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Abstract
It has been shown that AdS/CFT correspondence may be realized between some AdS-like
cosmological space and CFT living on the boundary. By extending such works we studied
the role of R2 term in the corrected action to the thermodynamic quantities, particularly
by adding a boundary counterterms to the gravitational action and considering an AdS-like
cosmological space. With such HD (higher derivative) terms and metric we calculated the
free energy, as a function ofN2T 4 times 3/2(1−1/N2), that is comparable with perturbative
result followed from boundary QFT. In fact the difference between the results obtained from
AdS-like cosmological space and the results obtained from strong coupling limit of ℵ = 4
SCFT, by taking into account next to leading term in large N expansion, is just a 3/2 factor.
Higher derivative term contributions also appear in entropy and energy via the redefinition
of gravitation constant. We explicitly identify higher order counterterms effect in energy as
a constant term namely E0. This value can be interpreted as the Casimir energy, so that,
there is a full and perfect match between QFT and gravitational action when both R2 term
and boundary counterterms are considered. So we can claim that our results have assured
us that there is a good fit between AdS-like cosmological space and ℵ = 4 SU(N) super
Yang-Mills quantum theory.
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1 Introduction

Black holes, apart from their intrinsic importance, provide a testing ground for quantum
theory of gravitation, this is done by holographic principle [1]. Holographic principle is
a relation between space-time geometry and the number of degrees of freedom. It is well
known that there exists a conventional theory without gravity, living on the boundary of a
space-time region, with one degree of freedom per Planck area, by which all bulk phenom-
ena including quantum gravity can be described. Holographic principle is clearly essential
for existence of such a theory. AdS is probably a necessary condition for existence of the
kind of duality that has been found in this space-time. Anti-de Sitter space can be scaled
into direct product of an infinite time axis with a unit spatial ball [2]. The conformal field
theory on the boundary of AdS [3, 4] is an example of a dual theory.

Besides this, AdS/CFT correspondence (an excellent review can be seen in [5]) may pro-
vide us with new insights into strong coupling regions of SUSY QFTs. An example of this
kind is given by strong coupling limit of ℵ = 4 super YM theory [6, 7]. Thermodynamics
of ℵ = 4 super YM theory in relation with AdS/CFT correspondence has been discussed
in numerous works [8, 9]. One of these thermodynamic relations implies that an entropy
should be assigned to a black hole equal to one-fourth of its horizon area measured in
Planck units [10, 11]. In a fundamental theory of quantum gravity this Bekenstein-Hawking
entropy should have a statistical interpretation. It has been argued [12–14] that string theory
provides such an interpretation.

This correspondence has also been discussed in some works both in different dimensions
and different states. For instance a certain extremal 5-dimensional black hole was con-
structed in [15] so that its horizon area is non-vanishing. It was shown that logarithm of its
ground state degeneracy, matchese Bekenstein-Hawking entropy. These results have been
extended to a number of directions, for example in [16] it was generalized to rotating black
holes. In [17] a similar 5-dimensional example was considered, and it was further shown that
entropy of slightly non-extremal black holes also matches the Bekenstein-Hawking result.
This allowed calculation of the temperature of Hawking radiation for a D-brane. Similar
results were obtained in 6-dimensions for slightly non-extremal black strings [18]. The orig-
inal 3-brane solution of type IIB supergravity was constructed in [19]. Another interesting
problem is whether AdS/CFT correspondence could be realized as the one between some
AdS-like cosmological space and CFT living on the boundary. In this field we can refer
to a number of recent proposals for entropy bounds in cosmology [20–24]. Especially in
[25] the test on proportionality of free energies for a d5 cosmological space (after AdS/CFT
identification of parameters) and a ℵ = 4 SU(N) super Yang-Mills quantum theory was
studied.

Another important discussion in AdS/CFT is supergravity. In fact, in AdS/CFT we have
a superstring theory in one side and a gauge theory on the other side. But we know super-
gravity provides a low energy effective theory of the massless sector of superstring theory
and can be used to study its low energy properties, so it is convenient to have a brief
review of this theory in this paper. Supersymmetry is a symmetry between fermions and
bosons belonging to supermultiplets and are related by supertransformations. Superalgebra
in supersymmetry is formed by Supertransformations and spacetime transformations such
as Poincare transformations. Various kinds of superalgebras in this theory are dependent
upon spacetime dimension, spacetime symmetry and the number of supersymmetries.

Super Poincare algebra consists of generators of supertransformations (supercharges)
Qα , translation generators Pμ and Lorentz generators Mμν . If we have only one Majorana



International Journal of Theoretical Physics

spinor supercharge we have ℵ = 1 super Poincare algebra. Components of the supercharge
Qα are fermionic generators and satisfy anticommutation relations. We can find possible
supermultiplets (certain set of particle states with different spins) by studying irreducible
representations of super Poincare algebra for one particle states. By these explanations of
supersymmetry, we can now turn to supergravity.

Supergravity is a field theory which has a local supersymmetry and is a generalization
of Einstein’s general relativity. The Rarita-Schwinger field �μν(x) is the gauge field of the
local supersymmetry, represented by a particle with spin 3/2 called a gravitino. Supergravity
also has a local symmetry under the general coordinate transformation, whose gauge field
is the gravitational field ea

μ(x). The supergravity multiplet for ℵ = 1 super Poincare algebra
consists of a pair of fields (ea

μ(x),�μν(x)). So, there exists a supergravity theory (called
ℵ = 1 Poincare supergravity) which contains these two fields [26, 27].

If supergravity contains ℵ Majorana spinor supercharges Qi (i = 1, 2, . . . , ℵ) we have an
ℵ -extended supersymmetry [28]. Extended supergravities generically contain gravitational
field, Rarita-Schwinger fields, vector fields, spinor fields and scalar fields. For example ℵ
= 2 Poincare supergravity [29] that is the simplest extended supergravity, has a gravitational
field ea

μ(x), two Majorana Rarita-Schwinger fields �i
μ(x) (i = 1, 2). Also a vector field

Bμ(x) and its field equations have a Minkowski spacetime solution ea
μ(x) = δa

μ(x), Bμ =0,
�i

μ(x)=0. Lagrangian of this type of supergravity is invariant up to total divergences under
the general coordinate transformation, local Lorentz transformation, U(1) gauge transforma-
tion, ℵ = 2 local supertransformation and a global U(2) symmetry [30]. The last symmetry
is similar to the global U(1) symmetry in ℵ = 1 supergravity. SU(2) in U(2)∼ SU(2) × U(1)
is a symmetry of the Lagrangian but U(1) is a symmetry of the field equations. We can also
construct ℵ = 2 supergravity with a cosmological term. In this theory the so called ℵ = 2
Anti de Sitter Supergravity (because its field equations have an AdS spacetime solution) a
cosmological term with a negative cosmological constant and a mass term of the Rarita-
Schwinger fields are added to Lagrangian. Another modification is the covariant derivative
on Rarita-Schwinger fields that contains a minimal coupling to the U(1) gauge field Bμ,
which is not present in m = 0 supergravity. This Lagrangian is invariant up to total diver-
gences under general coordinate transformation, the local Lorentz transformation, the U(1)
gauge transformation and ℵ = 2 local supertransformation. Global U(2) symmetry of the m
= 0 theory is broken by the coupling to the gauge field. Since this theory has the minimal
coupling to the gauge field, it is called ℵ = 2 gauged supergravity. Similarly, ℵ = 3, 4, 5, 6,
8 extended supergravities can be constructed [31].

As we explained briefly ℵ=4 SYM theory before, it is crucial to have an overview of
ℵ=4 SYM with finite chemical potential in Minkowski space which is a dual picture of ℵ
= 2 AdS5 supergravity (STU model). We can obtain this theory by compacting the eleven
dimensional supergravity in a three-fold Calabi-Yau [32]. In fact STU model that admits a
chemical potential for U(1)3 symmetry, is the special form of ℵ = 2 supergravity in several
dimensions. This model has three real scalar fields as well as an 8-charged (4 electric and
4 magnetic) non-extremal black hole. Of course there are other models with four-charged
and three-charged black holes, but there are some differences between these two models.
For example, the entropy vanishes for three charged model, corresponding to three different
chemical potentials (except in the non-BPS case). To get a regular black hole, a four charged
model is required. The situation is different in 5 dimensions, so that in this case there is
no distinction between BPS and non-BPS branch. The most interesting configurations in 5
dimensions are three-charged models [33]. In fact a three-charged non-extremal black hole
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with a four - dimentional boundary which includes QCD is an important thermal back-
ground for this correspondence. Much work has been done in this area. For instance in Ref.
[34] a non-extremal black hole with three equal charges was considered to extract a drag
force for a moving quark at ℵ = 2 supergravity. As an extension to Refs. [35–37] the STU
model with three different charges was considered in Ref. [38]. Also the quark-anti quark
configuration and rotating quark-anti quark pair in STU background was studied in Ref .
[39]. In Ref. [40] the drag force was calculated for a flat space, a three dimensional sphere
and a pseudo-sphere by considering a non-extremal black hole with only one charge. In
another work [41] a non-zero chemical potential was considered and electrical conductivity
was calculated with a conclusion that conductivity behaves in a universal manner for gauge
theories dual to R-charged black hole in d = 4. Also the STU model with a time-dependence
that is dual to a boost-invariant expanding plasma was studied in Ref. [42]. In Ref. [35] a
flat space is considered and the shear viscosity in the SYM theory dual to the STU model is
computed. In Refs. [43, 44] the viscosity of gauge theory plasma with a chemical potential
was calculated] by using a d=5 RN- AdS black hole. Some other works on thermodynamics
for STU model are presented in [45–49], a good review of such works can be found in [39].

In present paper we just consider the gravity part of supergravity; we especially consider
the higher derivative corrections in bulk gravity for several reasons as follows: any effective
stringy gravity action besides the usual Einstein term (and a possible cosmological term)
includes higher derivative terms of different order as loop corrections to string amplitudes
[50]. On the other hand, from the point of view of AdS/CFT correspondence in any effec-
tive supergravity action, the R2-terms give next-to-leading terms in large N expansion of
boundary CFTs in the strong coupling limit [51, 52].

Another reason is, that higher derivative gravity is probably a good candidate for con-
struction of realistic brane-world cosmologies. It has been shown that it is necessary to
include the higher curvature terms for a better understanding of both the thermodynamic
behavior and thermal phase structure. Of course for computing the thermodynamic quanti-
ties in any effective gravitational action including higher derivatives we should calculate the
entropy. This fact that entropy formula is valid to any effective gravitational action including
higher curvature interactions, was proposed for the first time in [53], and then was gener-
alized in some works [54, 55]. The Gauss-bonnet (GB) invariant which is attributed to the
low energy effective string action can be the suggestive combination of the higher deriva-
tive curvature term. It is worth mentioning that the resulting field equations contain no more
than second derivatives of the metric tensor [56, 57], thus in this theory we don’t have any
ghost. This is also true for Randall-Sundrum type warped geometry [58, 59]. A natural tool
to explore the AdS/non-CFT correspondence, is probably attainable by using the general
higher derivative terms to the effective effect.

Another application of higher derivative corrections is to study the role of these correc-
tions on quantities related to quark-gluon plasma (QGP) such as shear viscosity, drag force,
jet-quenching and the ratio of shear viscosity η to entropy density s. In fact quark-gluon
plasma which is composed of free quarks and gluons is a phase of quantum chromodynam-
ics (QCD) which exists at high temperature or high density. One important hydrodynamical
quantity of QGP is the shear viscosity which is related to entropy, specially the ratio of
shear viscosity η to entropy density s has a universal value: η/s = 1/4π [60–63]. However
this universal value may be enhanced or reduced for several cases [64–66]. For example,
in string theory, α corrections enhance this value, while probably higher derivative correc-
tions will reduce it. In STU model the shear viscosity has been computed, also the effects of
higher derivatives in five-dimensional gauged supergravity has been calculated for the ratio
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of shear viscosity to entropy [35, 37, 67, 68]. In another work, the ratio of shear viscosity
to entropy density was obtained by using diffusion constant and applying higher derivative
correction for three-charged black hole in STU model [39]. Other important properties of
QGP are drag force and also jet-quenching parameter. Jet-quenching parameter is obtained
by calculating the expectation value of a closed light-like Wilson loop and using the dipole
approximation. In Refs [69, 70] effect of higher derivative corrections such as Gauss-Bonnet
on drag force and jet-quenching parameter has been studied. Also, in Ref. [71] the effects of
higher derivative correction and external electric field on jet-quenching parameter in STU
model was studied. Considering the effect of higher derivative corrections for R-charged
AdS5 black holes with three equal charges, thermodynamic quantities such as Hawking
temperature and entropy are presented in [72]. The four derivative terms (up to linear orders)
for a STU model was studied in [67]. In Refs. [61, 73] the effect of curvature squared cor-
rections on the ratio of η/s was computed. More references and discussion in this field can
be found in Refs. [39, 74, 75].

The main purpose of present paper is dealing with a question that, if higher derivative
terms are considered how thermodynamics quantites will be changed in higher-dimensional
AdS-like cosmological space. Before doing that, it is necessary to have a brief review of
AdS5 × S5 spacetime and relevant papers.

2 Action, Metric and Free Energy in AdS5 × S5 Space

As we know D-branes are useful to establish the precise relation between gauge theory
and curved spacetime. But superstring theory actually requires a 10 dimentional spacetime
for consistency. We roughly divide spacetime made by D3-brane into AdS5 × S5 near the
origin with an approximately flat spacetime surrounding it. The ℵ = 4 SYM corresponds
to supergravity on AdS5 × S5 [76, 77]. These two descriptions of the brane namely, gauge
theory and supergravity, are complementary to each other. Gauge theory description is valid
when gsNc � 1, whereas supergravity description is valid when gsNc � 1. Black D3-brane
is given by [19].

ds210 = Z−1/2(−dt2 + d
−→
x 2) + Z−1/2(dr2 + r2d�2

5)

Z = 1 + (L/r)4 , L4 ∼= gsNcl
4
s (1)

This metric is the zero-temperature solution of the D3-brane, or the extreme black hole
solution, which corresponds to ℵ = 4 SYM at zero temperature. In [6] it was pointed out
that near extremal black 3-brane of Hawking temperature T, may be used to study large N
SYM theory heated up to the same temperature and entropy of SU(N) SYM theory which
was identified with the Bekenstein-Hawking entropy of the geometry.

Since horizon of a near-extremal 3-brane is located far down its throat, the same answer
for the Bekenstein-Hawking entropy is obtained if we replace 3-brane metric by throat
approximation, r � L. The resulting metric [3, 78],

ds2 = r2

L2

[
−

(
1 − r40

r4

)
dt2 + dx2 + dy2 + dz2

]
+ L2

r2

(
1 − r40

r4

)−1

dr2 + L2d�2
5 (2)

is a product of S5 with a certain limit of the Schwarzschild black hole in AdS5 [79]. The
horizon is given by rh = r0.
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AdS5 part of (Euclidean) metric (2) has the following Ricci scalar and Ricci tensor:

R = −20

L2
, Rmn = −4

L2
gmn (3)

It is obvious that metric (2) is a solution of equation of motion defined by the following
action that is a 10-dimentional gravity:

I = − 1

16πG10

∫
d10x

√−g10R10 (4)

In AdS/CFT correspondence, since V ol(S5) = π3L5, we have the following identification:

N2
c = π4L8

2G10
(5)

After Wick-rotating the time variables by t → it , the free energy F can be obtained from
action I in (4). Following [80], one can identify free energy F of the theory with Euclidean
gravitational action times temperature, i.e.

I = βF (6)

In above relation the temperature is defined as:

β = 1

T
(7)

We can find the corresponding Hawking temperature, by employing thermodynamic rela-
tion dE=TdS, or through the absence of a conical singularity in periodic Euclidean
metric,

T = g′
00(rh)

4π
(8)

T = 1

4π

[
r2

L2

(
1 − r40

r4

)]′
|(r = rh) = 1

4π

[
2r

L2
+ 2r4h

L2r3

]
|( r = rh) = rh

πL2
(9)

rh = πL2T (10)

Using
√−g10 = r3L2sin θ41 sin θ32 sin θ23 sin θ14 , (3) and (4) and compactification of S5 we

arrive at the following form of the action:

I = − 1

16πG10

∫ β

0
dt

∫
d�5

∫
d3x

∫ rMax

rh

L2r3
(−20

L2
+ 12

L2
+ ...

)
dr (11)

where dots stand for matter fields which appear by compactification. In the limit that such
matter fields have a trivial behavior we have:

I = 1

16πG10

(
8

L2

)∫ β

0
dt

∫
d�5

∫
d3x

∫ rMax

rh

L2r3dr = 2

16πG10

V3�5

T
(r4Max − r4h)

(12)
here V3 is the volume of 3d flat space. We also assume β has a period of 1/T . Using (6) we
find:

FSAdS = T I = 2

16πG10
V3�5(r

4
Max − r4h) (13)
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The expression for FSAdS and I contains the divergence originating from large r. In order
to subtract the divergence, we regularize I in (1) by cutting off the integral at a large radius
rMax followed by action I , which must be subtracted off its zero temperature limit, IAdS . If
we continue above method for free energy in thermal AdS spacetime, we will have:

I = 1

16πG10

(
8

L2

) ∫ β0

0
dt

∫
d�5

∫
d3x

∫ rMax

0
L2r3dr = 2

16πG10

V3�5

T0
r4Max (14)

We remind that care is needed for thermal AdS temperature. This requirement that
Euclidean geometry does not have a conical singularity, determines the temperature of a
black hole. The periodicity β0 for thermal AdS spacetime is arbitrary, but we are interested
in free energy difference, so we must match the thermal AdS temperature with that of SAdS.
The relation is:

βf 1/2 = β0f
1/2
0 (15)

where f and f0 are g00 components for the SAdS black hole and the thermal AdS spacetime
respectively. We have:

1

T0
= 1

T0

(g00)
1/2
SAdS

(g00)
1/2
AdS

1

T
= 1

T

(
1 − r4h

2r4Max

)
(16)

Using (14) and (16), we find

IAdS = 2

16πG10
V3�5

1

T

(
1 − r4h

2r4Max

)
(r4Max) (17)

By using (6) we have:

FAdS = T IAdS = 2

16πG10
V3�5

(
1 − r4h

2r4Max

)
(r4Max) (18)

After subtracting ISAdS from IAdS and in the limit rmax → ∞ we find the following
expression for free energy,

F = − V3�5

16πG10
r4Max (19)

Using (10), and (19) and AdS/CFT dictionary (5), free energy F can be rewritten in the
following form by putting L=1:

F = −V3

8
π2N2T 4 (20)

We now compare the above results with those of ℵ = 4 SYM gauge theory. The correspond-
ing free energy, as shown in refs [6, 7] is given by:

F = −V3

6
π2N2T 4 (21)

which is different from AdS result by a factor 4/3, this difference may be regarded as due
to only employing the leading approximation term.



International Journal of Theoretical Physics

3 Action, Metric and Free Energy in AdS-like Cosmological Space

Next question is the role of AdS/CFT correspondence in the situation that cosmological
AdS-like space is considered. It is very similar to the above method. We can obtain a metric
of a kind of cosmological model if inside horizon r < rh , we replace t by r and r by t [25]:

ds2 = −L2

t2

(
r40

t4
− 1

)−1

dt2 + t2

L2

[(
r40

t4
− 1

)
dr2 + d

−→
x 2

]
+ L2d�2

5 (22)

It is clear that what we have done is, exchanging the physical role of time and radial coor-
dinates [81]. Since we have only exchanged the coordinates r and t, the metric will satisfy
Einstein equations. In this situation, the singularity of black hole corresponds to t=0, so
there is a curvature singularity. The singularity at t=0 might be regarded as a big bang.

One can consider an analogue F̃ of free energy in metric (22). F̃ would be gained by
substituting the metric given in (22) into gravitational action (Ĩ ) as in (6) after Wick-rotation
t→ it. Since r is the time coordinate t in black hole metric (2), r could have a period of 1/T

after the Wick-rotation. As (11) the on-shell bulk action is:

Ĩ = 1

16πG10

∫ β

0
dr

∫
d�5

∫
d3x

∫ rh

0
L2t3

(
− 8

L2

)
dt = − 1

8πG10
βV3�5r

4
h (23)

Using (10) we find

Ĩ = − 1

8πG10

V3�5

T
(πL2T )4 (24)

Then we find the following expression for free energy F̃ :

F̃ = T Ĩ = − 1

8πG10
V3�5(πL2T )4 (25)

Taking (6) the above relation can be rewritten as:

F̃ = −V3

4
π2N2T 4 (26)

which is different from the CFT result by a factor 3/2, this difference again may be
regarded as due to only employing the leading approximation term. We can obtain other
thermodynamic quantities like entropy (S̃) and energy (Ẽ) from F̃ :

S̃ = −∂T F̃ = 1

2πG10
V3�5π

4L8T 3 (27)

Ẽ = F̃ + T S̃ = 3

8πG10
V3�5(πL2T )4 (28)

4 The Role of R2-term and Boundary Terms in Casimir Energy
and in Some Thermodynamic Quantities

As mentioned above, the difference in results between cosmological AdS-like space and
CFT may be regarded as due to only employing the leading approximation method. So
it will be interesting to regard higher derivatives in action. Moreover higher derivatives
are also interesting, because any effective stringy gravity includes higher derivative terms
of different order which from the point of view of AdS/CFT correspondence gives next-
to-leading terms in large N expansion [82, 83]. So, higher derivative gravity may serve
as quite a good candidate for construction of realistic brane-world cosmologies [84, 85].
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The presence of higher derivative corrections to the supergravity action will change both the
thermodynamics of anti-de Sitter black holes and cosmological AdS-like space.We consider
these corrections on gravity side of the correspondence. It was already shown [86] that such
a bulk theory may correctly reproduce trace anomaly of ℵ = 4 super YM theory. We will
check such HD AdS/CFT conjecture by considering Gibbons-Hawking and the counterterm
action. We will also check such HD AdS/CFT conjecture for cosmological AdS-like space.
Before doing this, we should mention that for thermodynamic properties it is necessary to
add the surface term to the Einstein-Hilbert action. In fact the full gravitational action in
n+1 spacetime dimensions has three contributions as:

IE = Ibulk + IGT + ICT (29)

here, Ibulk , IGT , and ICT are called bulk action, Gibbons-Hawking action, and counterterm
action, respectively. In the following we will calculate all these three terms. The general
bulk action of n+1-dimensional R2 gravity is given by:

Ibulk =
∫

dn+1x
√−gn+1

(
1

κ2
R −  − 1

2
(∂ϕ)2 + α1R2 + α2R3 + α3R4 + ...

)
(30)

where dots stand for terms depending on antisymmetric tensor field strengths, derivatives of
dilaton and other matter fields. We will focus on α1R2 string correction to the supergravity
action. In the limit that other matter fields have a trivial behaviour with a constant dilation
ϕ , we will have:

Ibulk =
∫

dn+1x
√−gn+1

(
1

κ2
R −  + α1R2

)
(31)

If we put a = α1 and follow the method used in [87, 88] we can define metric ansatz as the
following:

ds2 = −
(

k − μ

rn−2
+ r2

L2

)
dt2 +

(
k − μ

rn−2
+ r2

L2

)−1

dr2 + r2d�2
n−1 (32)

where d�2
n−1 is the unit metric on Sn−1 , μ is the parameter corresponding to the mass of

black hole and k is a constant (which could be 1, 0 and -1).
In this case, the curvature tensors become

R = −n(n + 1)

L2
, Rmn = − n

L2
gmn (33)

So the curvatures are covariantly constant. Then in equations of motion following the bulk
action, the terms containing covariant derivatives of the curvatures vanish which is leading
to:

0 = −1

2
gαβ

(
1

κ2
R −  + aR2

)
+ 2aRRαβ + 1

κ2
Rαβ (34)

By substituting (33) into (34), we find

0 = n2(n + 1)(n − 3)a

L4
− n(n − 1)

κ2L2
−  (35)

As before the temperature is given by:

T = g′
00(r+)

4π
= nr2+ + k(n − 2)L2

4πL2r+
(36)

Here, r+ is the root of g00 = 0.
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From above equation, r+ can be rewritten in terms of T as

r+ = 4πL2T
√
16π2L4T 2 − 4nk(n − 2)L2

2n
(37)

In (37), the plus sign corresponds to k=-1 or k= 0 and the minus sign corresponds to k= 1.
Substituting (35) into (31) one gets

Ibulk,k,n+1 = −β�k,n−1

L2

(
1

κ2
− 2n(n + 1)a

L2

) (
rn+ − L2krn−2+

)
(38)

As there is a boundary, we need to add a surface term to the action, which is called the
Gibbons-Hawking surface term

IGT = − 2

κ2

∫
dnx

√−γK (39)

and is evaluated at r = ∞. Here, γμν is the (n + 1)-dimensional metric at the surface, and
K is the trace of the extrinsic curvature of the surface as described below. If we change
u := r0/r , the (n +1)-dimensional metric γμν is given by decomposing the metric as

ds2n+2 = guudu2 + γμνxμxν (40)

K and the unit normal to u= (constant) surface, nM , that is pointing in the direction of
decreasing u or increasing r are given by:

gMNnMnN = 1 → nu = − 1√
guu

, K = nu ∂u
√

γ√
γ

(41)

The second surface term is the counterterm action that may be arranged as an expansion in
powers of the boundary curvature and its derivatives:

Ict = 2

κ2

∫
dnx

√−γK

[
(n − 1)

L
− L2

2(n − 2)
R + L3

2(n − 4)(n − 2)2(
RμνR

μν − n

4(n − 1)

)
R2 + ...

]
(42)

where R and Rμν are the Ricci scalar and Ricci tensor for the boundary metric, respectively.
Calculating (39) and (42), using (38) and substituting into (29) we have:

IE,k,n+1 = −β�k,n−1

L2

(
1

κ2
− 2n(n + 1)a

L2

)

×
(

rn+ − L2krn−2+ + L2kδn,2 − 3

4
L4k2δn,4 + 5

8
L6kδn,6 − ...

)
(43)

FE,k,n+1 = T IE,k,n+1 = −�k,n−1

L2

(
1

κ2
− 2n(n + 1)a

L2

)

×
(

rn+ − L2krn−2+ + L2kδn,2 − 3

4
L4k2δn,4 + 5

8
L6kδn,6 − ...

)
(44)

S = A

4G̃n+1
= �n−1r

n−1+
4G̃n+1

= 4π�n−1

(
1

κ2
− 2n(n + 1)a

L2

)
rn−1+ (45)

E = F + T S (46)

= (n−1)�k,n−1

L2 ( 1
κ2

− 2n(n+1)a
L2 )(rn+ + L2krn−2+ ) + �k,n−1

L2 ( 1
κ2

− 2n(n+1)a
L2 )(−L2kδn,2 +

3
4L

4k2δn,4 − 5
8L

6kδn,6 + ...)
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Our relations show that the first law of thermodynamics (dE=TdS) still remains valid.
This fact can be checked by deriving relations (45) and (46) from r+ and using relation (36).
We will also explain at the end of section 5 the correction to entropy that has appeared as a

redefinition of gravitation constant as
(

1
κ2

−→ 1
κ2

− 2n(n+1)a
L2

)
.

It is interesting to evaluate energy for n=4 and k=1, namely

E = 2π2
(

1

16πG5
− 40a

L2

) (
3μ + 3

4
L2

)
(47)

The energy has a constant term, so by using the AdS/CFT dictionary, L3/G5 = 2N2
c /π the

constant term will be written as

E = 2π2
(

1

16πG5
− 40a

L2

)(
3

4
L2

)
= 3N2

c

16L
− 60π2a (48)

This can be interpreted as the Casimir energy [89] that coincides with that calculated for ℵ
= 4 SYM. In fact the calculation of Casimir energy from QFT gives a non-zero result, which
in this case is given by:

ECasmir = 3N2
c

16L
− 3

16L
(49)

By choosing a = 3/(960Lπ2) in (48), we see a very good consistency between the two
results obtained from different methods. We will use this in next section.

5 The Role of R2 Term to Thermodynamics of AdS/CFT
Correspondence on Cosmological Level

The question that arises is, the role of adding R2 term to action in AdS/CFT correspondence
when cosmological AdS-like space is considered. Similar to the previous sections we can
obtain a metric of a kind of the cosmological model if inside the horizon r < rh, we change
the role of r as t and the role of t as r:

ds2 = −
(

k − μ

tn−2
+ t2

L2

)
dr2 +

(
k − μ

tn−2
+ t2

L2

)−1

dt2 + t2d�2
n−1 (50)

That is, we have exchanged the physical role of time and radial coordinates. Substituting
(35) into (31) one gets

Ĩ =
∫

dn+1x
√−gn+1

(
1

κ2
R −  + a1R2

)
= −

∫ β

0
dr

∫
d�k,n−1∫ r+

0
tn−1

(
8

L2κ2
− 16n(n + 1)a

L4

)
dt

= −β�k,n−1

nL2

(
8

κ2
− 16n(n + 1)a

L2

)
rn+ (51)
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By inserting (37) into above relation we find

F̃ = −�k,n−1

nL2

(
8

κ2
− 16n(n + 1)a

L2

) (
4πL2T ± √

16π2L4T 2 − 4nk(n − 2)L2

2n

)n

(52)

S̃ = −dF̃

dT
(53)

= �k,n−1

L2

(
8

κ2
− 16n(n + 1)a

L2

)(
4πL2T ± √

16π2L4T 2 − 4nk(n − 2)L2

2n

)n−1

×
(
4πL2

2n
± 16π2L4T

2n
√
16π2L4T 2 − 4nk(n − 2)L2

)

Ẽ = F̃ + T S̃ (54)

= �k,n−1

L2

(
8

κ2
− 16n(n + 1)a

L2

)(
4πL2T ± √

16π2L4T 2 − 4nk(n − 2)L2

2n

)n

×
(

−1

n
± 4πL2T√

16π2L4T 2 − 4nk(n − 2)L2

)

If we evaluate above results for n=4, k=0 and L=1 we find

r+ = πL2T (55)

Ĩ = −
(

1

κ2
− 40a

L2

)
2βV3

L2
r4+ (56)

S̃ =
(

1

κ2
− 40a

L2

)
8πV3r

3+ (57)

F̃ = −
(

1

κ2
− 40a

L2

)
2V3

L2
r4+ (58)

Ẽ =
(

1

κ2
− 40a

L2

)
6V3

L2
r4+ (59)

By using N2 = (π/2)(L3/G5) , a = 3/(960Lπ2) and putting L=1 we have:

S̃ =
(
1 − 1

N2

)
π2V3N

2T 3 (60)

F̃ = −3

2

(
1 − 1

N2

)
π2V3N

2T 4

6
(61)

Ẽ = 3

4

(
1 − 1

N2

)
π2V3N

2T 4 (62)

We now compare the above results with those of ℵ = 4 super Yang-Mills theory at least on
the level of free energy. From the perturbative QFT, free energy is given by:

F = −(1 − 1

N2
)
π2V3N

2T 4

6
(63)

which is different from the cosmological AdS-like space result by a factor 3/2. Thus, our
results show that there is a cosmological AdS/CFT correspondence between cosmological
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AdS-like space and ℵ = 4 SU(N) super Yang-Mills. It indicates that we can calculate QFT
quantities starting from cosmological background.

At this stage there are two points worth mentioning: The first point to comment on, is the
first law of thermodynamics, in fact once again our relations show that the first law of ther-
modynamics (dE=TdS) still remains valid. This fact can be checked by deriving relations
(57) and (59) from r+ and also by using relation (55). The second point is concerned with
our correction to entropy (relation (57)). This fact that entropy is not directly related to the
horizon area in higher-derivative gravity has been already noted in some previous works.
We can see a logarithmic correction due to quantum modification in some works [90–96].
However, according to Wald’ entropy formula of black holes [97], it is quite difficult to pro-
duce such a logarithmic term in black hole entropy in some effective local theory of gravity
even with higher derivative curvature terms. In Ref. [98], quantum corrections to the entropy
area relation of order e−κ/� was studied. In Ref. [99] a charged dilatonic black holes with
the Yang-Mills and Gauss-Bonnet curvature corrections was considered and as is usual in
higher derivative theories, it does not coincide with the area of the event horizon. In fact

it is a positive definite function of M as S = 4πM2(1 + α
2−q

2M2 + α2 73−45q2

120M4 ). Corrections
to four dimensioanl non-extremal black hole solutions of string theory with fundamental
string momentum and winding charges are studied in Ref. [100] in the presence of higher
derivative corrections of the form λR2. It was found that the Bekenstein-Hawking entropy
is increased by an overall factor (1 + 2λ

r2h
), where rh is the radius of the black hole.

In Ref. [101] a general class of black holes in ℵ=2 supergravity that contains solutions
of type-IIA string theory compactified on a general Calabi-Yau 3-fold with higher deriva-
tive corrections was considered. The entropy of these black holes no longer satisfies the
Bekenstein-Hawking area formula but includes the correction due to higher derivative as
S = A

2 = A
4 + A

4 . That means the correction to the entropy is of the same order as
the Bekenstein-Hawking entropy. The case for spherically symmetric horizons in Lanczos-
Lovelock lagrangian was considered in Ref. [102], it was shown that in principle, the
corrections to the entropy and the energy coming from the higher order Lanczos-Lovelock
terms do not need to preserve the structure of first law of thermodynamics. The expression
for entropy is in the form of S = AD−2

4 aD−2[1 + (D − 2)(D − 3) 2α
a2

] where α is regarded
as the inverse string tension and a is horizon for this spacetime. Leading order entropy cor-
rection arising from R2 terms for the supersymmetric black ring and the 5D BMPV (the
charged rotating black hole in 5D) spinning black hole, was studied in Ref. [103]. The cor-

rection to the entropy is �S = π
6 A c2.Y ( 1

Q
− A2

4Q4 ). Here YA, are scalar components of
vector multiplets and c2A the components of the second Chern class of CY3 which is also
defined as A = √

Q3 − J 2 .
In Ref. [104] it was shown that for a stationary black hole including higher derivative

corrections (R +λRμυρεR
μυρε) the entropy is equal to a quarter of the horizon area in units

of the effective gravitational coupling, so that Geff = GN(1 − 4λRtrtr )−1, in this case the
entropy is S = AH

4Geff
= AH

4GN
(1 − 4λRrtrt ). Our resuls also show that R2 term contribution

appears in entropy via the redefinition of gravitation constant as ( 1
κ2

−→ 1
κ2

− 2n(n+1)a
L2 ).

It should be noted that in our analysis there is no relation for entropy with logarithmic
corrections. Some other corrections to entropy at higher derivatives can be found in Refs.
[105, 106].
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6 Conclusions

AdS/CFT correspondence on cosmological level has been studied in some previous works.
Without HD terms the possibility of such a cosmological AdS/CFT duality has been found
in ref [25]. We tried in this paper, to understand the role of HD terms in cosmological
AdS/CFT correspondence from a different point of view. We used AdS Einstein gravity
with R2 term and added a Gibbon-Hawking surface term as well as a boundary counterterm
to the gravitational action and considered an AdS-like cosmological space.

Then we calculated some thermodynamic quantities such as entropy, energy and free
energy. To check the validity of our results, we compared our calculations with perturbative
results obtained from boundary QFT. We know from the viewpoint of AdS/CFT correspon-
dence, that higher derivative terms in gravity side correspond to the 1/N corrections in large
N limit of gauge theory side. For instance, the free energy obtained from R2 term and metric
as a function of N2T 4 times 3/2(1 − 1/N2), is similar to the result obtained from pertur-
bative boundary QFT . In fact by taking into account the next to leading term in large N
expansion, the difference between results obtained from AdS-like cosmological space and
the results obtained from strong coupling limit of ℵ = 4 SCFT, is just a factor 3/2.

Calculation of energy and entropy showed thatR2 term contribution also appears in these
quantities via the redefinition of gravitation constant as ( 1

κ2
−→ 1

κ2
− 2n(n+1)a

L2 ). This can be
checked in our paper in some thermodynamic quantities like entropy (relations (45), (53))
and energy (relations (46), (54)).

We explicitly identify higher order counterterms effect in the energy as a constant term
namely E0. This value can be interpreted as the Casimir energy, so that, there is a full and
perfect match between the QFT result and gravitational action when R2 term and boundary
counterterms are considered. Then our results indicate that cosmological AdS/CFT cor-
respondence (with a corrected action) could be valid in the next-to-leading order of the
1/N.

In this area, we suggest that behavior of thermodynamic quantities and validity of cos-
mological AdS/CFT correspondence be checked when a non-constant dilaton term is added
to gravitational action.

For more work one can focus on RμυRμυ and RμυρεR
μυρε correction terms in gravity

action and study the validity of cosmological AdS/CFT correspondence.
Finally it is also interesting to find the correction imposed on the ratio of shear viscosity

to the entropy density for this new correspondence.
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