
Int. J. Nonlinear Anal. Appl.
Volume 12, Special Issue, Winter and Spring 2021, 255-263
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.5116

Introducing test data-set for the QoS-aware
web-services discovery and composition
Morteza Khani Dehnoia , Saeed Arabana∗

aDepartment of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

(Communicated by Ehsan Kozegar)

Abstract

The QoS-aware web services discovery and composition are considered as two important, open and
hot issues in Service-Oriented Architecture (SOA). By definition, web-service discovery is about how
to select the best web-service for a role in a workflow among available web-services whereas web-
services composition works on developing merely optimum coordination among a number of available
web-services to provide a new composed web-service intended to satisfy some users requirements for
which a single web service is not (good) enough. The criteria, upon which the web service selection,
position, and composition processes are based, may or may not cover the Quality of services (QoS)
parameters. The latter case would turn the name of the job into QoS-aware web services discovery
and composition. In this article, the QoS-WSC test data-set is introduced for the QoS-aware web-
services discovery and composition with regard to specific potentials and needs of the web-services
world. In this respect, at first, an interface has been designed to define QoS for the roles attended
in a service-oriented architecture. Then a solution, which allows comparison among web-services
through the calculation of similarity of the request to amounts of the QoS parameters of available
web services, is proposed. The similarity is obtained using the internal multiplication of two vectors
of weighted numerical parameters representing request parameters and QoS parameters of available
web services. The weights are technically significant coefficients, which can be obtained from the
QoS-WSC data-set, which is assembled out of a rule-based integration of two well-known prior data
sets in the field of web services.

Keywords: web-service, Service-Oriented Architecture (SOA), data-set, Quality of Service (QoS)

1. Introduction

In Service-Oriented Architecture (SOA), in addition to the functional specification, services are
also known by their non-functional attributes usually referred as Quality of Services (QoS) attributes.

∗Corresponding Author: Saeed Araban
Email addresses: m.khani@mail.um.ac.ir (Morteza Khani Dehnoia), araban@um.ac.ir (Saeed Arabana∗)

Received: June 2020 Accepted: January 2021

http://dx.doi.org/10.22075/ijnaa.2021.5116

256 Khani Dehnoi, Araban

The importance of QoS attributes shows itself where among several services that are equal in func-
tionality, the chosen one is the most satisfactory regarding the QoS preferences of the customer.
Some researchers have considered QoS and user preferences as two separate categories and believe
that some QoS attributes such as trustworthiness are not preferable and the QoS-aware web-services
discovery and composition methods should consider them without mentioning the request by the
user [25]. Nevertheless, various aspects of QoS should be considered together, and based on the re-
quirements of the service requester. Otherwise, the use of services with improper quality may cause
undesirable side effects.

2. Problem statement

In SOA, the selection of services for the roles of a workflow is done often automatically by a
software agent. As a result, the human agent does not directly enact any preferences among services
applied for roles in architecture. This issue confirms the necessity of the existence of an interface
that transfers the non-functional preferences of the human agent to the software agent. The interface
should be able to translate the human agent preferences to some applicable intel for the service
selection rules, which is carried out by the software agent.

To declare the values of the quality of service from a human agent to a software agent or to
evaluate the qualitative properties of a service by a software agent, QoS must be defined formally
and in a writable form. In other words, a system is required to have both abilities of quantification
of the qualitative data provided by the user in a uniform and standard way, and the provision of a
mechanism for comparing two services in terms of quality.

3. Related works

Looking at their general approach, the proposed methods for the stated problem can be separated
into two major branches. The first is for the ones, which try to classify services qualitatively. In
this way, users can choose among categories (class or cluster) of quality into which the services are
put. Each service is registered in one of the predefined classes as soon as it is available to users. In
addition, according to some rules, the existing services can switch between existing classes. A few
methods of this kind has been presented in [17, 15]. The major areas of failure for these methods
are the estimation of the number and proper specification of classes and the rules of class selection
for newly arrived services (cold start).

The second branch is owned by the methods based on incorporating the values of the QoS at-
tributes into service packaging. That is, in the service specification (Web Service Definition Lan-
guage (WSDL) file), in addition to the service interface (specification of service prerequisites and
the results) and the functional specification of service (introducing service operations), a section for
non-functional (qualitative) service specification is also included. In fact, the methods of this branch
are only differing in the way of mapping qualitative data into quantitative data. The mapping, for
some methods, turns the complex quality of service just into a single number [4, 3], while for some
others, it is mapped to a vector [6? , 21]. Few methods can also be found in which the quality of
service is mapped to a distribution function. Mapping QoS to a quality vector is most common. The
proposed method in the present research falls into this category.

4. Proposed method

This section started by introducing an interface designed by the author for declaring QoS among
the roles involved in a service-oriented architecture. Then a solution for comparing web-services

Introducing test data-set ...
Volume 12, Special Issue, Winter and Spring 2021, 255-263 257

using vector model analysis is proposed. Afterward, two test data-sets in the domain of web-services
discovery and composition are introduced from which the QoS-WSC test data-set for QoS-aware
web-services discovery and composition has been further integrated.

4.1. Designing an interface for QoS declaration

Quality of Service (QoS) is a combination of several quality properties of a service. Aspects of
QoS related to SOA, have been listed below [13], [2]:

1. Cost(qc): It returns the aspects related to the cost or charge of a service.

2. Performance(qperf): It takes the speed of service execution into account. Speed, in addition
to performance, may also indicate as response time, throughput rate, and so on. Performance
sometimes refers to a combination of the mentioned attributes in which execution rate is in-
volved.

3. Security(qsec): A hybrid attribute providing the possibility to implement identification, au-
thorization, authentication, secrecy, non-repudiation, and resistance against certain types of
cryptanalytic attacks and other security-related aspects. Further investigation into the issue is
outside the scope of this research.

4. Reputation(qre): It is a criterion for trustworthy of the service providers. Usually, the reputa-
tion of a provider or service depends on the end-users’ notes and comments. Reputation can
give a reason for the service provider’s claims to be believed at the time of service advertisement.

5. SuccessfulExecutionRate(qsuc) : It returns the probability that a request for a particular
service gets a response successfully, maximally within the expected time.

6. Availability(qav): It refers to the probability that a service is available to hire; the availability
of a service.

Suppose that every aspect of QoS for each service can take a value limited to a certain range.
Therefore, a six-element vector can illustrate the Si service in terms of QoS:

QoS(Si) = (qsic , q
si
perf , q

si
sec, q

si
re, q

si
suc, q

si
av)

We call it the QoS index vector for the Si service. In the software engineering world, each one, has the
aforementioned qualitative property that has its formal definition [13] in which the way of mapping
the attribute’s quality into a numerical value has been considered.

In SOA, the best source for retaining values attributable to the QoS parameters is the Service
Level Agreement (SLA) from the WSDL specification of that service.

4.2. Comparison of services using vector model analysis

In the proposed method, the service requester, in addition to describing the requested service as
a set of available inputs (pre-conditions) and required outputs (post-conditions), must provide a QoS
specification. The specification expresses the non-functional requirements to the service discovery
agent. It will hold a maximum and a minimum value for each QoS attribute. In addition, based
on the importance of each QoS attribute, the mentioned specification will weight each aspect. In
other words, the service requester for the discovery agent must generate three QoS index vectors for
maximum values, minimum values, and for importance coefficients separately.

258 Khani Dehnoi, Araban

Among the available services, which functionally meet the requester’s needs, the best match
for the request would primarily require to have all six QoS index vector values within the valid
range stated by the requester. Among services having the primary condition, the greatest value
obtained from scalar product (SOP) of QoS attributes vector into importance coefficients vector,
would determine the chosen one.

This enacts that service discovery agent, when comparing candidate services for a role, should
first check for each QoS attribute, the values of QoS index vector related to the candidate service to
be less-than-or-equal/greater-than-or-equal to the corresponding values in the maximum/minimum
vectors (from the request). Secondly, for each candidate service, the agent must calculate the scalar
product of the QoS index vector (of candidate service) in the QoS importance coefficients vector
(from the request). Candidate services can then be sorted in ascending-order for prioritization based
on the obtained values (i.e. higher SOP value means higher chance).

The latter conceptually embraces that among all services having the first condition, the ones
whose balls of quality are most in the bigger baskets of importance form the requester perspective,
have a higher chance of being chosen.

4.3. Introducing two test data-sets in the area of web-service discovery and composition

WSC05 is a test data-set which has been generated and used as the data ground of a test
environment to hold the competition for service discovery and composition on the sideline of holding
the ICEBE Conference [12] and is regarded as the basis for other test data-sets in this field. It
contains 27 service repositories, smallest of which contains 2,101 WSDL files while its largest data
repository holds a merge of 8,356 WSDL files to describe the available services. Each WSDL file
contains a functional specification of the service (in the form of request and response messages) as well
as the specification of the service interface (in the port message format). This test data-set contains
99 service discovery problems in the form of 9 query files and 198 service composition problems in
the form of 18 query files. Each query file has a corresponding solution file, which holds all possible
solutions for the problems stated there. The solutions are proposed by the BPEL (Business Process
Execution Language) standard.

QWS ver2.0 [18], [1] is a test data-set that holds real values of 9 QoS attributes for 2,507 online
services. The values of this test data-set during 2008 have been extracted from public UDDI sources.
This test data-set has already been used in over 9,000 researches. In this data-set, a QoS index vector
containing nine values is retained for each service. The QoS attributes used in this test data-set are
described in Table 1.

Table 1: QoS attributes available in QWS ver2.0 data-set [18]

ID Parameter Name Description Units
1 Response Time Time is taken to send a request and re-

ceive a response
Ms

2 Availability Number of successful invocations/total
invocations

%

3 Throughput Total Number of invocations for a given
period of time

invokes/second

4 Successability Number of response/number of request
messages

%

5 Reliability The ratio of the number of error mes-
sages to total messages

%

Introducing test data-set ...
Volume 12, Special Issue, Winter and Spring 2021, 255-263 259

ID Parameter Name Description Units
6 Compliance The extent to which a WSDL document

follows WSDL specification
%

7 Best Practices The extent to which a Web service fol-
lows WS-I Basic Profile

%

8 Latency Time is taken by the server to process a
given request

Ms

9 Documentation The measure of documentation (i.e. de-
scription tags) in WSDL

%

11 Service Classification Levels representing service offering qual-
ities (1 through 4)

Classifier

12 Service Name Name of the Web service -
13 WSDL Address Location of the Web Service Definition

Language (WSDL) file on the Web
-

4.4. Generating QOS-WSC data-set for QOS-AWARE web-services discovery and composition

By integrating the two test data-sets introduced, the QoS-WSC test data-set as an independent
and comprehensive test data-set for the discovery and composition of services is generated with the
following order and has been provided for all researchers [14].

In the QoS-WSC data-set, to generate WSDL files of available services, for each service described
in WSC05, a QoS index vector from QWS ver2.0 has randomly been selected and added to the WSDL
file of the service in the form of a QoS tag. An example of the generated QoS tag is presented in
Figure 1. An example of a WSDL file from the QoS-WSC data-set is available in Appendix 1.

Figure 1: An example of a QoS tag added to the WSDL services file

To generate discovery and composition requests in the QoS-WSC data-set, a QoS importance
coefficients vector (QoS weight vector) has been added to each request (service discovery or compo-
sition) of the WSC05 data-set. Each value of this vector is a random integer number between 0 and
1000. An example of a QoS importance coefficients vector presented in Figure 2. An example of the
service composition request file from the QoS-WSC data-set is available in Appendix 2.

260 Khani Dehnoi, Araban

Figure 2: An example of QoS importance coefficients index vector

To compare the quality of several services (in the process of discovery or composition) the utility
(or cost) of the quality of each service should be calculated based on the request (discovery or
composition). For this purpose, the inner product of the QoS importance coefficients vector of the
request and the QoS index vector of the desired service should be calculated. The equation of Figure
3 shows the calculation process of the utility value of choosing Si service for Rj request.

Figure 3: Equation of calculating the utility of Siservice selection for Rj request

In the above equation, the QoS (S[i]) function returns the values of the QoS index vector of service
Si, and the QoSWeightVector (R[j]) function returns the values of QoS importance coefficients vector
of the request Rj.

In the QWS ver2.0 data-set, the attributes of Availability, Successfulness, Reliability, Compliance,
Best Practices, Documentation, and Throughput are of utility type (which means that higher values
for these attributes are desirable). On the other hand, the Latency and Response Time attributes
are of cost type (i.e. the lower values they have the more desirable it would be for the service).
Also, the values assigned to the attributes of Availability, Successfulness, Reliability, Compliance,
Best Practices, and Documentation are numbers of 0 to 100 interval, while the values attributed to
Throughput, Latency and Response Time do not have such restriction. Within the calculation of
the utility value of choosing Si service for Rj request (Figure 3), by scaling operation, the values for
all attributes are converted to the utility type in the range of 0 to 100.

In the WSC05 data-set, for each service discovery request, all answer services are available (files
named as ”Solutions”), thus all possible answer services for the corresponding request in the QoS-
WSC data-set (whose requests contain the QoS importance coefficients index vector) are also avail-
able. Therefore, for each answer service, the qualitative utility can be calculated from the equation
of Figure 3, and thus the best (with more utility) service can be selected.

Also in the WSC05 data-set, for each composition request, all possible answer compositions are
available (files named as ”Solutions”), thus all possible compositions for the corresponding request
in the QoS-WSC data-set (whose requests contain the QoS importance coefficients index vector) are
also available. To calculate the aggregated utility of each answer composition, it would be enough, to
sum up the utility values for all the services that appeared in the composition. As mentioned before,
the utilities are calculated using the equation indicated in Figure 3. Having aggregated utilities of
all compositions compared the highest utility value would give the best composition.

For all service discovery and composition requests in the QoS-WSC data-set, the best answers
(in terms of QoS) have been calculated and recorded in the form of files each of which named ”Best
Solutions”. Appendix 3 shows the ”Best Solutions” file for the composition request in Appendix 2.

Introducing test data-set ...
Volume 12, Special Issue, Winter and Spring 2021, 255-263 261

5. Conclusions

In this article, the QoS-WSC test data-set is introduced and provided for the researchers, to be
used for QoS-aware web-services discovery and composition. Service specification files (WSDL files)
of this data-set have been generated by injecting QoS index vectors into service specification files
of the WSC05 data-set. The injected QoS index vectors have been randomly picked from the QWS
ver2.0 data-set. For generating service discovery and composition requests, the QoS importance
coefficients vector has also been added to requests available in the WSC05 data-set. The optimal
answer is also calculated and recorded for each request.

It should be noted that the QoS-WSC test data-set, introduced in this article, has been used for
the first time in [10].

References

[1] E. Al-Masri and Q. H. Mahmoud, Investigating web services on the world wide web, Proc.e 17th Int. Conf. World
Wide Web 2008, WWW’08, 2008, pp. 795–804.

[2] S. Araban and L. Sterling, Quality of service for web services, WSEAS Trans. Comput. 3 (2004).
[3] P. Bocciarelli and A. D’Ambrogio, A model-driven method for describing and predicting the reliability of composite

services, Softw. Syst. Model. 10(2) (2011) 265—280.
[4] S. Chattopadhyay, A. Banerjee and N. Banerjee, A fast and scalable mechanism for web service composition,

ACM Trans. Web, 11(4) (2017) 1—36.
[5] F. Chen, S. Yuan and B. Mu, User-QoS-based web service clustering for QoS prediction, Proc. 2015 IEEE Int.

Conf. Web Services, ICWS 2015, 2015, pp. 583–590.
[6] A. D’Ambrogio and Andrea, A Model-driven WSDL Extension for Describing the QoS ofWeb Services, 2006

IEEE Int. Conf. Web Services (ICWS’06), 2006, pp. 789–796.
[7] A. D’Ambrogio, “Model-Driven Quality Engineering of Service-Based Systems,” Springer, Berlin, Heidelberg,

2010, pp. 81–103.
[8] A. D’Ambrogio, A WSDL extension for performance-enabled description of web services, Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2005, vol. 3733 LNCS, pp. 371–381.

[9] A. D’Ambrogio, A model-driven WSDL extension for describing the QoS of web services, Proc-ICWS 2006: 2006
IEEE Int. Conf. Web Services, 2006, pp. 789–796.

[10] M. K. Dehnoi and S. Araban, “Automatic qos-aware web services composition based on set-cover problem,” Int.
J. Nonlinear Anal. Appl., vol. 12, no. 1, pp. 87–109, Feb. 2020.

[11] D. Z. G. Garcia and M. B. F. De Toledo, Semantics-enriched QoS policies for web service interactions, ACM
International Conference Proceeding Series, 2006, vol. 192, pp. 35–44.

[12] ICEBE 2020.” [Online]. Available: https://conferences.computer.org/icebe/2020/index.htm. [Accessed: 16-Feb-
2020].

[13] ISO/IEC 13236:1998 Information technology - Quality of service: Framework. 1998.
[14] M. Khani and S. Araban, QoS-WSC, Mendeley Data, 2020. [Online]. Available:

https://data.mendeley.com/datasets/tjm3jnnj5t/1.
[15] M. K. Dehnoi and M. K. Dehnoi, Fast fault localization in optical WDM networks, 2nd International Congress

on Technology, Communication and Knowledge, ICTCK 2015, 2016, pp. 332–336.
[16] R. Mohana and D. Dahiya, Optimized service discovery using QoS based ranking: A fuzzy clustering and particle

swarm optimization approach, Proc. Int. Computer Software and Applications Conference, 2011, pp. 452–457.
[17] M. A. Moulavi, B. Bahmani, M. Sadeghizadeh, J. A. Nasiri, H. Parvar and M. Naghibzadeh, DHA-KD: Dynamic

hierarchical agent based key distribution in group communication, Proc. 9th ACIS Int. Conf. Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2008 and 2nd Int. Workshop on
Advanced Internet Technology and Applications, 2008, pp. 301–306.

[18] QWS dataset (the qality of service for web services dataset), [Online]. Available: https://qwsdata.github.io/.
[Accessed: 16-Feb-2020].

[19] T. Rajendran, P. Balasubramanie and R. Cherian, An efficient WS-QoS broker based architecture for web services
selection, Int. J. Comput. Appl. 1(9) (2010) 79—84.

[20] M. Rathore, M. Rathore and U. Suman, A quality of service broker based process model for dynamic web service
composition, Proc. 3RD Int. Work. Model. Enterp. Inf. Syst. 7 (2011) 1267–1274.

262 Khani Dehnoi, Araban

[21] M. Sadeghizadeh and O. R. Marouzi, Securing cluster-heads in wireless sensor networks by a hybrid intrusion
detection system based on data mining, J. Commun. Eng. 8(1) (2019) 1–19.

[22] M. Sadeghizadeh and O. R. Marouzi, A lightweight intrusion detection system based on specifications to improve
security in wireless sensor networks, J. Commun. Eng. 7(2) (2018) 29-–60.

[23] V. Tewari, U. Thakar and N. Dagdee, Classifying Web Services based on QoS Parameters using Extended Dataset,
Int. J. Comput. Appl. 74(8) (2013) 33-–36.

[24] A. K. Tripathy, M. R. Patra, M. A. Khan, H. Fatima and P. Swain, Dynamic web service composition with QoS
clustering, Proc. IEEE Int. Conf. Web Serv. ICWS 2014, (2014) 678—679.

[25] H. Wang, B. Zou, G. Guo, D. Yang and J. Zhang, Integrating trust with user preference for effective web service
composition, IEEE Trans. Serv. Comput. 10(4) (2017) 574-–588.

[26] J. Wu, L. Chen, Z. Zheng, M. R. Lyu and Z. Wu, Clustering Web services to facilitate service discovery, Knowl.
Inf. Syst. 38(1) (2014) 207—229.

[27] B. Wu, C. H. Chi and S. Xu, Service selection model based on QoS reference vector, Proc IEEE Congress on
Services, SERVICES 2007, (2007) 270-–277.

[28] Y. Xia, P. Chen, L. Bao, M. Wang and J. Yang, A QoS-aware Web service selection algorithm based on clustering,
Proc. IEEE 9th Int. Conf. Web Serv. ICWS 2011, (2011) 428—435.

Appendix

Appendix 1. A sample of WSDL file from the QoS-WSC data-set

Introducing test data-set ...
Volume 12, Special Issue, Winter and Spring 2021, 255-263 263

Appendix 2. A Sample of the file of service composition request from the QoS-WSC data-set

Appendix 3. The ”Best Solutions” file for the composition request file Shown in Appendix 2

	Introduction
	Problem statement
	Related works
	Proposed method
	Designing an interface for QoS declaration
	Comparison of services using vector model analysis
	Introducing two test data-sets in the area of web-service discovery and composition
	Generating QOS-WSC data-set for QOS-AWARE web-services discovery and composition

	Conclusions

