined using one element of the robust statistic
called the Huber’s contamination model [13, 14]

F = (1− ϵ)Φ + ϵH. (1)

Based on this model, the observations follow a mixed distribution that is the combination of Φ and H distributions. Φ
is the normal distribution, H can be any arbitrary distribution associated with the outlying points, and ϵ ∈ (0, 1) is the
relevant fraction of outliers in the data. Inspired by this model, the presence of outliers in the data can be presented
theoretically. This model is based on the belonging of data to two different sources.
On the other hand, outlier detection using an unsupervised approach is an adequate technique that the considerable
research devoted to it [6, 12, 34, 40]. This technique aims to divide the data into two clusters. Because of the non-
existence of the prior knowledge of the outliers, the cluster contains the fewer number of observations expected to be
the outlier candidate [1, 8, 15, 16, 21, 27]. Also, the Gaussian mixture model, as an unsupervised method to model
the occurrence of outliers in the data has been used by different researchers such as Aitkin [2], Zong [41], Yang [35]
and Zimek [40]. According to Aitkin [2] the component with the larger prior probability represents the main bulk of
data and another component with the lower prior probability represents the outliers. More details of GMM are given
in Sect. 2.3.
The hybridization of the clustering and classification method is not something new in the field of machine learning. In
some methods, the appropriate data center will be calculated using clustering methods to cluster each of the classes.
In the next step, some classification methods are deployed to classify the data [28, 29, 31, 36]. Moreover, the merits of
the fuzzy theory have been incorporated into either classification or clustering methods for increasing the generalization
performance of the classifier. Yang et al, [36] developed a kernel fuzzy c-means clustering-based fuzzy SVM algorithm to
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deal with the classification problems with outliers or noises. Wang et al, [28] proposed a novel grouped fuzzy SVM with
sample space partition based on Expectation-Maximization. They used this technique for the detection of clustered
microcalcification in mammography. In their proposed method, the diversified pattern of training data is partitioned
into several groups based on the EM algorithm. Then a series of fuzzy SVM were used for classification. Wu et al, [31]
implemented a novel partition index maximization (PIM) clustering method to get a more reasonable and robust fuzzy
membership for fuzzy SVM. They improved the PIM clustering algorithm to cluster each of the two classes from the
training set to get proper data centres.
In this research, we have fitted a two-component GMM to data to identify the outlying observations from the ordinary
points. In comparison with some clustering methods such as K-means, GMM inherently belongs to the class of fuzzy
clustering [4]. K-means clustering can be considered as the hard clustering technique that assigns the data to one and
only one cluster deterministically. But, GMM allows the data to belong to each of the existing clusters with a certain
probability. In other words, all the observations assigned to each cluster based on the membership degree defined by
their maximum posterior probability. Due to this soft clustering manner of GMM, it can be categorized as one of the
fuzzy-based unsupervised methods. Considering the above-mentioned points related to the fuzzy nature of GMM, its
ability to identify outliers as well as designing the GMM-based membership function, it can be concluded that the
fuzzification of SVM has been doubled. So, in this research, we have benefited from the bilateral fuzzy method. Based
on the fuzzy structure of the proposed method, its efficiency is expected to be increased.
In this work, two different membership functions have been designed to fuzzify the SVM structure. As we have already
mentioned, a two-component GMM clustering is used to identify the outlying observations from the ordinary points.
The component with the larger prior probability represents the main bulk of data. This cluster will be called the
“clean” cluster. The first membership function is based on the Euclidean distance of the points to the center of the
clean cluster. In the second approach, the Bayes-based fuzzy membership will be designed based on the probability of
assigning the observations to the clean cluster.
Note that, in the training phase of classification, all of the data points are getting involved and the respective degree
of importance, according to the merit of each, will be awarded to them. Thus, the final decision will rely on all of the
training set observations. But, the clean data are gaining more degree of importance, while the outliers received less.
More explanation is given in Sect. 3. In summarize, the main contributions of this research are as follows.

• Improving the classic fuzzy support vector machine by designing a robust membership function.

• Designing a bilateral fuzzy membership function by the employment of a fuzzy-based (soft) clustering technique
(GMM) to improve the generalizability of the SVM while preserving the merit of insensitivity to outliers.

– Distance-based membership function designed based on the Euclidean distance of the points to the center of
the clean cluster.

– Bayes-based membership function designed based on the probability of assigning the observations to the
clean cluster.

This paper is outlined as follows. In the next section, some preliminary concepts to fuzzify SVM are recalled. The
GMM-based fuzzy membership functions are presented in Sect. 3. In Sect. 4, we apply our methods to a simple but
illustrative toy-example and real data, then the experimental results are presented. The statistical significance is also
assessed by using the non-parametric Friedman and post-hoc Nemenyi tests. Finally, the conclusion and future work
are given in Sect. 5.

2 Some preliminary concept to fuzzify SVM

This section has been devoted to the brief exposition of the theory of support vector machine, fuzzy support vector
machine, and Gaussian mixture model.

2.1 Basic SVM

The concept of binary classification problem is related to estimate the function f : Rp → {±1}. This function classifies
the unlabeled data based on training data. Let the training set is given as

S = {(x1, y1), (x2, y2), . . . , (xn, yn)}, (2)

where xi = {xi1, . . . , xip} ∈ Rp and yi ∈ {−1,+1}. This method segregates the negatively labeled observations from
the positively labeled observations based on the separating hyperplane with the largest margin. The hyperplane is
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determined based on the normal vector w ∈ Rp and bias term b ∈ R. The optimal hyperplane can be obtained based
on solving the optimization problem as follows,

min
w,ξ,b

1

2
∥w∥2 + C

n∑
i=1

ξi. (3)

s.t. yi(w
Txi + b) ≥ 1− ξi; ξi ≥ 0; i = 1, . . . , n.

In this equation, the slack variable ξi (for i = 1, . . . , n) is used to measure the amount of violation of the constraints.
The penalty parameter C plays the adjuster role to make a trade-off between classification error and expansion and
shrinkage of the size of the margin. The dual form of Lagrangian is used to solve the problem.

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj), (4)

s.t.

n∑
i=1

αiyi = 0; 0 ≤ αi ≤ C; 1 ≤ i ≤ n.

Here, α = (α1, . . . , αn) is the vector of non-negative Lagrange multipliers and K(xi, xj) =< ϕ(xi), ϕ(xj) > is the kernel
function which is the inner product in the higher-dimensional space. This function is used to transform the data from
feature space to the higher-dimensional space to make them linearly separable in the new space. Note that, for each
training sample, there would be a corresponding Lagrange multiplier. However, the non zero αi are only belong to
the support vectors. The optimal hyperplane can be obtained based on the results of the above mentioned quadratic
optimization problem. The hyperplane equation is

f(xi) =
∑
j∈SV

αjyjK(xj ,xi) + b. (5)

The set of support vectors are indicated by SV .We will classify the future observation based on the classifying function
as

f(xi) = sign(
∑
j∈SV

αjyjK(xj ,xi) + b). (6)

2.2 Fuzzy SVM

Unlike classical SVM, FSVM assigns the degrees of importance to the observations based on their merit, in such a
way that it reduces the outliers’ impact on the placement of SVM hyperplane by assigning less membership value to
them. Based on this function, the degree of importance associated with each observation or in other words, the degree
of belonging of each point to its corresponding class is determined. The key difference between classical SVM and
FSVM is that the contribution of all training points to the total error term is considered equally in SVM. Conversely,
in the FSVM different points make a distinct contribution to the learning process. Moreover, the other feature that
distinguishes FSVM from SVM is that it does not take into account the crisp belongingness of the observations to a
particular class. While in the classic SVM, the points strictly belong to one class.
According to Lin and Wang [19], the rewritten of the SVM classification problem to the FSVM format using the
membership function is as follows.

Sf = {(x1, y1, µ1), (x2, y2, µ2), . . . , (xn, yn, µn)}, (7)

Let the training set Sf contains an extra component videlicet membership function µ in addition to the previous
components. Membership of the observation (µ) can be embedded in the formulation of SVM as the add-on function.
It is designed to be δ ≤ µi ≤ 1. Where δ is an arbitrarily small value to prevent the membership value to be zero.
Similar to the classic SVM, the primal form of the optimization problem is

min
w,b

1

2
∥w∥2 + C

n∑
i=1

ξiµi, (8)

s.t. yi(w
Txi + b) ≥ 1− ξi; ξi ≥ 0; i = 1, . . . , n.
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The main difference between SVM and FSVM is ξiµi. We can consider µi as the weighting factor for the error term
because ξi is the measure of the error in the problem. The dual form of FSVM is very similar to the SVM except for
the upper bound of the Lagrange multipliers,

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj ,

s.t.
n∑

i=1

αiyi = 0; 0 ≤ αi ≤ Cµi; 1 ≤ i ≤ n.

It is worth mentioning that, by tuning the value of the membership function, the effect of each training datum can be
increased or decreased.

2.3 Gaussian mixture model

Gaussian mixture model as a parametric probability density function represented by the linear combination of Gaussian
densities with the following form,

p(x|θ) =
K∑

k=1

πkN(x|µk,σk), (9)

where x ∈ Rp, πk is the mixture weights or in other words the prior probability of xi belonging to cluster k (for
k = 1, . . . ,K components) and N is the p variate Gaussian density of each component with the form of

N(x|µk, σk) =
1√
2πσ2

k

exp{− 1

2σ2
k

(xi − µk)
2}. (10)

µk and σk the mean vector and covariance matrix, respectively. The mixture weights must satisfy 0 ≤ πk ≤ 1 and

also
K∑

k=1

πk = 1. The collection of the parameters of this model that are parameterized by the mean, covariance, and

mixture weight present by θ = {πk,µk,σk}Kk=1. In addition to the set of observations, the random vector Z has also
existed. Note that, zi = (zi1, . . . , zik), in which zik is the Bernoulli random variable indicts that xi has drawn from the
kth Gaussian distribution. Moreover, zik ∈ {0, 1} and

∑
k

zik = 1.

The parameters of this model can be estimated from the training data by the Expectation-Maximization (EM) algorithm.
This algorithm is an iterative method with the aim of numerically approximate the maximum likelihood of the data

which can be obtained by alternately updating p(zi = k|xi,θ
(t)) and θ(t+1) = {π(t+1)

k ,µ
(t+1)
k ,σ

(t+1)
k }Kk=1 with an initial

estimate θ(0). The updated equation of p(zi = k|xi,θ
(t)) is written as

p(z|xi,θ) =
p(zik = 1)p(xi|zik = 1)

K∑
j=1

p(zij = 1)p(xi|zij = 1)

=
πkN(xi|µk, σk)
K∑
j=1

πjN(xi|µj , σj)

= γ(zik), (11)

and the updated equations of θ(t+1) are

π
(t+1)
k =

n∑
i=1

γ(zik)

n
, (12)

µ
(t+1)
k =

n∑
i=1

γ(zik)xi

n∑
i=1

γ(zik)
, (13)

and

σ2(t+1)
k =

1
n∑

i=1

γ(zik)

n∑
i=1

γ(zik)(xi − µk)
2. (14)
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The procedure is iterative, starting at some initial value for the parameters and updating the values in each iteration.
It terminates when the last two values of the log-likelihood computed by

l(θ) = log

n∏
i=1

f(xi;θ) =

n∑
i=1

log{
K∑

k=1

πkN(xi|µk,σk)}, (15)

are close enough or the number of iterations reaches the predetermined number.

3 Designing the GMM-based membership function

Generally, in the field of fuzzy SVM, the structure of the membership function is based on the Euclidean distance of each
observation to the relevant class center. Nonetheless, the sensitivity of the center to some outlying points is a stated
reality proved by different researchers [23, 22]. To rectify this difficulty, outlier detection and isolation is essential.
The main idea of GMM as an unsupervised learning algorithm is to display the distribution of each subset as a cluster.
Therefore, using this feature of GMM, one distribution is assigned to the clean cluster and another distribution to the
cluster of outliers. This method used to create a distinction between data in such a way that, the “clean” data forms
a large cluster and the outliers are located in a smaller cluster.
the separation of data into two clusters of clean data and outliers has been done using posterior probability or the degree
of belongingness to the clean cluster based on Equation (11). In other words, for the observation xi, the vector of the

probability of belongingness is γzik = (γzi1 , γzi2 , . . . , γzik) in which,
K∑

k=1

γzik = 1 and 0 < γzik < 1. Due to the fitting

of the two-components GMM to the data, the probability vector will have only two values γzik = (γzi1 , γzi2) which
indicates the probability of belongingness of observation xi to each of the two clusters (clean and outliers clusters) as
follows,

γzi1 =
π1N(xi|µ1, σ1)
2∑

j=1

πjN(xi|µj , σj)

, (16)

and

γzi2 =
π2N(xi|µ2, σ2)
2∑

j=1

πjN(xi|µj , σj)

. (17)

Here the clean cluster is shown with index 1 as (C1) and the cluster of outlying data with index 2 as (C2)

C1 = {xi| γzi1 > γzi2}, (18)

C2 = {xi| γzi2 > γzi1}. (19)

For the visual intuition, we showed the representation of the data of one specific class in Figure 1. This figure illustrates
how GMM clusters the data into two clusters of clean and outliers.

3.1 Distance-based membership function

The challenge of SVM’s sensitivity to the presence of outliers addressed by not the same consideration of all observations
in the learning process. It is possible by using the GMM-based membership function. In this way, to reduce the impact
of the outliers, the clean cluster center is used as the class center in the membership function which is introduced by
Lin and Wang [19]. In the proposed method the center of the clean cluster of each class x̄C1± is used instead of the
class center. The radius of each class rC1± can also be computed using the corresponding clean cluster center.
It should be noted that, if there are not any outliers in the data, nearly half of the observations are located within one
cluster by the GMM and the rest, in the other cluster. In this case, observations of smaller cluster gain less contribution
to the learning process. Therefore, they will not have much impact that will lead to reducing the performance of the

learning model. To avoid this, the ratio of the small cluster to the total data is considered as R± =
C2±

C1±+C2±
. If

this ratio is less than δ∗ (the pre-specified arbitrary percentage of outliers in the data), the degree of importance will
be the relevant membership value S± (as explained in Equation (21)). This amount is the Euclidean distance of each
data to the cluster center of the clean data. Otherwise, the observations with a low degree of importance will gain
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Figure 1: GMM Clustering of one specific class data using two-component Gaussian mixture model

the membership value equivalent to the maximum of the original membership value Si± and S̄∗±. Where S̄∗± is the
average of membership values greater than 0.5 as

S̄∗± =
1∑

i

IS∗
±
(Si±)

∑
Si±∈S∗

±

Si±, (20)

in which S∗
± = {Si±|Si± > 0.5} and

IS∗
±
(Si±) =

{
1 for Si± ∈ S∗

±
0 for Si± /∈ S∗

±.

In other words, the loss of clean data is not desirable, as it is not required to enter the outliers into the learning process.
Considering these conditions, the membership function based on GMM is as follows,

µDistGMM (xi) =


Si+ = 1−

∥x̄C1+
−xi∥

(rC1+
+δ) for xi ∈ M+&R+ ≤ δ∗

Si+ = max(Si+, S̄∗
+) for xi ∈ M+&R+ > δ∗

Si− = 1−
∥x̄C1−−xi∥
(rC1−+δ) for xi ∈ M−&R− ≤ δ∗

Si− = max(Si−, S̄∗−) for xi ∈ M−&R− > δ∗.

(21)

In the membership function µDistGMM , M± are positive and negative labeled classes and, δ∗ considered to be equal to
0.2. It can arbitrarily be considered to be less than 0.5.

3.2 Bayes-based membership function

The second approach to tackle outliers and noisy data, is using the possibility of belonging to the clean cluster of each
class. For this purpose, we considered the “probability of belonging” such that all of the observations of each class gain
different importance degree, based on their merit.
The degree of belongingness of the observations of a particular class to the respective clean cluster (γzi1 based on
Equation (16)) is shown in Figure 2. The purpose of this figure is the illustration of the distinction between clean
data and outliers using the probability of belongingness. The degree of importance of each observation is calculated
depending on their proximity to the clean cluster. In this way, observations with a high probability of belongingness to
the clean cluster showed by dark-colored red and observations with a high probability of belongingness to the outlier
cluster illustrated by dark blue color. Whatever the chance of belongingness to the clean cluster of data is less, red
darkness is reduced to a similar extent. As a result, based on the probability of belongingness to each of the clusters,
the observations on the boundary of these two clusters are placed in the color spectrum between these two colors.
For the design of the membership function, we use the degree of belongingness of data to the clean cluster (γzi1 based on
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Figure 2: The degree of belongingness of observation of one class to the clean cluster based on the value γzi1

Equation (16)) , which indicates the importance of each of the observations based on their merit. The construction of the
Bayes-based membership function is similar to the distance-based membership function. Based on the above-mentioned
concept, the Bayes-based membership function is designed as follows,

µProbGMM (xi) =


γzi1i+

=
π1+

f(xi|µ1+
,σ1+

)

π1+
f(xi|µ1+

,σ1+
)+π2+

f(xi|µ2+
,σ2+

) for xi ∈ M+&R+ ≤ δ∗

γzi1i+
= max(γzi1i+

, γ̄∗
zi1+

) for xi ∈ M+&R+ > δ∗

γzi1i− =
π1−f(xi|µ1− ,σ1− )

π1−f(xi|µ1− ,σ1− )+π2−f(xi|µ2− ,σ2− ) for xi ∈ M−&R− ≤ δ∗

γzi1i− = max(γzi1i− , γ̄
∗
zi1−

) for xi ∈ M−&R− > δ∗.

(22)

Here ¯γ∗
zi1±

= 1∑
i
Iγ∗

zi1±
(γzi1i± )

∑
γzi1i±∈γ∗

zi1±

γzi1i± in which γ∗
zi1±

= {γzi1i± |γzi1i± > 0.5} and

Iγ∗
zi1±

(γzi1i±) =

{
1 for γzi1i± ∈ γ∗

zi1±

0 for γzi1i± /∈ γ∗
zi1±

.

3.3 Algorithmic scheme of GM-based FSVM

To clarify the subject, the algorithmic scheme of FSVM based on distance and Bayes scheme (posterior probability)
summarised in the algorithm (1) and (2).

Algorithm 1 Algorithm outline for the GMM distance-based FSVM

Input: A data matrix X = {xi}ni=1, the labels vector Y = {yi}ni=1, the parameters δ and δ∗

Output: A GMM distance-based FSVM
Algorithm:

1. Clustering the data using GMM and obtaining the centers x̄C1± and radius of each class rC1±

2. If the ratio of the observations of the small cluster to the whole observations of the respective class is less than
δ∗, µDistGMM = S± otherwise µDistGMM = max(S±, S

∗
±) where S± and S∗

± can be computed using Equation
(21)

3. Train FSVM for the negative and positive labeled observations with S− and S+ membership functions, respec-
tively.
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Algorithm 2 Algorithm outline for the GMM Bayes-based FSVM

Input:A data matrix X = {xi}ni=1, the labels vector Y = {yi}ni=1, the parameters δ and δ∗

Output: A GMM Bayes-based FSVM
Algorithm:

1. Clustering the data using GMM and obtaining the posterior probability

2. If the ratio of the observations of the small cluster to the whole observations of the respective class is less than
δ∗, µProbGMM = γzi1± otherwise µProbGMM = max(γzi1± , γ

∗
zi1±

) where γzi1± and γ∗
zi1±

can be computed using

Equation (22)

3. Train FSVM for the negative and positive labeled observations with γzi1− and γzi1+
membership functions,

respectively.

4 Empirical study

In this section, the performance of the proposed methods using synthetic and real data is assessed. The proposed
algorithms have been compared with different algorithms in terms of accuracy, F-measure and, training time. These
algorithms are classic SVM, fuzzy SVM based on the classic Euclidean distance (FSVM) proposed by Lin and Wang [19],
alternative fuzzy membership function using the classic Mahalanobis distance (FSVM-MAH) and, three robust fuzzy
SVM based on the robust Euclidean distance (RFSVM-EUC) and robust Mahalanobis distance (RFSVM-MAHMCD
and RFSVM-MAHOGK) proposed by Mohammadi and Sarmad [24]. All computations are performed in Matlab R2016a
on a PC running on Windows 10 with 64 bit with a 2.90 GHz CPU and 12.0 GB of RAM. A 10-folds cross-validation
utilized to assess the performance of the model. This strategy is repeated ten times, so that each dataset is randomly
divided into ten parts. In each repetition, nine parts of the ten parts are considered as a training set and the remainder
is used as the test set. For the sake of obtaining stable results, the experiment has been iterated 50 times. The mean
of classification accuracy and F-measure with the standard deviation for 50 iterations on the testing data are reported
in Tables 4 and 5. The bold numbers denote the best performance of these methods on each data set. Our proposed
method similar to the traditional SVM is designed for the binary classification problem; but for the multi-class cases,
the one-vs-one scheme has been used. In this method, every problem of the M class is divided into M(M − 1)/2 binary
problem in which all two permutations of the classes are present. Finally, to label the test data, the majority vote of
all binary classifiers is used.
It is worth mentioning that, the observations of the classes of synthetic and real data are divided by GMM into two
clusters of clean data and outliers. By using this division, distance-based and Bayes-based membership functions are
designed. For the synthetic case, both classes are contaminated by the outliers. Moreover, the benchmark datasets
have been used without any preprocessing, although all attributes are numerical, either integer or real values.

4.1 Experiments on toy dataset

The efficiency of proposed algorithms tested on synthetic datasets. This subsection is provided to enhance the visual
understanding of the proposed methods. The following simulation setting is arbitrarily chosen to describe the perfor-
mance of the proposed membership functions and also for illustration purposes.
The synthetic dataset contains 800 observations from the bivariate normal distribution. This dataset divided into two
classes. Each of them includes 400 observations with positive and negative labels. The mean vector of clean positive
and clean negative class are respectively µ+ = (2, 1), µ− = (−3, 0) and covariance matrix of clean positive and clean
negative class are Σ+ = Σ− = diag(1, 2). Also, the mean vector of outliers of positive and negative class which are
marked by the ∗ are µ∗

+ = (−4,−4) and µ∗
− = (3, 5) and the covariance matrix are Σ∗

+ = Σ∗
− = diag(0.5, 2).

The classification accuracy of distance-based and Bayes-based FSVM membership (that henceforth will be shown
with FSVM-DistGMM and FSVM-BayesGMM) for the linearly separable data with different values of C parameter is
reported in Table 1.

The general structure of the synthetic data has been shown in Figure 3. As can be seen from Figure 3, each class is
clustered into two clusters of clean data and the outliers by the usage of GMM. The classical SVM discriminator tries
to classify the data as accurately as possible. It will cause the overfitting problem and reduction of the classification
accuracy. While the proposed methods, by down-weighting the outliers produces the discriminator hyperplane that is
not sensitive to the outliers. It does not intend to classify all the training data as accurately as possible and has a higher
generalization ability. Therefore, in the proposed methods, higher generalization ability is given more importance than
the correct classification of the training data points, including outliers.
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Table 1: Mean(standard division) of the classification accuracy of SVM, FSVM, FSVM-DistGMM and FSVM-
BayesGMM for different values of C parameter in the range [10−3, 103] for the synthetic data.

C SVM FSVM FSVM-DistGMM FSVM-BayesGMM

10−3 94.07(0.05) 95.63(0.04) 97.76(0.05) 97.70(0.02)
10−2 87.50(0.07) 87.91(0.08) 97.17 (0.04) 97.61(0.03)
10−1 84.13(0.04) 87.58(0.05) 93.75(0.07) 94.50(0.04)
100 81.66(0.06) 85.50(0.012) 91.78(0.02) 91.78(0.05)
101 83.33(0.04) 88.75(0.03) 91.25(0.02) 92.08(0.06)
102 81.66(0.07) 82.50(0.18) 90.47(0.04) 91.58(0.11)
103 87.08(0.01) 91.67(0.05) 96.91 (0.08) 97.91(0.04)

Concerning this visual example, the employment of the outliers resistance classifiers seems crucial. Fuzzy SVM can
achieve this goal.
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Figure 3: Conceptual example showing the division of classes into two clusters of clean data and outliers using GMM
and also showing the difference between classical SVM discriminator and the desired discriminator.

4.2 Experiments on benchmark datasets

In addition to the synthetic dataset, several real data are examined to evaluate the efficiency of the proposed methods.
Most of the data are taken from the UCI machine learning repository 1. The brief information of these data is shown
in Table 3. The accuracy and F-measure value of FSVM-DistGMM and FSVM-BayesGMM are illustrated in Tables 4
and 5. Moreover, these methods compared with the classic SVM, fuzzy SVM, RFSVM-EUC, FSVM-MAH, RFSVM-
MAHMCD and, RFSVM-MAHOGK. The values reported below the accuracy and F-measure values, are the ranks
among all methods. The mean ranks of all methods are shown in the last row. From Tables 4 and 5, it can be
concluded that the proposed FSVMs yield better or comparable classification results compared with the classical SVM
and the other FSVM variants classifier. In other words, the FSVM algorithms based on appropriate fuzzy memberships
can indeed improve the classification performance.
It should be noted that obtaining the highest performance criteria such as accuracy or F-measure is not conclusive to
consider a method as the best classifiers. It should be verified whether or not the improvements made by the proposed
methods are statistically significant. So, the Friedman test is deployed to investigate whether the differences between
the accuracies and the F-measure of the algorithms are statistically meaningful or not. After that, the Nemenyi post-hoc
test is used to confirm the superiority of the proposed methods over the other algorithms in predicting the class labels.
These tests are some useful non-parametric tests recommended by Ďemsar [7].
For the comparison of the performance of the different classifiers, the non- parametric Friedman test has been utilized.
This test is based on the performance rating of different algorithms on a specific dataset. Based on this test, the best

1http://archive.ics.uci.edu/ml/index.php
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performing algorithm will obtain the rank of 1, the second-best rank 2, and so on. In the case of ties, the average ranks
will be assigned. The Friedman statistic χ2

F will be calculated based on

χ2
F =

12Nd

Ne(Ne + 1)

[∑
e

R2
e −

Ne(Ne + 1)2

4

]
, (23)

in which, Re is the average rank of the e-th algorithm, Ne is the total number of classifiers (in our case 8) and, Nd is
the total number of data sets (in our case 20). This statistic is distributed as χ2 with Ne − 1 degree of freedom where
Nd and Ne are reasonably large (i.e. Nd > 10 orNe > 5). At the significant level of 5%, the null hypothesis will be
rejected when the value of the χ2

F statistic is higher than the critical value from the χ2 distribution with Ne − 1 degree
of freedom. The null hypothesis is based on the equivalence of the performance of classifiers.
In our case, the Friedman statistic is 71.17 and, the critical value of χ2 with 7 degrees of freedom and with a significance
level of 5% is 14.07. Since the critical value is smaller than the Friedman statistic of our results, we reject the null-
hypothesis, meaning that the algorithms are statistically different.
In the case of the rejection of the null hypothesis, we can proceed with a post-hoc Nemenyi test to analyse whether or
not our proposed algorithms are significantly better than each of the other algorithms. The Nemenyi’s test stated that
the performance of two classifiers is significantly different if their ranks differ by at least the critical difference (CD)
which is defined as,

CD = qα ×

√
Ne(Ne + 1)

6Nd
. (24)

Where qα is the critical values based on the Studentized range statistic divided by
√
2 [7]. The critical values are given

in Table 2 for the Nemenyi test which is taken from Ďemsar [7].

Table 2: Critical values for the two-tailed Nemenyi test.

No. of classifiers 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164
q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

The critical value for eight classifiers and with a significance level of 5% is 3.031 and, therefore, we have CD =

3.031 ×
√

8×(8+1)
6×20 = 2.347803. Figure 4 illustrates the CD diagram for the post-hoc Nemenyi test on the accuracy of

different classifiers with a significance level of 5%. In this figure, the visual representation of the superiority of classifiers
is demonstrated as a bar graph that its corresponding values are proportional to the mean rank obtained from each
method. The CD is highlighted by a thicker horizontal line in black color. The algorithms that are not connected by
a red line of length equal to CD have significantly different mean ranks with a confidence level of 95%. Our proposed

Figure 4: Critical Difference (CD) diagram for the Nemenyi test showing the results of the statistical comparison of all
models against each other by mean ranks based on accuracy values.

FSVM-BayesGMM is having the least rank based on the Friedman test results as shown in the last row of Tables 4
and 5. It is observable that the other proposed algorithm FSVM-DistGMM also performs better in comparison to the
other methods. It fortifies the fact that despite the superiority of our proposed methods confirmed by Friedman and
Nemenyi test, therefore we can not claim that our proposed methods are better than RFSVM-MAHOGK with 95%



172 M. Mohammadi and M. Sarmad

confidence as the difference in their average ranks is small.
The same conclusion also can be drawn from the results of Table 5 for the F-Measure. More importantly, the proposed
FSVM-BayesGMM and FSVM-DistGMM consistently achieves the overall best classification performance to the other
baseline approaches.
Training time is the other momentous criterion in evaluating the performances of classification algorithms. In Table
6 the training time of our proposed algorithms and the other six methods are illustrated. From this table, it is clear
that our proposed FSVM-DistGMM and FSVM-BayesGMM takes more computation time than the SVM. It is due
to the additional computation for calculating the fuzzy membership values in the proposed approach. Although the
computation of the membership function takes a longer time for fuzzy methods; but the computation time of the
proposed methods is higher than the FSVM, as an extra computation has been carried out for the GMM clustering in
the proposed method. In comparison to the SVM, this difference in training time of fuzzy GMM-based SVM has not
lead to the reduction of the generalization ability of it. This reduction does not mean that this method is not applicable
to the conventional SVM systems.

Table 3: Characteristics of the benchmark data sets

Name No. of examples No. of attributes No. of classes Original data set

PID 768 8 2 Pima Indians diabetes
Biomed 209 4 2 Biomedical data set
Heart 270 13 2 Statlog-Heart
BUPA 345 6 2 Liver disorders data set
Wine 178 13 3 Wine
Iris 150 4 3 Iris

Breast cancer 699 9 2 Breast cancer Wisconsin (original)
Ionosphere 351 33 2 Ionosphere

Sonar 208 60 2 Sonar
WDBC 569 30 2 Breast cancer Wisconsin (diagnostic)
Saheart 2 462 9 2 South African hearth data set
Blood 748 5 2 Blood Transfusion

PlanningRelax 182 12 2 Planning relax data set
Spectf 267 44 2 SPECTF heart data set
Vowel 990 13 11 Vowel Recognition

Haberman 306 3 2 Haberman’s survival data set
Parkinsons 197 23 2 Parkinson’s disease

Ecoli 336 7 8 Ecoli data set
Phoneme 3 5404 5 2 Phoneme data set
Segment 2310 19 7 Image segmentation data set

5 Conclusion and future work

One of the unsupervised clustering algorithms, the Gaussian mixture model was used to construct the membership
function. Since this algorithm is inherently a fuzzy clustering method, it can be deduced that SVM is fuzzified bilaterally.
Our proposed method is important in terms of using a soft clustering method within a fuzzy classification method
that leads to increasing the classification accuracy. In this paper, we use two different methods for designing the
membership function, which includes the membership function based on the Euclidean distance and the membership
function based on the posterior probability or Bayes scheme. The performance of the proposed methods, classic SVM,
fuzzy SVM based on the classic Euclidean distance (FSVM) proposed by Lin and Wang [19] and other fuzzy SVM
method based on the classic Mahalanobis distance (SVM-MAH) and three robust fuzzy SVM based on the robust
Euclidean distance (RFSVM-EUC) and robust Mahalanobis distance (RFSVM-MAHMCD and RFSVM-MAHOGK)
proposed by Mohammadi and Sarmad [24] were assessed and tested on several examples of synthetic data, as well as
several real data set. The results indicate the superiority of the proposed algorithms.
As future work, we can consider the existence of more than one cluster of outliers in each class that is significantly
further away from each other and even from the mass data cluster. Future investigation will focus on the further
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Table 4: Mean(standard division) of the classification accuracy for SVM, FSVM, FSVM-DistGMM, FSVM-BayesGMM,
RFSVM-EUC, FSVM-MAH, RFSVM-MAHMCD and RFSVM-MAHOGK for the test set data

Datasets SVM FSVM FSVM-DistGMM FSVM-BayesGMM RFSVM-EUC FSVM-MAH RFSVM-MAHMCD RFSVM-MAHOGK

Diabetes 77.00(0.06) 78.23(0.03) 80.06(0.02) 78.84(0.02) 81.48(0.06) 78.42(0.02) 77.40(0.06) 79.07(0.03)
8.0 6.0 2.0 4.0 1.0 5.0 7.0 3.0

Biomed 88.22(0.03) 90.31(0.03) 90.86(0.04) 95.91(0.03) 95.04(0.07) 90.61(0.06) 93.60(0.06) 93.23(0.05)
8.0 7.0 5.0 1.0 2.0 6.0 3.0 4.0

Statlog-Heart 83.12(0.04) 83.93(0.03) 88.79(0.01) 85.85(0.04) 85.44(0.06) 83.56(0.01) 87.41(0.06) 86.00(0.03)
8.0 6.0 1.0 4.0 5.0 7.0 2.0 3.0

Bupa 68.23(0.02) 68.67(0.09) 70.89(0.02) 69.23(0.02) 71.09(0.06) 68.55(0.04) 68.78(0.06) 68.55(0.01)
8.0 5.0 2.0 3.0 1.0 6.5 4.0 6.5

Wine 96.65(0.06) 98.05(0.06) 98.91(0.02) 98.47(0.02) 96.65(0.03) 97.95(0.06) 96.27(0.06) 98.47(0.03)
6.5 4.0 1.0 2.5 6.5 5.0 8.0 2.5

Iris 96.40(0.06) 96.90(0.03) 100(0.02) 100(0.02) 97.22(0.07) 97.00(0.08) 97.00(0.06) 96.30(0.01)
7.0 6.0 1.5 1.5 3.0 4.5 4.5 8.0

Cancer 93.42(0.05) 94.86(0.06) 97.76(0.02) 98.96(0.01) 96.79(0.04) 95.12(0.04) 94.69(0.06) 93.80(0.03)
8.0 5.0 2.0 1.0 3.0 4.0 6.0 7.0

Ionosphere 89.19(0.05) 89.73(0.03) 91.70(0.02) 93.60(0.02) 90.20(0.06) 89.73(0.06) 90.55(0.06) 83.59(0.08)
7.0 5.5 2.0 1.0 4.0 5.5 3.0 8.0

Sonar 64.39(0.02) 65.76(0.03) 69.85(0.08) 72.54(0.12) 66.05(0.05) 63.79(0.02) 68.74(0.09) 68.07(0.05)
7.0 6.0 2.0 1.0 5.0 8.0 3.0 4.0

WDBC 96.78(0.06) 96.90(0.04) 98.00(0.02) 99.88(0.01) 97.71(0.06) 97.03(0.02) 99.71(0.06) 96.23(0.06)
7.0 6.0 3.0 1.0 4.0 5.0 2.0 8.0

Saheart 64.61(0.02) 64.45(0.03) 71.89(0.08) 69.19(0.02) 67.39(0.03) 68.71(0.06) 68.45(0.01) 69.07(0.03)
7.0 8.0 1.0 2.0 6.0 4.0 5.0 3.0

Blood 63.23(0.05) 74.15(0.03) 77.76(0.08) 76.59(0.02) 75.75(0.07) 74.39(0.02) 78.83(0.04) 75.11(0.09)
8.0 7.0 2.0 3.0 4.0 6.0 1.0 5.0

PlanningRelax 65.66(0.01) 67.65(0.03) 72.33(0.07) 73.00(0.02) 72.69(0.05) 69.27(0.04) 69.67(0.09) 68.66(0.05)
8.0 7.0 3.0 1.0 2.0 5.0 4.0 6.0

Spectf 77.19(0.04) 79.58(0.03) 78.13(0.03) 83.75(0.01) 81.85(0.07) 77.03(0.02) 81.46(0.08) 80.30(0.05)
7.0 5.0 6.0 1.0 2.0 8.0 3.0 4.0

Vowel 97.59(0.04) 97.59(0.04) 98.22(0.04) 98.90(0.02) 97.07(0.05) 98.39(0.06) 96.80(0.01) 96.36(0.06)
4.5 4.5 3.0 1.0 6.0 2.0 7.0 8.0

Haberman 69.59(0.06) 76.47(0.03) 77.40(0.02) 78.29(0.02) 75.03(0.05) 76.15(0.04) 85.41(0.02) 75.80(0.03)
8.0 4.0 3.0 2.0 7.0 5.0 1.0 6.0

Parkinsons 76.10(0.01) 81.80(0.03) 76.86(0.02) 86.38(0.02) 92.10(0.07) 84.45(0.02) 88.61(0.06) 84.65(0.02)
8.0 6.0 7.0 3.0 1.0 5.0 2.0 4.0

Ecoli 70.55(0.06) 70.72(0.05) 71.39(0.04) 73.50(0.02) 72.58(0.06) 71.56(0.07) 70.94(0.06) 71.40(0.01)
8.0 7.0 5.0 1.0 2.0 3.0 6.0 4.0

Phoneme 71.00(0.06) 75.06(0.09) 73.73(0.02) 74.75(0.02) 74.10(0.08) 69.47(0.03) 74.31(0.07) 73.07(0.03)
7.0 1.0 5.0 2.0 4.0 8.0 3.0 6.0

Segment 89.08(0.06) 89.75(0.03) 96.18(0.02) 97.43(0.07) 94.55(0.04) 55.54(0.02) 94.21(0.06) 94.19(0.03)
7.0 6.0 2.0 1.0 3.0 8.0 4.0 5.0

Average Rank 7.380952 5.571429 2.880952 1.952381 3.452381 5.547619 4.071429 5.142857
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Table 5: Mean(standard division) of the F-measure of the classification for SVM, FSVM, FSVM-DistGMM, FSVM-
BayesGMM, RFSVM-EUC, FSVM-MAH, RFSVM-MAHMCD and RFSVM-MAHOGK for the test set data

Datasets SVM FSVM FSVM-DistGMM FSVM-BayesGMM RFSVM-EUC FSVM-MAH RFSVM-MAHMCD RFSVM-MAHOGK

Diabetes 74.02(0.08) 74.77(0.05) 77.14(0.02) 77.56 (0.06) 79.73 (0.02) 74.77(0.01) 76.56(0.03) 75.72(0.04)
8.0 6.5 3.0 2.0 1.0 6.5 4.0 5.0

Biomed 86.52(0.03) 87.90(0.06) 87.90(0.07) 94.57(0.04) 89.52(0.03) 94.17(0.02) 92.35 (0.06) 90.96(0.09)
8.0 6.5 6.5 1.0 5.0 2.0 3.0 4.0

Statlog-Heart 82.12(0.04) 82.86(0.05) 87.57(0.05) 88.88(0.03) 83.67(0.03) 82.88(0.06) 86.35(0.07) 85.11(0.09)
8.0 7.0 2.0 1.0 5.0 6.0 3.0 4.0

Bupa 67.39(0.05) 66.32(0.06) 69.16(0.03) 66.43(0.01) 65.59(0.02) 65.00(0.03) 68.13 (0.04) 65.59(0.06)
3.0 5.0 1.0 4.0 6.5 8.0 2.0 6.5

Wine 95.02 (0.03) 96.99 (0.01) 97.99 (0.01) 97.02(0.02) 96.99 (0.02) 95.39(0.06) 95.02 (0.08) 96.25(0.11)
7.5 3.5 1.0 2.0 3.5 6.0 7.5 5.0

Iris 94.65(0.06) 95.65 (0.06) 100(0.04) 100(0.02) 97.65(0.03) 96.33(0.05) 97.84(0.06) 97.09(0.08)
8.0 7.0 1.5 1.5 4.0 6.0 3.0 5.0

Cancer 93.65(0.06) 95.08(0.01) 96.69(0.05) 98.17(0.20) 96.08(0.04) 95.61(0.08) 93.89(0.01) 95.08(0.06)
8.0 5.5 2.0 1.0 3.0 4.0 7.0 5.5

Ionosphere 87.35(0.05) 88.18(0.06) 91.33(0.04) 91.17 (0.03) 88.18 (0.06) 89.17(0.08) 90.33(0.03) 79.60(0.06)
7.0 5.5 1.0 2.0 5.5 4.0 3.0 8.0

Sonar 67.12(0.09) 65.00 (0.06) 65.84(0.07) 70.84(0.05) 63.45 (0.04) 66.53(0.07) 68.18 (0.10) 67.84(0.08)
4.0 7.0 6.0 1.0 8.0 5.0 2.0 3.0

WDBC 95.31 (0.03) 97.98 (0.01) 96.66(0.01) 99.31(0.05) 97.98(0.06) 96.87 (0.06) 99.36(0.05) 99.57(0.09)
8.0 4.5 7.0 3.0 4.5 6.0 2.0 1.0

Saheart 59.14(0.04) 62.04 (0.02) 61.92(0.02) 74.64 (0.04) 64.63 (0.04) 61.41(0.03) 63.42(0.06) 65.08(0.03)
8.0 5.0 6.0 1.0 3.0 7.0 4.0 2.0

Blood 63.70(0.07) 71.71(0.04) 75.75(0.05) 75.89(0.02) 72.56(0.06) 72.56(0.06) 76.20(0.03) 74.47(0.03)
8.0 7.0 3.0 2.0 5.5 5.5 1.0 4.0

PlanningRelax 62.63(0.03) 61.21(0.07) 64.21(0.03) 67.85(0.02) 65.21(0.06) 62.81(0.07) 67.10(0.04) 61.86(0.06)
6.0 8.0 4.0 1.0 3.0 5.0 2.0 7.0

Spectf 68.67(0.04) 68.29(0.09) 78.76(0.02) 74.22(0.03) 71.14(0.05) 73.34(0.06) 68.84(0.03) 71.45(0.08)
7.0 8.0 1.0 2.0 5.0 3.0 6.0 4.0

Vowel 94.59(0.03) 96.00(0.03) 96.45(0.07) 96.94(0.04) 96.28(0.01) 95.42(0.05) 93.23(0.06) 95.42(0.03)
7.0 4.0 2.0 1.0 3.0 5.5 8.0 5.5

Haberman 70.80(0.04) 71.66(0.03) 74.39(0.01) 77.08(0.03) 76.66(0.07) 70.56(0.08) 74.39(0.07) 75.23(0.05)
7.0 6.0 4.5 1.0 2.0 8.0 4.5 3.0

Parkinsons 72.82(0.02) 76.86(0.03) 83.26(0.07) 88.26(0.06) 80.31(0.03) 83.31(0.05) 83.19(0.04) 79.42(0.10)
8.0 7.0 3.0 1.0 5.0 2.0 4.0 6.0

Ecoli 68.65(0.08) 69.52(0.04) 71.59(0.06) 74.33(0.06) 70.48(0.01) 70.69(0.08) 71.59(0.05) 70.69(0.01)
8.0 7.0 2.5 1.0 6.0 4.5 2.5 4.5

Phoneme 65.62(0.07) 71.04(0.03) 69.08(0.04) 67.46(0.10) 69.16(0.02) 67.74(0.03) 68.45(0.03) 68.23(0.04)
8.0 1.0 3.0 7.0 2.0 6.0 4.0 5.0

Segment 89.10(0.03) 88.50(0.05) 96.38(0.04) 97.12(0.05) 95.27(0.02) 56.83(0.07) 95.03(0.01) 95.03(0.06)
6.0 7.0 2.0 1.0 3.0 8.0 4.5 4.5

Average Rank 7.125 5.900 3.100 1.825 4.175 5.400 3.850 4.625

Table 6: The training time (in seconds) of the SVM, FSVM, FSVM-DistGMM, FSVM-BayesGMM, RFSVM-EUC,
FSVM-MAH, RFSVM-MAHMCD and RFSVM-MAHOGK.

Datasets SVM FSVM FSVM-DistGMM FSVM-BayesGMM RFSVM-EUC FSVM-MAH RFSVM-MAHMCD RFSVM-MAHOGK

Diabetes 0.555807 0.695715 1.462104 0.738750 0.670938 0.707571 1.478348 0.714020
Biomed 0.046627 0.048279 0.644596 0.064462 0.074225 0.046639 0.627185 0.056011

Statlog-Heart 0.063660 0.063388 0.087663 0.100713 0.095798 0.078427 0.189583 0.187731
Bupa 0.084172 0.096648 0.769119 0.101596 0.079122 0.084267 0.755822 0.120245
Wine 0.028055 0.038399 0.850160 0.047129 0.041133 0.040129 0.815218 0.141102
Iris 0.083211 0.084373 0.608182 0.100298 0.105997 0.083876 0.618453 0.092093

Cancer 0.581516 0.788487 0.966900 0.578102 0.747953 0.759480 0.983839 0.756755
Ionosphere 0.146310 0.154997 0.178781 0.180974 0.161853 0.211503 0.346825 1.018732

Sonar 0.047774 0.049121 0.730591 0.083523 0.082351 0.057654 0.787919 0.116929
WDBC 0.307032 0.398168 1.132979 0.499661 0.392312 0.372866 1.121788 0.399699
Saheart 0.145800 0.179753 0.963841 0.170198 0.218421 0.159089 1.047779 0.229077
Blood 1.510102 1.725082 1.980502 1.510102 1.725082 1.980502 2.210564 2.037336

PlanningRelax 0.022791 0.039725 0.942272 0.037981 0.060574 0.041775 0.810575 0.134191
Spectf 0.105048 0.125635 1.020527 0.132046 0.121842 0.115077 0.844885 0.170574
Vowel 4.465582 5.869338 6.988529 5.487185 5.046470 5.169621 5.495668 4.918899

Haberman 0.073003 0.088578 0.835765 0.089027 0.086760 0.090190 0.788580 0.091646
Parkinsons 0.164414 0.177661 1.439816 0.154425 0.136840 0.119163 1.734926 0.241605

Ecoli 1.089786 1.173047 1.124841 1.061265 1.080255 1.084189 1.312636 1.275629
Phoneme 174.119825 486.167267 500.245870 430.727918 433.787752 609.071951 459.032285 574.908600
Segment 31.396585 32.200789 32.161630 32.856677 31.303300 32.253499 32.734088 34.849389
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improvement of the proposed algorithms in terms of creating an adaptive and automatic method to identify the number
of cluster of outliers.
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